
Lineages of Automata

Peter Verbaan

Jan van Leeuwen

Jǐŕı Wiedermann

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-018

www.cs.uu.nl

Lineages of Automata ?

A Model for Evolving Interactive Systems.

Peter Verbaan1 Jan van Leeuwen1 Jǐŕı Wiedermann2

1 Institute of Information and Computing Sciences, Utrecht University, the Netherlands
2 Institute of Computer Science, Academy of Sciences of the Czech Republic, Czech Republic

Abstract. While in the series of previous papers we designed and studied a number of
models of evolving interactive systems, in the present paper we concentrate on an in-depth
study of a single model that turned out to be a distinguished model of evolving interac-
tive computing: lineages of automata. A lineage consists of a sequence of interactive finite
automata, with a mechanism of passing information from each automaton to its immedi-
ate successor. In this paper, we develop the theory of lineages. We give some means to
construct new lineages out of given ones and prove several properties of translations that
are realized by lineages. Lineages enable a definition of a suitable complexity measure for
evolving systems. We show several complexity results, including a hierarchy result. Lineages
are equivalent to interactive Turing machines with advice, but they stand out because they
demonstrate the aspect of evolution explicitly.

1 Introduction

In recent years, several people have come to the conclusion that the Turing machine model, which
has long been the basis for theoretical computer science, fails to capture all the characteristics of
modern day computing (cf. [10]). When we think of a modern networked computing system, we
see a device which is capable of interaction with its environment and can be changed over time
(by installing new hardware or upgrading the software). A computation on such a device can be
extended arbitrarily, which implies the existence of potentially infinite computations. Networked
machines and the programs that run on them are examples of interactive evolving systems ([4, 6]).
Further examples are given in [11, 12].

If we look at a (deterministic) computation (or a transduction) from a traditional point of
view, the entire input, as well as the quantity of available resources, is fixed the moment we start
the computation. In a more realistic setting, we want a user to generate the input interactively and
allow the computing device to allocate more resources when the need arises. We might even allow
the user to alter the device’s behaviour during the computation. Last but not least, we should
consider potentially never-ending computations. Devices that allow these kinds of computations
are called evolving interactive systems. In this paper, we define lineages of automata, a simple
yet elegant model which captures the evolving aspect of computational systems in a natural way.
It turns out that even this simple model is more powerful than classical Turing machines. This
has been merely sketched in [4, 6], where lineages of automata have been shown to be equivalent
to so-called interactive Turing machines with advice. The latter machines are known to possess
super-Turing computing power.

A lineage is a sequence of interactive, finite automata with a mechanism of passing information
from each automaton to its immediate successor and the potential to process infinite input streams.
Every automaton in the sequence can be seen as a temporary instantiation of the system, before it
changes into a different automaton. We study the properties of lineages through the translations
they realize. Lineages of interactive finite automata (or: transducers) have been introduced in [6].

? Version March 4, 2004. This research was partially supported by GA ČR grant No. 201/02/1456 and
by EC Contract IST-1999-14186 (Project ALCOM-FT).

Lineages of Automata 3

The concept of transducers acting on infinite input streams (ω-transducers) is not new. For
example, [9] gives an overview of the theory of finite devices that operate on infinite objects. In the
field of non-uniform complexity theory, sequences of computing devices are common-place ([1]).
It is the idea of combining these concepts and allowing some form of communication between the
devices in the sequence that is new. The approach leads to several new fundamental questions
that will be settled in this paper.

We can measure the “speed of growth” (i.e. “growth complexity”) of a lineage by a function
that relates the index of each automaton to its size. That is, the complexity of a lineage is a
function g such that the n-th automaton in the sequence has g(n) states. Using this measure, we
can divide the translations computed by evolving systems into classes based on the complexity of
the lineages that realize them. Our main result states that this division is non-trivial, i.e. for every
positive, non-decreasing function g, there is a translation that can be realized by a lineage with
complexity g, but not by any lineage with a lower complexity.

The structure of the paper is as follows. In section 2, we define lineages. Next, in section 3, we
give some effective constructions to produce new lineages out of given ones. These constructions,
and the lemma’s that accompany them, illustrate a key idea that is used extensively in this paper:
to associate (input-)prefixes with states. In section 4, we look at the class of translations that can
be realized by lineages, and show that this class is much richer than any class that is realized by
non-evolving finite-state machines. We give a useful characterisation of l-realizable translations
in terms of the domain and the relation between input and output pairs. We also show that the
class is closed under composition and, with minor restrictions, under inversion. Then, in section
5, we define a novel measure of complexity on translations and establish a hierarchy of complexity
classes. Finally, in section 6, we show that lineages are “exponentially” equivalent to interactive
Turing machines with advice.

In [4, 6, 11, 12], several other well-motivated models are shown to be equivalent to interactive
Turing machines with advice. This implies that lineages are firmly embedded in the family of new
models proposed to fill the gap between the original Turing machine model and its equivalents
on the one hand, and real-life applications on the other [10]. Between all these new models,
lineages stand out because they demonstrate the aspect of evolution directly, rather than indirectly
through an advice mechanism. The growth and rate of growth measures are also very easily
expressible with lineages. Furthermore, just as (interactive) finite automata are a fundamental
model of computation, so are sequences of automata, and hence lineages, a fundamental model of
evolving interactive computing.

1.1 Notation

In most literature, the term transducer is used to denote an automaton with output capability.
The main reason to introduce this term is to distinguish it from automata with, and automata
without an output mechanism. In this paper, we only regard automata with output. Thus, every
time we use the word automaton, the term transducer could be substituted without ill effects.

We use Σ and Ω to denote alphabets. We use the notations Σ?, Σω for the sets of finite and
infinite strings over Σ respectively and Σ∞ for the union of Σ? and Σω. We call a partial function
from Σ∞ to Ω∞ a translation.

For a string x ∈ Σ∞ of length at least n, we denote the n-th symbol of x by xn, or (x)n,
to improve readability. We write x[i:j] for xixi+1 . . . xj . We also use the projection functions for
tuples, πn, which are defined straightforwardly, i.e., πn ‘returns’ the n-th component of a tuple
that serves as the argument of πn, for any n.

Let D be a subset of Σ∞. We define the n-th prefix domain P n(D) as the set of all prefixes of
length n of strings in D,

Pn(D) = { x[1:n] | x ∈ D } . (1)

We define a topology on Σ∞ as follows. Let u be a finite string over Σ. Then the set of all possible
extensions of u,

B(u) := { x ∈ Σ∞ | u is a prefix of x } (2)

4 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

is a basis set. Let S be a subset of Σ∞. We call S an open set if it is a union of basis sets. A set
is closed if it is the complement of an open set.

2 Modelling Evolutionary Interactive Systems by Lineages

As we explained in the introduction, the ideas of classical computability theory are not sufficient
to capture all aspects of modern computing systems. This validates the research into theories that
better describe these systems. In this paper, we develop a new model for computing systems,
initially outlined in [6]: lineages, inspired by a similar notion in evolutionary biology.

The building blocks of the model are a generalisation of Mealy automata. These automata
process potentially infinite input streams and produce potentially infinite output streams, one
symbol at a time. We assume that there is no input tape. Instead, the automaton reads its input
from a single input port. One symbol is read from this port at each step. Similarly, the output
goes to a single output port, one symbol at a time. In contrast to classical models, the input
stream does not have to be known in advance, and can be adjusted at any time by an external
agent, based on previous in- and output symbols. This allows the environment to interact with
the automaton.

We model the evolutionary aspects by considering sequences of automata. Each automaton
in the sequence represents the next evolutionary phase of the system. The way in which this
sequence develops need not be described recursively in general. When a transition occurs from
one automaton to its successor, the information that the automaton has accumulated over time
must be preserved in some way. This is done by requiring that every automaton has a subset of
its states in common with its immediate successor.

Definition 1. An automaton is a 6-tuple A = (Σ,Ω,Q, I, O, δ), where Σ and Ω are non-empty
finite alphabets, Q is a set of states, I and O are subsets of Q, and δ : Q × Σ → Q × Ω is a
(partial) transition function. Σ is the input alphabet, and Ω is the output alphabet. We call I the
set of entry states and O the set of exit states.

Definition 2. Let A be a sequence of automata A1, A2, . . . , with Ai = (Σ,Ω,Qi, Ii, Oi, δi), such
that Oi ⊆ Ii+1 for every i. We call A a lineage of automata, or a lineage for short.

We do not require a recursive recipe for defining or constructing the sequences. The elements in
Qi − Oi are called local states (of Ai). The first automaton, A1, has an initial state qin ∈ I1.
Usually, I1 contains only the initial state of A1, and Ii+1 equals Oi. See Fig. 1 for an example.

*

j

-
�

-

-

?

6

-

I �

A1

qin

q2

q3I1

O1

A2

q2

q3

q4

I2

O2

Fig. 1. Part of a lineage A. The set of exit states of A1 is a subset of the set of entry states of A2.

Lineages of Automata 5

A lineageA operates on elements of Σ∞. On an input string x, at any time, only one automaton
processes x. The automaton that processes x at a particular time is called active (at that time).
Initially, A1 is the active automaton, and it starts processing x. Whenever an active automaton Ai
enters an exit state q, it turns the control over to Ai+1, which then becomes the active automaton.
This is done by letting Ai+1 start processing the remainder of x, beginning in state q (which is an
entry state of Ai+1 by definition). This is called updating, and Ai is the i-th update of A.

Formally, let Q be the union of all Qi and let x ∈ Σ∞ be an input to a lineage A. Using
simultaneous recursion, we define a sequence of states (qj)j≥1 in Q and a sequence of integers
(mj)j≥1, with mj representing the index of the active automaton at time j, as follows:

q1 := qin ,
m1 := 1 ,

qj+1 := π1

(
δmj

(qj , xj)
)
,

mj+1 :=







mj + 1 if qj+1 ∈ Omj

mj if qj+1 ∈ Qmj
−Omj

undefined if qj+1 is undefined
.

(3)

Note that qj+1 and mj+1 depend on x[1:j]. Therefore, we also write qj+1(x[1:j]) and mj+1(x[1:j]) to
emphasise the dependence. If qj is defined for every j ≤ |x|+1, then we say that x is a valid input
to A. In this case, the output of A on x is the string y ∈ Ω∞ such that yj := π2

(
δmj

(qj , xj)
)
, for

every j ≥ 1.

Definition 3. Let A be a lineage. For every n ≥ 1, we define the partial function φA,n : Σn → Ωn

by letting φA,n(x) be the output of A on x if x is a valid input and undefined otherwise, for every
x of length n. We say that φA,n is realized by the lineage A. In general, for a partial function
ψ : Σn → Ωn, we say that ψ is realizable, if there is a lineage A such that ψ equals φA,n.

Since there are only finitely many strings of length n, for any lineage A and integer n, the trans-
lation φA,n can be realized by a single finite-state automaton. We conclude that φA,n is regular
for all A and all n, which justifies the term realizable. There is no need to restrict our attention
to finite strings.

Definition 4. Let A be a lineage. We define the partial function ΦA : Σ∞ → Ω∞ by letting
ΦA(x) be the output of A on x if x is a valid input and undefined otherwise, for every infinite
string x. We say that ΦA is non-uniform realized by the lineage A. In general, for a partial function
Ψ : Σ∞ → Ω∞, we say that Ψ is non-uniform realizable, if there is a lineage A such that Ψ equals
ΦA.

It will become clear that for some lineages A, the translation ΦA is not realizable by a single finite-
state automaton (Prop. 5), which is why we use the term “non-uniform realization” to indicate
realisability by a lineage of automata. For the remainder of this paper, we consider translations
on infinite strings, unless stated otherwise. See also [6].

Let Φ be a translation and n an integer. We say that (Φ)n
1 depends only on the first n input

symbols, if there is a function f : Σn → Ω, such that (Φ(x))n equals f(x[1:n]) for every x in the
domain of Φ. A non-uniform realizable translation has this property for every n, since

(Φ(x))n = π2 (δmn
(qn, xn)) = π2

(

δ
mn(x[1:n−1])

(
qn
(
x[1:n−1]

)
, xn
))

. (4)

Let A = A1, A2, A3, . . . be a lineage of automata and let n and m be integers. In a slight abuse
of notation, we say that Am is able to process all strings of length n, if mn(x[1:n]) ≤ m for every
string x. In other words, if for any string x, the lineage A needs less than m updates to process
the first n symbols of x.

1 Where (Φ)
n

is shorthand for the function x 7→ (Φ(x))
n
.

6 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

3 Constructions on Lineages

In this section, we give some methods to construct new lineages B out of a given lineage A that
non-uniform realize the same translation, i.e. ΦB equals ΦA. In fact, we show two extreme cases: a
method that postpones updates of automata to arbitrary finite time and a method that updates
as often as possible, i.e. after each step.

To distinguish between states of different automata (in a lineage), we let QA be the set of
states, IA the set of entry states and OA the set of exit states of an automaton A.

3.1 Merging Two Successive Automata in a Lineage

The first method merges two successive automata Ai and Ai+1 into one new automaton Bi such
that Ai followed by Ai+1 translates input segments in the same way as Bi. To obtain a new lineage
that non-uniform realizes the same translation, we let Bj := Aj for all j < i, and we let Bj := Aj+1

for all j > i.

Construction 1. Let QBi be the disjoint union of QAi and QAi+1 , that is,

QBi = { (q, i) | q ∈ QAi } ∪
{ (q, i+ 1) | q ∈ QAi+1 } .

(5)

Roughly speaking, a state (q, i) corresponds to a state q in Ai, while a state (q, i+ 1) corresponds
to a state q in Ai+1. Note that each exit state q of Ai has two copies in QBi , namely (q, i) and
(q, i+ 1). If q is not an exit state of Ai+1, then both copies can be local states, but if q is an exit
state of Ai+1, then one (and only one) of the copies is an exit state. In this case we let (q, i) be
the exit state. Thus we define

IBi = { (q, i) | q ∈ IAi } ,

OBi = { (q, i+ 1) | q ∈ OAi+1 −OAi } ∪
{ (q, i) | q ∈ OAi+1 ∩ OAi } .

(6)

Let δi and δi+1 be the transition functions of Ai and Ai+1, respectively. The transition function
γi of Bi is defined for all states q and all a ∈ Σ, by the following cases:

– If δi(q, a) = (r, b) and r 6∈ OAi , then γi((q, i), a) = ((r, i), b),
– if δi(q, a) = (r, b) and r ∈ OAi , then γi((q, i), a) = ((r, i+ 1), b) and
– if δi(q, a) is undefined, then so is γi((q, i), a).

– If δi+1(q, a) = (r, b) and r 6∈ OAi ∩ OAi+1 , then γi((q, i+ 1), a) = ((r, i+ 1), b),
– if δi+1(q, a) = (r, b) and r ∈ OAi ∩ OAi+1 , then γi((q, i+ 1), a) = ((r, i), b),
– if δi+1(q, a) is undefined, then so is γi((q, i+ 1), a).

Note that an exit state (r, i) with r ∈ OAi ∩OAi+1 cannot be entered from a state (q, i).
In order to achieve continuity, we should relabel every state q of Bj as (q, i) for j < i, and

(q, i+ 1) for j > i (unless q is an exit state of both Ai and Ai+1, in which case (q, i) is the correct
label), and adjust the transitions accordingly.

See Fig. 2 for an example.

Proposition 1. Lineage B from Construction 1 non-uniform realizes the same translation as A.

Proof. Since the states of Bj have been relabelled for j < i, the automaton Bi starts in an entry
state (q, i) iff Ai starts in q.

To see that Bi translates input segments in the same way as Ai and Ai+1 combined, consider
a string x. Suppose Ai starts in a state q1 and processes a part of x, until it enters an exit state
q3, say after ni symbols of x. At this point, Ai+1 processes the remainder of x, starting in q3. Let

Lineages of Automata 7

*

j

*�

j

z

*

I ��

�

B1

qin

q2

q3

q′2

q′3

q4

IB1

OB2

Fig. 2. The automata A1 and A2 from Fig. 1 are replaced by the automaton B1.

q2 be the state that Ai was in before entering q3. Now observe the action of Bi on x. It starts in
(q1, i), and processes x in exactly the same way as Ai for ni − 1 steps, ending up in (q2, i). The
next transition goes to (q3, i+ 1).

Suppose Ai+1 enters an exit state q5 after processing another part of x, say of length ni+1. Let
q4 be the state Ai+1 was in just before entering q5. From (q3, i+ 1), the automaton Bi ends up in
(q4, i + 1) after ni+1 − 1 steps. If q5 is also an exit state of Ai, then the next transition goes to
(q5, i), which is an exit state of Bi by definition. Otherwise, the next transition goes to (q5, i+ 1),
which is also an exit state. Either way, Bi enters the exit state corresponding to q5. Since the
states of Bj have been relabelled for j > i, the rest of x is processed correctly.

If either Ai orAi+1 does not enter an exit state, then the transitions that occur will be mimicked
by Bi (with i or i+1 resp. appended to the state). It follows that B non-uniform realizes the same
translation as A.

ut

This construction can be applied repeatedly to merge any fixed number of automata. The intu-
itive notion behind lineages is that they model the evolution of a system. Applying Construction
1 on a lineage can be thought of as “making a bigger jump in the evolution of the system”.

3.2 Updating the Lineage at Each Step

The next method turns a lineage A into a lineage B that non-uniform realizes the same translation,
in such a way that each automaton only processes one input symbol, i.e. after every step the active
automaton is updated to the next one.

Construction 2. First, we let the set of states for the lineage B be

{ (q, i) | q ∈ Ai } . (7)

Now, we recursively construct the automaton Bn. Let qin be the initial state of A1. Then the
initial state of B1 is the state (qin, 1), and IB1 = {(qin, 1)}. Suppose the set of entry states IBn

of Bn has been constructed. Then the set of output states OBn consists of all the states that are
reachable from a state in IBn in one step, and we let QBn = IBn ∪ OBn . Let’s make this more
formal. Let (q, i) be a state in IBn , let a ∈ Σ, and let δi be the transition function of Ai. Suppose
δi(q, a) is defined. Then there is a b ∈ Σ and a state r such that δi(q, a) = (r, b). If r is an exit
state of Ai, then we let i′ = i + 1, otherwise i′ = i. We add the state (r, i′) to OBn , and define
γn ((q, i), a) = ((r, i′), b), where γn is the transition function of Bn. We do this for each state (q, i)

8 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

in IBn and every a ∈ Σ. Once OBn is constructed, we construct the set of entry states of Bn+1

by defining IBn+1 = OBn .

In each automaton, all transitions go from an entry state to an exit state. This means that, after
reading one input symbol, the automaton is updated.

Proposition 2. Lineage B from Construction 2 non-uniform realizes the same translation as A.

Proof. Let x be an input string. It is left to the reader to prove, using induction, that prior to
reading the n-th input symbol, Ai is active in state q iff Bn is active in state (q, i). By inspecting
the transition functions, we see that both automata will output the same symbol when they process
xn. So B non-uniform realizes the same translation as A.

ut

Applying Construction 2 on a lineage can be thought of as “taking smaller steps in the evolution
of the system”.

3.3 Reducing the Number of States

The next method works only on lineages that update after every input symbol. From section 3.2,
we conclude that every lineage is equivalent to one of this type and that in such a lineage, a state
is either an entry state, or an exit state, or both. This means that the total number of states of the
n-th update is at least max{|IAn |, |OAn |}. We will alter the lineage such that the total number of
states of Bn equals this maximum.

Construction 3. Let Q be an infinite set of states. Recursively construct injective functions fn :
IAn → Q and gn : OAn → Q such that fn+1(q) = gn(q) for every state in OAn , and |fn(I

An) ∪
gn(O

An)| = max{|IAn |, |OAn |}. The actual construction of fn and gn is left to the reader. Con-
struct a lineage B such that the set of entry states of Bn is the set fn(I

An), and the set of exit
states is gn(O

An). Let qin ∈ I
A1 be the initial state of A1. Then f1(qin) is the initial state of B1.

Let q be a state in IAn and a ∈ Σ, and let δn be the transition function of An. If δn(q, a)
is defined, then there is an exit state r and a b ∈ Σ such that δn(q, a) = (r, b). Now define
γn(fn(q), a) = (gn(r), b), where γn is the transition function of Bn. Since fn and gn are injective,
this definition is unambiguous.

Proposition 3. Lineage B from Construction 3 non-uniform realizes the same translation as A.

Proof. Let x be an input string. It is left to the reader to prove that, prior to reading the n-th
input symbol, An is in state q iff Bn is in state fn(q). Just like the previous method, we can
conclude from this fact that B non-uniform realizes the same translation as A.

ut

We summarise the last two constructions in the following result:

Proposition 4. Every non-uniform realizable translation can be non-uniform realized by a lineage
B with the property that its automata Bi update after every step and have precisely max{|IBi |, |OBi |}
states each.

4 Properties of the Class of Non-Uniform Realizable Translations

We begin this section by remarking that any translation that is realized by a finite-state transducer
can also be non-uniform realized by a lineage (just take infinitely many copies of the transducer
that realizes the translation). On the other hand, the class of non-uniform realizable translations
contains uncountably many translations that cannot be realized by a finite-state transducer. We
deduce that the class of non-uniform realizable translations is uncountable, whereas the class of
translations that are realized by finite-state transducers is countable.

Lineages of Automata 9

Proposition 5. Let Ω be an alphabet with at least two elements. There are uncountably many
non-uniform realizable translations from Σ (any Σ) to Ω that cannot be realized by a finite-state
transducer.

Proof. Pick two elements of Ω, call them 0 and 1. Let N be a set of positive integers that is not
recursively enumerable and let (ni)i≥1 be an enumeration of N . It is left to the reader to construct
a lineage that non-uniform realizes the translation Φ, defined by

Φ(x) = 1n101n201n30 . . . , (8)

for every x in Σω. Suppose that Φ can be realized by an automaton A. Let a be a letter in Σ and
let π be a program that, on input i ∈ IN in unary, simulates A on input aω until A has written
i zeroes. Then π outputs the last sequence of ones in A’s output. We see that π computes ni in
unary. It follows that π enumerates N , which is a contradiction. Because there are uncountably
many sets that are not recursively enumerable, we have the desired result.

ut

If in the proof we replace the automaton A by a Turing machine, the proof is still valid. We
conclude that lineages possess the super-Turing computing power.

4.1 A Lineage-Independent Characterisation of Non-Uniform Realizable

Translations

It is possible to characterise the translations that are non-uniform realized by a lineage without
actually constructing lineages, by specialising the theory of continuous mappings ([8]). The char-
acterisation depends on the domain on which the translation is defined and the relation between
input and output pairs.

Theorem 1. A translation Φ can be non-uniform realized by a lineage A iff the domain of Φ is
closed and (Φ)n depends only on the first n input symbols, for every n.

We prove it with the following two lemmas.

Lemma 1. Let Φ be a translation. Suppose the domain of Φ is closed and (Φ)n depends only on
the first n input symbols, for every n. Then Φ is non-uniform realizable.

Proof. Let D be the domain of Φ. Let fn be the function with domain P n(D), such that (Φ(x))n =
fn(x[1:n]) for every x ∈ D. By the assumptions of the Lemma, fn is well-defined. We construct a
lineage A that non-uniform realizes Φ. Every state of A will correspond to a prefix of a string in
D.

Define the set of states of An for n ≥ 1 by

In = { [[u]] | u ∈ Pn−1(D) } ,

On = { [[u]] | u ∈ Pn(D) } ,
(9)

and Qn = In ∪ On. The initial state of A1 is [[ε]]. The transition function δn is defined by

δn([[u]], a) :=

{
([[ua]], fn(ua)) if ua ∈ P n(D)
undefined otherwise

.

To see that A non-uniform realizes Φ, let x ∈ D be an input to A. Using induction, we claim
that in the n-th update, A enters state [[x[1:n]]] with output fn(x[1:n]).

– For n = 1, the lineage starts in [[ε]]. The transition δ1([[ε]], x1) is defined because |ε| = 0 and
εx1 is a prefix of x ∈ D, so A1 enters state [[x1]] with output f1(x1).

– Assume the claim holds for a certain n. The lineage is updated after reading xn, so An+1 begins
in state [[x[1:n]]]. By the same argument,An+1 enters state [[x[1:n+1]]] with output fn+1(x[1:n+1]).

10 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

So the claim holds for every n. By the definition of fn, we see that ΦA(x) = Φ(x) for every x ∈ D.
Suppose on the other hand that x 6∈ D. Let Dc be the complement of D. Since Dc is open,

there is a basis set B(u) that contains x, which is a subset of Dc. It follows that every element of
B(u) is not in D, and so u 6∈ P |u|(D). Since the transition functions are not defined on u, we see
that x is not a valid input to A. Hence A non-uniform realizes Φ.

ut

Lemma 2. Let Φ be a non-uniform realizable translation. Then the domain of Φ is closed and
πn ◦ Φ depends only on the first n input symbols, for every n.

Proof. Let D be the domain of Φ, let Dc the complement of D and let A be a lineage that non-
uniform realizes Φ. Let x ∈ Dc be an infinite string and consider a run of A on x. Because x is not
in the domain of Φ, it must be the case that at some point, after processing a prefix of length n−1
of x, the automaton that is active at that time, say Ak, is in a certain state q, such that there is
no transition from q with xn as input. If this moment would not occur, then A would never halt
during the run, and x would be in the domain.

Let y be a string in B(x[1:n]) and consider a run of A on y. Since the first n symbols of x and
y are the same, the computation will halt at the same point during the computation, so y cannot
be in the domain of Φ. Hence B(x[1:n]) is a subset of Dc, which implies that Dc is an open set,
and D is closed.

It follows from (4), that (Φ(x))n depends only on the first n input symbols.
ut

For an example of a translation that cannot be non-uniform realized by a lineage, consider the
translation Φ−1 from Example 1 in the sequel.

4.2 Composition of Non-Uniform Realizable Translations

The general class of translations is closed under the operations of composition and inverse. A
natural question that arises, is whether the class of non-uniform realizable translations is also
closed under these operations. This question is answered in this and the next subsection.

Proposition 6. Let ΦA : Σ → Ω and ΦB : Ω → Θ be translations non-uniform realized by
lineages A and B. Then a lineage C exists such that ΦC = ΦB ◦ ΦA.

Proof. We construct a lineage C, by defining for every automaton Ci its set of states, its initial
state and its transition function. Define the set of states of Ci by:

QCi = { (q, k, r, l) | k, l ≤ i+ 1, q ∈ QAk ∧ r ∈ QBl } . (10)

When Ci is in state (q, k, r, l), this simulates the fact that Ak is active in state q and Bl is active
in state r. So C simulates the transitions of A in the first two components of its states, and the
transitions of B, with the output of A as input, in the last two components.

Let qin be the initial state of A1 and rin the initial state of B1. The initial state of C1 is
(qin, 1, rin, 1). A state (q, k, r, l) is an exit state if q is an exit state of Ak−1 (and k > 1)2 or r is
an exit state of Bl−1 (and l > 1). The state is an entry state if q is an entry state of Ak or r is an
entry state of Bl.

Now we define the transition function µi of Ci. Let (q, k, r, l) be a state in Ci, with k, l ≤ i,
and let a be a letter. Let δk be the transition function of Ak, and γl the transition function of Bl,
and suppose that δk(q, a) = (q′, b), and γl(r, b) = (r′, c). If A is in the k′-th update3 and B is in
the l′-th update after reading a and b, respectively, then we let βi((q, k, r, l), a) = ((q′, k′, r′, l′), c).
In all other cases we let µi be undefined. It follows that C updates whenever A or B updates.

2 Right after Ak−1 enters q, an update takes place, so the corresponding state is (q, k, ,) instead of
(q, k − 1, ,). The same holds for r in Bl−1.

3 Explicitly: if q′ is an exit state of Ak, then k′ := k + 1, else k′ := k. The same holds for l′.

Lineages of Automata 11

Proving that C non-uniform realizes the translation ΦB ◦ΦA is similar to the proof of Prop. 2. If
x is an input to A and y = ΦA(x) is an input to B then, just before reading the n-th input symbol,
Ci is in state (q, k, r, l) iff Ak is in state q and Bl is in state r. Inspecting the transition functions,
we see that in this case ΦB(ΦA(x)) = ΦC(x). If, on the other hand, either x or y is not valid for
A or B respectively, then there comes a time when either δk(q, xn) or γl(r, yn) is undefined. In
either case, µi((q, k, r, l), xn) is also undefined. Hence the domains match and the two functions
are equal.

ut

The set of states QCi
in the given proof can be taken to be much smaller, in fact we don’t

need the states (q, i+ 1, ,) unless q is an exit state of Ai. Likewise we can do without the states
(, , r, i+ 1) if r is not an exit state of Bi.

Let the complexity of a lineage A be measured by a function g such that the n-th automaton
of A has g(n) states (see section 5 for more details). Then we can express the complexity of the
lineage C from Prop. 6 in terms of the complexities of A and B. Let gA be the complexity of A
and gB the complexity of B. Then the complexity of C is

gC(n) =
∑

i,j≤n+1

gA(i) · gB(j) . (11)

Corollary 1. The composition of two lineages with polynomial complexity has polynomial com-
plexity too.

4.3 The Inverse of a Non-Uniform Realizable Translation

It is not the case that every non-uniform realizable injective translation has a non-uniform realiz-
able inverse, see Example 1.

Example 1. Let Σ = {a, b, c, d}, and Ω = {0, 1}. Encode the symbols of Σ in Ω as follows:

enc(a) = 00 , enc(c) = 10 ,
enc(b) = 01 , enc(d) = 11 .

(12)

Define the translation Φ : Σ∞ → Ω∞ by

Φ(x) = enc(x1)enc(x2)enc(x3) (13)

Clearly, (Φ)n depends only on the dn/2e-th input symbol, so Φ is non-uniform realizable by Lemma
1. It is also not hard to see that Φ is bijective.

To see that Φ−1 cannot be non-uniform realized, consider the strings 0ω and 01ω. Now Φ−1(0ω) =
aω and Φ−1(01ω) = bdω. Suppose A is a lineage that non-uniform realizes Φ−1. Given 0 as the
first input symbol, A1 must decide which symbol to output. If A1 gives a, then A fails to process
01ω correctly, but if it doesn’t give a, then 0ω cannot be properly processed. Thus A does not
non-uniform realize Φ−1.

Fortunately, we can give a necessary and sufficient condition for injective translations to have
a non-uniform realizable inverse. First, we give a sufficient condition.

Proposition 7. Let Φ be a translation with domain D, non-uniform realized by a lineage A.
Consider the functions φA,n. If φA,n is injective for every n, then the translation Φ−1 with domain
Φ(D) can be non-uniform realized.

Proof. We will transform A into a lineage B that non-uniform realizes Φ−1. Consider the automa-
ton Ak, with transition function δk. First, we remove all states that cannot be reached from the
initial state. Let q be a state and a a letter. If δk(q, a) = (r, b), then we define γk(q, b) = (r, a).

12 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

We claim that γk is well-defined. To prove the claim, suppose that δk(q, a) = (r, b) and
δk(q, a

′) = (r′, b), for some a and a′ with a 6= a′. Let u be a prefix such that Ak enters q af-
ter processing u, with output v. Then the output belonging to ua is vb, and the output belonging
to ua′ is also vb, but ua 6= ua′. Hence the function φA,|u|+1 is not injective, which contradicts the
condition of the Proposition. It follows that γk is well-defined.

The automaton Bk is defined by taking Ak, with δk replaced by γk. Let x ∈ D be an input to
Φ with output y = Φ(x). For every n, let mn be the index of the automaton that is active at time
n, and let qn be the state that Amn

is in at that time. Suppose y is input to B. It is left to the
reader to show that B is in its mn+1-st automaton in state qn+1, after processing y[1:n], for every
n. It follows that the output of B is x = Φ−1(y).

Let y be a string not in Φ(D). Let v be the largest prefix of y that A can output, with some
suitable finite input. Let u be the input that causes A to output v. Suppose A is in its k-th update
in state q after processing u. We see that there is no transition from q that gives y|v|+1 as output
(otherwise v would not be the largest prefix). It follows that there is no transition from q with
input y|v|+1 in Bk. We conclude that y is not a valid input to B, since the first |v| symbols of y
cause B to enter q, but there is no transition from q with input y|v|+1. Hence the domain of B is
Φ(D). We conclude that B non-uniform realizes Φ−1.

ut

The lineage that is constructed in the proof of Prop. 7 has the same complexity as the lineage
that we started with (after removing the redundant states). It follows that any two non-uniform
realizable translations that are each others inverse belong to the same complexity class.

Next, we show that the condition of Prop. 7 is also necessary for translations to have a non-
uniform realizable inverse.

Proposition 8. Let Φ be a non-uniform realizable injective translation with domain D. Suppose
Φ−1, with domain Φ(D), is also non-uniform realizable. Then there is a lineage A that non-uniform
realizes Φ, such that φA,n is injective for every n.

Proof. Let R = Φ(D). Let B be a lineage that non-uniform realizes Φ, and C a lineage that non-
uniform realizes Φ−1. Fix an n and let φ be the restriction of φB,n to Pn(D), and ψ the restriction
of φC,n to Pn(R).

Suppose φ(u) = φ(u′) = v. Let x ∈ D be an infinite extension of u, and let y = Φ(x). Then
Φ−1(y) = x, and since Φ−1 is non-uniform realizable, it follows that ψ(v) = u. Using a similar
argument, we also show that ψ(v) = u′. We conclude that u must equal u′, so φ is injective. Using
Lemma 1, we can construct a lineage A such that φA,n = φ.

ut

We conclude from Prop. 7 and 8 that a non-uniform realizable injective translation Φ has a
non-uniform realizable inverse iff the function (Φ)[1:n] is injective for every n. If the input alphabet
and the output alphabet have the same size, then any non-uniform realizable bijective translation
has a non-uniform realizable inverse.

Theorem 2. Let Φ : Σ → Ω be a non-uniform realizable translation, with |Σ| = |Ω|. If Φ is a
bijection, then Φ−1 is also non-uniform realizable.

Proof. Let A be a lineage that non-uniform realizes Φ, and let φA,n be the corresponding restriction
to strings of length n. Since Φ is surjective, φA,n must also be surjective. But this implies that
φA,n is injective. Now we apply Prop. 7.

ut

To see that |Σ| = |Ω| is really necessary for bijections, assume that |Σ| < |Ω|. Since Φ is
non-uniform realizable, π1 ◦ Φ depends only on the first input symbol. It follows that there are
only |Σ| choices for π1 ◦ Φ, which implies that Φ is not surjective. Hence Φ cannot be both non-
uniform realizable and bijective at the same time, unless |Σ| ≥ |Ω|. If |Σ| > |Ω|, then a similar
argument shows that Φ−1 cannot be non-uniform realizable and bijective at once, see also Example
1. Alternatively, we can use Prop. 8 to see that both π1 ◦Φ and π1 ◦Φ

−1 have to be injective, and
since they are both total functions, |Σ| must equal |Ω|.

Lineages of Automata 13

5 The Complexity of Lineages

We have already mentioned the notion of complexity of lineages. In this section, we develop the
concept further and establish several results which allow us to compare many translations, based
on the complexity of the lineages that non-uniform realize them.

The processing power of an automaton is directly related to the number of states. An automaton
with more states is able to distinguish among a greater number of different situations. It can apply
different actions to each situation it can recognise, thus adding more diversity to a computation.

For a lineage, which is a sequence of automata, the number of states of each of the constituent
automata contributes to the computing power of the lineage. Therefore, we use a function to
describe the complexity of a lineage.

Definition 5. The complexity of a lineage A is a function g such that for every n, the number
of states of An equals g(n). We say that a translation Φ is of complexity g if there is a lineage A
of complexity g that non-uniform realizes Φ. We define the complexity class SIZE(g) as the class
of non-uniform realizable translations of complexity g or less.

First, we give an upper bound on the complexity of any non-uniform realizable translation.

Proposition 9. Let Φ be a non-uniform realizable translation over an alphabet of size c. Then Φ
can be non-uniform realized by a lineage of size at most cn.

Proof. Let A be a lineage that non-uniform realizes Φ. We apply Prop. 4 on A, to obtain a lineage
B that non-uniform realizes the same translation. Let’s look at the size complexity of B. From the
initial state, at most c different states can be reached in one step. Thus B1 has at most c states.
Suppose Bn has m ≤ cn states. Then Bn+1 has at most m entry states, so at most c ·m states
can be reached in one step. It follows that Bn+1 has at most c ·m states, with is at most cn+1.
We see that the complexity of B is at most cn.

ut

5.1 Complexity Classes and the Functions that Represent Them

We have expressed the complexity of an evolving interactive system by a positive integer-valued
function. Conversely, we ask which positive integer-valued functions represent a complexity class.
Some functions do not naturally correspond to a complexity class, e.g. the super-exponential
functions (Prop. 9). If a function is non-decreasing and has a “growth rate4 ”that is bounded by
a constant, then it corresponds to a complexity class. If it is not, then we take a suitable function
that is nowhere greater than the original function and consider its corresponding class. This is
made precise below.

Let g : IN → IN be an arbitrary positive non-decreasing function and c a positive integer. Define
the function gc(n) by

gc(1) = min{ g(1) , c } ,
gc(n+ 1) = min{ g(n+ 1) , c · gc(n) } .

(14)

It follows that for every n,

– gc(n) ≤ g(n),
– gc(n) ≤ cn,
– gc(n) ≤ gc(n+ 1), and
– gc(n+ 1) ≤ c · gc(n).

In other words, gc is a positive, non-decreasing function that is bounded by g and cn, with a
“growth rate” that is bounded by c.

To show that the class SIZE(gc) is not empty, we construct a translation Φg,c that is in this
class. We also show that Φg,c is not in SIZE(h), for any function h such that h(n) < gc(n) for

4 The growth rate of a function g is defined as g(n + 1)/g(n)

14 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

some n. The construction is based on the following idea: suppose A is a lineage that non-uniform
realizes a translation Φ. Two input-prefixes u and v (not necessarily of the same size) are considered
inequivalent when there is an infinite string x and an integer i such that Φ(ux) and Φ(vx) both
exist and (Φ(ux))|u|+i 6= (Φ(vx))|v|+i. This is impossible if A enters the same state after processing
either u or v. Thus, to make sure that an automaton of a lineage has at least k states, we need
to make sure that there are at least k inequivalent inputs to choose from, once this automaton is
active.

First, we establish the domain of Φg,c. Let Σ be an alphabet of size c. For every n, we choose
gc(n) strings of length n, such that they are prefixes of the gc(n+ 1) strings of length n+ 1. The
details are given in Construction 4.

Construction 4. Label the letters from Σ as a1 through ac, and let Cn be the chosen subset of
size gc(n) of Σn. We proceed recursively.

C1 = { ai | i ≤ gc(1) } . (15)

Assume Cn is chosen. Using integer division, we write gc(n + 1) = l · gc(n) + m, for unique
integers l and m, with 0 ≤ m < gc(n). It follows that 1 ≤ l ≤ c. Let u1, . . . , um be m different
strings in Cn. Now take

Cn+1 = { uai | u ∈ Cn ∧ i ≤ l } ∪ { ujal+1 | j ≤ m } . (16)

It is left to the reader to verify that Cn+1 contains gc(n + 1) strings of length n + 1. Note that
Cn+1 is well-defined, as either l < c or l = c and m = 0.

We call a string in Cn a choice. Note that ua1 is a choice if u is a choice. Consider an infinite
sequence of choices, such that each choice is a prefix of its successor. Such a sequence defines a
unique infinite string, such that each of its prefixes is a choice. Let ∆ be the set of infinite strings
x such that each prefix of x is a choice. The translation Φg,c will be defined on the domain ∆.

Construction 5. Consider the family of functions fk,l,m : Σ∞ → Σ1+l, defined by

fk,l,m(x) =

{
x1+l
k if 0 < k ≤ m

x1+l
1 otherwise

, (17)

for k, l,m ∈ IN. Let ψ : IN → IN × IN be a surjective function that attains each value infinitely
often. Then the translation Φ is defined by

Φ(x) = fψ(1),1(x)fψ(2),2(x)fψ(3),3(x) . . . (18)

Finally, we define the translation Φg,c by

Φg,c(x) =

{
Φ(x) if x ∈ ∆
undefined otherwise

. (19)

The translation Φg,c can be non-uniform realized by a lineage of automata. To prove this, we
need the following two Lemmas.

Lemma 3. ∆ is a closed set.

Proof. Let ∆c be the complement of ∆. Suppose x ∈ ∆c. Then there is a prefix u of x such that u
is not a choice. Let y be an infinite string in B(u). Since u is a prefix of y, it follows that y ∈ ∆c.
We conclude that ∆c is an open set, so ∆ is closed.

ut

Lemma 4. For every n, the function πn ◦ Φ
g,c depends only on the first n input symbols.

Lineages of Automata 15

Proof. Let x ∈ ∆ be an infinite string. The output of Φ(x) consists of infinitely many concatena-
tions of strings of the form fψ(m),m(x). For every integer m ≥ 1, the string fψ(m),m(x) starts at
index

im =

(
m−1∑

t=1

|fψ(t),t(x)|

)

+ 1 ≥ m . (20)

This string consists of multiple copies of xk , for a certain k ≤ m. Note that k does not depend
on the particular choice of x. The n-th symbol of Φ(x) belongs to fψ(m),m(x) for a certain m.
Obviously n ≥ im, so k ≤ m ≤ im ≤ n. It follows that πn(Φ

g,c(x)) = xk for a certain k ≤ n.

ut

Combining Lemmas 3, 4 and 1, we conclude that Φg,c can be non-uniform realized. Next, we
will examine the complexity of Φg,c. Prop. 10 shows that Φg,c is of complexity gc, while Prop. 11
tells us that any lineage with a complexity less than gc cannot non-uniform realize Φg,c.

Proposition 10. The translation Φg,c can be non-uniform realized by a lineage A that updates at
every step, such that An has gc(n) states.

Proof. Let B be the lineage from the proof of Lemma 1. We see that P n(∆) equals Cn. It follows
that the number of entry states of Bn is gc(n− 1), and the number of exit states of Bn is gc(n).
Remember that gc(n − 1) ≤ gc(n). Using Construction 3, we can transform B into a lineage A
with gc(n) states, that updates at every step.

ut

For the proof of Prop. 11, we need the following Lemma.

Lemma 5. Let k, l and n ≥ 1 be integers such that k, l ≥ n. Let x and y be infinite strings such
that xn 6= yn. Then there is an i such that

πk+i(Φ(x)) 6= πl+i(Φ(y)) . (21)

Proof. Assume k ≥ l. Let t = k − l. Choose an integer m ≥ l such that ψ(m) = (n, t). Then
fψ(m),m(x) = fn,t,m(x) = x1+t

n , since n ≤ m. It follows that Φ(x) contains a string x1+t
n , starting

at an index im ≥ m, namely the string fψ(m),m(x). Similarly, Φ(y) contains a string y1+t
n , starting

at the same index, see Fig. 3. But then

πim+t(Φ(x)) 6= πim (Φ(y)) , (22)

since xn 6= yn. Now im ≥ m ≥ l, so im = l+ i for a certain i, and im + t = l+ i+ (k − l) = k + i.
Therefore

πk+i(Φ(x)) 6= πl+i(Φ(y)) . (23)

ut

Let u and v be two different choices of length n. Let u′ be a choice that extends u and v′ a
choice that extends v. Finally, let x = (a1)

ω. It follows that u′x and v′x are elements of ∆. Since
u 6= v, it follows that there is an n′ ≤ n, such that πn′(u

′x) 6= πn′(v
′x). By Lemma 5, there is an

i such that

π|u′|+i(Φ
g,c(u′x)) 6= π|v′|+i(Φ

g,c(v′x)) . (24)

See Fig. 4 for a visual explanation.

Proposition 11. Let A be a lineage that non-uniform realizes Φg,c. Suppose Am is able to process
all strings of length n. Then Am has at least gc(n) states.

16 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

t + 1
︷ ︸︸ ︷

| xn | xn | · · · | xn |

| yn | yn | · · · | yn |
im+t

im

Fig. 3. Part of the outputs of Φ, on the inputs x and y. Starting in position im, the outputs contain a
sequence of xn’s and yn’s respectively, of size t+1 each. As a result, πim+t(Φ(x)) = xn 6= yn = πim (Φ(y)).

n

u′

v′

u

v

(a1)
i

(a1)
i

︸ ︷︷ ︸

︸ ︷︷ ︸

︷ ︸︸ ︷

︷ ︸︸ ︷

︷ ︸︸ ︷

︷ ︸︸ ︷

different outputs

�

�

Fig. 4. Two finite choices u and v, such that u 6= v, are extended to choices u′ and v′ respectively.
These choices are extended with the infinite string x = (a1)

ω. Then there is an integer i such that
π|u′|+i(Φ

g,c(u′x)) 6= π|v′|+i(Φ
g,c(v′x)).

Proof. Suppose Am has less than gc(n) states. Then there are two different choices u and v of
length n, with choices u′ and v′ that extend u and v respectively, such that Am enters the same
state r after processing either u′ or v′, see Fig. 5.

Then there is an i that satisfies (24). Suppose A is in the m-th update5, in state r. Now we
give x = (a1)

ω as further input to A. After i steps, A enters a state r′ with a certain output b.
These last i steps are independent of the steps that A took to reach r. In other words,

π|u′|+i(Φ
g,c(u′x)) = π|v′|+i(Φ

g,c(v′x)) = b , (25)

which contradicts (24). It follows that Am must have at least gc(n) states.
ut

Corollary 2. Let A be a lineage that non-uniform realizes Φg,c. Then An has at least gc(n) states.

Proof. Since each active automaton must read at least one symbol before A can update, by the
time A is ready to update to the n+ 1-st automaton, at least n symbols have been read.

ut

For any non-decreasing function g and any integer c > 1, the complexity class SIZE(gc) contains
the translation Φg,c. Furthermore, SIZE(gc) is the smallest complexity class that contains Φg,c.

5.2 A Hierarchy Result for Complexity Classes

For clarity, we repeat the results of the preceding section in one Proposition.

5 Or the m + 1-st, if r is an exit state.

Lineages of Automata 17

U
� �

Am
u′

v′

(a1)
i

q1

r r′

Fig. 5. The paths of two valid input-prefixes u′ and v′. After processing u′ or v′, Am enters the state r.
Then the remainder of the input is processed, which equals (a1)

ω in both cases. The rest of the path only
depends on r and (a1)

ω, so after i steps, both paths enter r′ and the same output symbol is generated.

Proposition 12. Let c be a positive integer and g a positive, non-decreasing function such that
g equals gc. Let h be a function such that h(m) < g(m) for a certain m. Then SIZE(g)− SIZE(h)
is non-empty.

Proof. Combine Prop. 10 and Corollary 2.
ut

When we are free to choose c, we can show that for any positive non-decreasing function g,
translations exist that cannot be non-uniform realized by any lineage that has less than g(n) states
in its n-th automaton, for any n. Observe that this is a stronger claim then before; we no longer
require the “growth rate” to be bounded.

Theorem 3. Let g be a positive, non-decreasing function and let h be a function such that h(m) <
g(m) for a certain m. Then SIZE(g)− SIZE(h) is non-empty.

Proof. Let c ≥ g(1) be an integer such that g(n+ 1) ≤ c · g(n) for every n smaller than m. Then
gc(n) = g(n) for all n ≤ m. It follows that h(m) < gc(m). The translation Φg,c can be non-uniform
realized by a lineage of size gc (Prop. 10). Hence Φg,c ∈ SIZE(g).

Any lineage A that non-uniform realizes Φg,c must have at least gc(n) states in its n-th automa-
ton (Corollary 2). Since h(m) < gc(m), it follows that A is not of size h. Hence Φg,c 6∈ SIZE(h).

ut

Corollary 3. Let g and h be positive non-decreasing functions such that h(n) ≤ g(n) for all n. If
the inequality is strict for a certain n, then then SIZE(h) is a proper subset of SIZE(g).

Proof. By definition, any translation of complexity h is in SIZE(g). By Thm. 3, not every trans-
lation of complexity g is in SIZE(h).

ut

This means that every extra state of a lineage can be used to gain more potential computing
power.

Corollary 4. Let g and h be positive non-decreasing functions such that h(n) < g(n) for a certain
n and g(m) < h(m) for a certain m. Then the classes SIZE(g) and SIZE(h) are incomparable,
both contain translations that do not occur in the other.

18 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

6 Relating Lineages to Interactive Turing Machines with Advice

Another model for evolving interactive computations is the interactive Turing machine with advice
(ITM/A), introduced in [4, 6]. An ITM/A is an extension of an (ω-) Turing machine, which operates
in an on-line fashion as a translator, taking infinite strings over an alphabet Σ as input and
producing infinite output strings over an alphabet Ω. Additionally, the symbol λ can be used
when no useful in- or output symbol is required. At any time, an ITM/A can enter a finite
internal phase to do some internal computations. During such a phase, no in- or output occurs.
An ITM/A also has an advice mechanism. At time t, it can call its advice only for values t′ ≤ t.

We say that an ITM/A realizes a translation Φ from Σ∞ to Ω∞, by letting Φ(x) be the output
of the ITM/A, without the gaps from the internal phases, when given x as input. To this end, all
λ’s are removed from the actual in- and output. For more details, see [6].

Formally, we designate a subset of the control states of the ITM/A as internal states. The
complement is referred to as the set of external states.

Definition 6. A configuration with an internal state is an internal configuration and a configu-
ration with an external state an external configuration. An internal phase is a maximal part of a
computation that consists of only internal configurations.

The transition function of an ITM/A is defined as usual, with the following restrictions: consider
the transition δ(q, a) = (r, b).

– If a = λ, then r = q and b = λ. The input symbol is ignored and the configuration remains
unchanged.

– If q is external and r is internal, then b = λ. An internal phase starts, so no output is generated.
– If q and r are both internal, then a = b = λ. The ITM/A is in an internal phase, so the input

symbol is ignored6 and no output is generated.
– If q is internal and r is external, then a = λ and b 6= λ. The internal phase ends and an output

symbol is generated. The input symbol is still ignored though.

An internal phase can be seen as a brief time-out for the ITM/A. A user in need of a time-out
can pass λ’s to the input port, which are ignored by the ITM/A.

Definition 7. A time-out is a maximal part of a computation that receives only λ’s on the input
port or an internal phase.

Since we want the machine to be interactive, we require that all time-outs are finite. If an infinite
string x is given as input to an ITM/A, then x contains infinitely many symbols not equal to
λ, since all time-outs must be finite. The same argument shows that the corresponding output is
infinite.

An ITM/A also has an advice mechanism. This mechanism comes in the form of an advice
function.

Definition 8. An advice function is a mapping from IN to Σ?.

The mechanism uses two special tapes and a designated advice state. On one of the two tapes, the
advice input tape, the ITM/A can write the binary representation of an integer m, one bit at a
time. At the n-th step, m may not exceed n. At any time during an internal phase, the ITM/A
can enter the advice state. Upon entering this state, the string α(m) is written (in one step) on the
other tape, the advice output tape, replacing any previous contents. In the same step, the contents
of the first tape are erased. The contents of the advice output tape can be read normally, but they
can only be modified by entering the advice state.

One of the reasons that out of all available models, the ITM/A’s have grown so popular, is the
fact that their close relation to Turing machines allows us to easily define complexity measures on
the ITM/A’s. This allows us to look at the efficiency of other models, using the relation to ITM/A

6 Think of it as a filter, which replaces the input symbols by λ before passing them on to the ITM/A.
The filter is only active when the ITM/A is in an internal configuration.

Lineages of Automata 19

as an indirect measure. When it is not so obvious to define a measure of complexity on a model,
this indirect approach can yield some insights. We define the following complexity measures on
ITM/A’s:

Definition 9. Let S : IN → IN be a function. An ITM/A is of space complexity S if no more than
S(n) tape-cells are ever needed to process n non-empty input symbols. The contents of the advice
input tape are taken into account for this complexity, but the contents of the advice output tape
are disregarded.

Definition 10. Let f : IN → IN be a function. An ITM/A is of advice complexity f if the length
of α(n) is at most f(n) for every n.

Interactive Turing machines with advice were shown to be equivalent to several other models
of evolving interactive systems, see [4, 6, 12]. In this sense, they are an important model. Any
potential model of evolving interactive computing can be validated by showing that it realizes the
same class of translations as the ITM/A’s. We now show that any lineage of automata can be
simulated by an ITM/A, and that any ITM/A can be simulated by a lineage. This result has been
sketched in [6], here we refine both the model of the ITM/A and the complexity aspects of the
simulation.

Theorem 4. Let Φ : Σ∞ → Ω∞ be a translation. Suppose Φ is non-uniform realized by a lineage of
automata of complexity g. Then Φ can be realized by an ITM/A of space complexity O(log n+log g)
and advice complexity O(g log g).

Proof. Suppose Φ is non-uniform realized by a lineage A of complexity g. Let α : IN → Σ? be
the advice function such that α(n) is the description of An. The description is a list of all the
states, together with all transitions from each state, see Table 1 for an example. Since there are

Table 1. Description of A1 and A2 from Fig. 1. Each row consists of the name(s) of a state, whether it is
an entry or an exit state and a list of transitions from the state. A transition consists of an input symbol,
an output symbol and a destination state.

Description of A1

name entry exit transitions

1 i - (a, b, 2) → (b, a, 3) → NULL
2 - - (a, a, 4) → NULL
3 - - (b, a, 5) → NULL
4,1 - o NULL
5,2 - o NULL

Description of A2

name entry exit transitions

1,1 i o (a, a, 2) → (b, a, 4) → NULL
2 i - (a, b, 1) → (b, a, 3) → NULL
3 - - (a, a, 1) → (b, b, 4) → NULL
4,2 - o NULL

g(n) states, we can describe each state with O (log g(n)) bits. Each state requires a constant extra
amount of bits to indicate if it is an entry or exit state. To encode a transition, we need the in- and
output symbols, and the destination state. Thus we need O (log g(n)) bits per transition. Since Σ
is finite, there can at most be a constant number of transition from any one state. It follows that
O (g(n) log g(n)) bits are enough to describe the automaton.

The labels of the exit states of An need to correspond to the names of the entry states of An+1.
Thus, we label the exit states with two names, one name to be used in An and one for use in

20 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

An+1. By using a variable-length encoding (see [7] for details) and choosing the names for the exit
states wisely, we can ensure that the size of the two names together is O (log g(n)).

We construct an ITM/A M that uses the advice value α(n) to simulate the automaton An.
The simulation is mostly done in internal phases. Only the actual reading and writing of symbols
is done externally.

First, M determines the value of A1. This is done internally by writing the index 1 to the
advice input tape and entering the advice state. Then the description of A1 appears on the advice
output tape. The simulation starts by looking up the initial state of A1, and writing it to a work
tape. Then M reads the first input symbol. Now, using the advice, M can find the next state
and the corresponding output symbol, in another internal phase. Then M looks up this state, and
writes it to the work tape, overwriting the previous contents. Then M writes the output symbol
to the output port. Now, M checks if the new state is an exit state. If this is not the case, then M
repeats the process. Otherwise, M increases the index by one on the advice input tape and enters
the advice state, to obtain the description of A2. Then M looks up the state in this update, which
exists because A is a lineage. Now M can repeat the process with this update.

It is left to the reader to verify that the translation realized by M matches the translation from
A. We see that the advice function has size O(g log g), and the work space uses O(log n + log g)
cells. Moving from state to state, and updating the automaton can all be done in finite time, so
the internal phases are finite, and M is a valid ITM/A.

ut

Theorem 5. Let Φ : Σω → Ωω be a translation. Suppose Φ is realized by an ITM/A with k tapes,
with a space complexity g(n) and advice complexity f(n). Then Φ can be non-uniform realized by
a lineage of automata of complexity

O
(

ckg(n)g(n)kf(n)n2 log(n)
)

, (26)

where c is the size of Σ.

Proof. Suppose Φ is realized by an ITM/A M . We will simulate M with a lineage A. Every state
of An will correspond to an external configuration of M , with the contents of the advice tapes
included. Each state is an exit state.

On a prefix of length n, M can ask for advice only for the values 1 through n. Hence the advice
tapes have at most n different contents, and the heads can be in one of f(n) or logn positions,
respectively. Since the work space of M is bounded by g(n), each of the remaining tapes has at
most cg(n) different contents and the head can be in one of the g(n) positions. It follows that there
are

O
(

g(n)kf(n) log(n) · ckg(n)n2
)

possible configurations. Now the simulation takes place by moving from configuration to configu-
ration, following the transition function from M .

The problem with this approach is that internal phases cannot be simulated in real-time,
because there are no states corresponding to internal configurations. This is intentional, because
either the input or the output is non-existent in a transition involving such a configuration. But
since an internal phase is finite and the ITM/A is deterministic, the whole internal phase, which in
fact consists of an external configuration s followed by a finite sequence of internal configurations
and which is concluded by an external configuration r, can be simulated by one transition from s
to r. Conveniently, during an internal phase, only one non-empty input and output symbol appear.
Naturally, these symbols accompany the transition from s to r in the simulation.

ut

When we compare the results of Theorems 4 and 5, we see that an ITM/A can be more efficient
than a lineage of automata. Applications of the Theorems typically involve classes of functions. For
example, a lineage of polynomial complexity can be simulated by an ITM/A with logarithmic space

Lineages of Automata 21

and polynomially bounded advice, and vice versa. Similarly, a lineage of exponential complexity can
be simulated by an ITM/A with polynomial space and exponentially bounded advice. Using Prop.
9, an ITM/A of those complexities can also be simulated by a lineage of exponential complexity.

7 Open Problems

In this paper, we didn’t impose any restrictions on the structure of the automata, or the amount
of change (other than a sheer size restriction) that was permitted in one update. While this gives
us a tremendous freedom, it is not realistic. Many examples of evolving interactive systems are
highly structured. Much study has already gone into the structure of the Internet. It is unknown
what effects these structures have on our model. Results similar to that of section 5 for the ITM/A
are still open problems.

8 Conclusion

In this paper, we have developed the theory of lineages as a new model of computation. A lineage
is a sequence of finite automata, where each automaton in the sequence is viewed as the next
instantiation or incarnation of the evolving system that it models. By using lineages, one can
immediately single out the evolutionary aspects of the system. The development of a lineage is
modelled by looking at the automata in the sequence, and the relation between each automaton
and its immediate successor.

Lineages are a model for evolving interactive systems. We have established their position among
the other models of evolving interactive systems by showing their equivalence to interactive Turing
machines with advice. We have shown that lineages, like all models of evolving interactive systems,
are more powerful than traditional finite-state models and gave several operations on lineages.

An important characteristic of an automaton is its size. For a lineage, we defined a complexity
measure based on the size of the automata in the sequence. We proved in Thm. 3 that lineages
of higher complexity are able to l-realize more translations than lineages of lower complexity.
Specifically, for each non-decreasing function g, there is a translation that can be l-realized by a
lineage of complexity g, but not by any lineage that has fewer than g(n) states available for its
n-th automaton, for a certain n. On the other hand, once a translation (over an input alphabet
of size c) is fixed, we know that it can be l-realized by a lineage of complexity at most cn.

The equivalence between lineages and interactive Turing machines with advice allows us to
compare the efficiency of the two models, expressed by the complexity measure. It turns out that
ITM/A’s are logarithmically more efficient than lineages in space-usage, while the length of the
advice corresponds to the size of the automata of the lineage.

We conclude that, while there are more efficient models for evolving interactive systems, lin-
eages of automata are rather more attractive than other models, since the important aspects of
the system are easily found in the model. Furthermore, finite automata are well-studied, and many
results can be adapted to the theory of lineages.

References

1. J.L. Balcázar, J. D́ıaz, and J. Gabarró. Structural Complexity I, 2nd Edition, Springer-Verlag, Berlin,
1995.

2. L.H. Landweber. Decision Problems for ω-Automata, Math. Syst. Theory, Vol. 3 No. 4, Springer-
Verlag, New York, 1969, pp. 376-384.

3. J. van Leeuwen, J. Wiedermann. On Algorithms and Interaction, in: M. Nielsen, B. Rovan (Eds.),
Mathematical Foundations of Computer Science 2000, 25th Int. Symposium, Lecture Notes in Com-
puter Science Vol. 1893, Springer-Verlag, Berlin, 2000, pp. 99-113.

4. J. van Leeuwen, J. Wiedermann. The Turing Machine Paradigm in Contemporary Computing, in:
B. Enquist, W. Schmidt (Eds.), Mathematics Unlimited - 2001 and Beyond, Springer-Verlag, Berlin,
2001, pp. 1139-1156.

22 Peter Verbaan Jan van Leeuwen Jǐŕı Wiedermann

5. J. van Leeuwen, J, Wiedermann. A Computational Model of Interaction in Embedded Systems, in:
Technical Report UU-CS-2001-02, Institute of Information and Computing Sciences, Utrecht Univer-
sity, 2001.

6. J. van Leeuwen, J. Wiedermann. Beyond the Turing Limit: Evolving Interactive Systems, in: L. Pa-
cholski, P. Ružička (Eds.), SOFSEM 2001: Theory and Practice of Informatics, 28th Conference on
Current Trends in Theory and Practice of Informatics, Lecture Notes in Computer Science Vol. 2234,
Springer-Verlag, Berlin, 2001, pp. 90-109.

7. M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 2nd Edition,
Springer-Verlag, New York, 1997.

8. L. Staiger. ω-Languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol.
3, Beyond Words, Springer-Verlag, Berlin, 1997, pp. 339-387.

9. W. Thomas. Automata on Infinite Objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Com-

puter Science, Vol. B, Elsevier Science, Amsterdam, 1990, pp. 134-191.
10. P. Wegner, D. Goldin. Computations beyond Turing Machines, Communications of the ACM Vol. 46,

Springer-Verlag, New York, 2003, pp. 100-102.
11. J. Wiedermann, J. van Leeuwen. Emergence of a Super-Turing Computational Potential in Artificial

Living Systems, in: J. Kelemen, P. Sośık (Eds.), Advances in Artificial Life, 6th European Conference
(ECAL 2001), Lecture Notes in Artificial Intelligence Vol. 2159, Springer-Verlag, Berlin, 2001, pp.
55-65.

12. J. Wiedermann, J. van Leeuwen. The Emergent Computational Potential of Evolving Artificial Living
Systems, AI Communications, Vol. 15 No. 4, IOS Press, Amsterdam, 2002, pp. 205-215.

