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1 Introduction

The matter-antimatter asymmetry, usually called the baryon asymmetry, is one
of the great mysteries of the universe. In everyday life we encounter only mat-
ter and no antimatter, luckily for us. Particle accelerators are the only places
on earth where ’large’ quantities of antimatter are produced, although it only
exists for a tiny moment before it annihilates with matter. On larger scales
there is also evidence that there is more matter than antimatter, and we have
good reason to believe that the entire universe is made of matter. The abun-
dance of matter over antimatter is usually expressed by the baryon-to-entropy
density ratio η = 6.1 ± 0.3 × 10−10, and was calculated from Big Bang Nucle-
osynthesis (BBN) and only recently independently from the Cosmic Microwave
Background radiation (CMB). In section 2, I will explain more about the ob-
servational evidence for the baryon asymmetry of the universe.
From particle physics and the Standard Model, it is not obvious that there
should be more matter than antimatter. The SM is nearly symmetric with re-
spect to particles and antiparticles and thus predicts a nearly baryon symmetric
universe. The only observed asymmetry in the SM is a tiny C and CP-violation
in the K0-K̄0-system, which is much too small to explain the observed baryon
asymmetry. The big question for physicists is therefore: how can the baryon
asymmetry be created from a baryon symmetric universe?
Baryogenesis is the dynamical creation of a baryon asymmetry from an initially
baryon symmetric universe. In 1967, Sakharov already realised the need for
baryogenesis, and gave the three ingredients necessary for successful baryogen-
esis. These three ingredients are baryon number violation, C and CP violation
and out-of-equilibrium conditions, and they are usually called Sakharov’s con-
ditions. In section 3, I will explain more about Sakharov’s conditions and why
they are necessary for baryogenesis.
In the late 1970’s Grand Unification Theories (GUTs) were invented, and it
did not take long for people to realize that these GUTs satisfied all three of
Sakharov’s conditions, and could explain the baryon asymmetry. Section 4 con-
tains a short introduction about GUTs, the application to Sakharov’s conditions
and a simple calculation of the baryon asymmetry. Although there are reasons
to believe that GUT baryogenesis is not the origin of the baryon asymmetry (as
will be explained), it still provides a nice examples of baryogenesis.
For many years people thought that the Standard Model did not satisfy Sakharov’s
conditions, but in the 1980’s it was shown that baryogenesis is possible in the
SM itself. In section 5 I will explain more about this so-called Electroweak
Baryogenesis scenario. For good reviews on baryogenesis, see for example [1],
[2], [3], [4], [5] and [6].
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2 Observational evidence for the baryon asym-
metry

As mentioned in the introduction, the earth is made entirely of matter. But
we also know that other planets and objects in our solar system are made of
matter, since, for example, it has not occurred that an explorer annihilated with
some source of antimatter. The sun itself is also made of matter, which we know
from solar winds and solar cosmic rays that contain mostly protons. Extrasolar
cosmic rays are highly energetic particles coming from another source than the
sun, such as black holes, supernovae and quasars. These cosmic rays consist
mostly of protons. The ratio of antiprotons to protons in these rays is ∼ 10−4

and the existence of antiprotons is usually explained from high energy collision
reactions of cosmic rays with matter, such as p + p → 3p + p̄. Thus we can
also say that our own galaxy, and other galaxies are composed of matter. The
possibility of entire galaxies or clusters made of either matter or antimatter
is not very likely, and we would expect to see large fluxes of gamma-particles
coming from the annihilation of hydrogen and antihydrogen particles in the
region separating these galaxies. All in all, we have good reasons to believe that
the universe is entirely made of matter.
The baryon asymmetry of the universe is characterized by the baryon-to-entropy
density ratio, which currently has the value[7]

η ≡ nb − nb̄

nγ
=

nB

nγ
= 6.1+0.3

−0.2 × 10−10 (WMAP 2008). (1)

Since at the present there is no antimatter (nb̄ = 0), this ratio is actually
η = nb/nγ . The baryon-to-entropy density ratio was first calculated from Big
Bang Nucleosynthesis (BBN), which is the epoch where deuterium (D), he-
lium (3He and 4He) and lithium (7Li) were created. The abundances of these
light particles are sensitive to the baryon to entropy ratio. Only recently the
baryon-to-entropy density ratio has also been determined independently from
the Cosmic Microwave Background radiation (CMB), see Fig. 1. The second
acoustic peak is sensitive to this ratio and since the launch of NASA’s WMAP
this has given us the most accurate result. The results from BBN are consistent
with this number.
The baryon-minus-antibaryon density nB = nb − nb̄ per comoving volume is

conserved, i.e. d
dt (a

3nB) = 0, so we are basically saying that the number of
baryons minus the number of antibaryons is conserved (i.e. quark conserva-
tion). Since every baryon either decays to another baryon, or annihilates with
an antibaryon this statement remains true. The photon density nγ however is
only conserved at late times, since at early times heavy particles annihilated to
produce more photons but not baryons. A better ratio to consider is therefore
the baryon-to-entropy density ratio, nB/s, since the entropy density per comov-
ing volume S = a3s is conserved, and therefore nB/s is conserved. The photon
density is calculated from the particle number density for relativistic particles

N = g∗
ζ(3)
π2

(
kBT

~c

)3

, (2)

where for photons the relativistic degrees of freedom g∗ = g∗γ = 2 and T =
2.73K (for fermions g∗ gets an additional factor 3/4). For the entropy density,
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Figure 1: The dependence of the acoustic peaks in the power spectrum of the CMB
temperature anisotropy on the baryon-to-photon density ratio η. The accepted value
for η = 6.1+0.3

−0.2 × 10−10, measured by NASA’s WMAP mission.

this is

s = g∗S
2π4

45

(
kBT

~c

)3

, (3)

where g∗S counts the effective relativistic degrees of freedom,

g∗S =
∑

a=bosons

ga(Ta/T )3 +
7
8

∑
a=fermions

ga(Ta/T )3. (4)

In this equation the ga are the degrees of freedo for each species of bosons or
fermions. So for the relation between entropy density and photon density we
get

s

nγ
=

g∗S
g∗γ

2π2

45ζ(3)
. (5)

Currently, the only relativistic particles are photons (gγ = 2) and neutrinos
(gν = 6, Tν = 1.95K), such that g∗S = 3.91. This finally gives s = 7.04nγ , such
that in the present universe

nB

s
=

1
7.04

nB

nγ
=

1
7.04

η = 8.7± 0.3× 10−11. (6)

This ratio remained constants during the expansion of the universe and was
therefore the same in the early, hot universe. When the universe was very hot,
all particles were relativistic, and g∗S ' 102. Therefore η ' g∗SnB/s ' 10−8,
and assuming there were about as many baryons as antibaryons as photons
(nb ∼ nb̄ ∼ nγ), this gives (nb − nb̄)/nb ' 10−8. Now assume that all the
baryons were quarks, i.e. no nucleons had been formed yet, and we can con-
clude that for every 100 million antiquarks there were roughly 100 million and
1 quark. A tiny asymmetry but with important consequences!
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3 Sakharov’s conditions

The baryon asymmetry was first considered to be an initial condition, some-
thing that just existed after the Big Bang but cannot be explained because of
the Big Bang singularity. However, inflation[8] excluded this possibility. Any
pre-exisiting baryon asymmetry would be diluted to a negligible value after infla-
tion. During reheating the temperature of the universe increases dramatically,
and therefore there is an enormous production of entropy and η is effectively
zero. Thus the possibility of an initially baryon asymmetric universe is ex-
cluded.
In 1967 Andrei Dimitriev Sakharov already realized the need for a dynami-
cal generation of the baryon asymmetry from an initially baryon symmetric
universe[9]. For this so-called baryogenesis scenario he listed three ingredients
(although he did not name them explicitly), that are now widely considered to
be both very generic and necessary for successful baryogenesis.
Sakharov’s conditions are the following: 1. Baryon number violation, 2. C and
CP violation, 3. Departure from thermal equilibrium. In the following part I
will give a detailed explanation of these three conditions.

3.1 Baryon number violation

Baryon number is a nearly conserved quantum number of a system in particle
physics. It is defined as

B =
Nq −Nq̄

3
, (7)

where Nq is the number of quarks and Nq̄ is the number of antiquarks. Histori-
cally, before the discovery of quarks, the baryon number of a system was defined
as the number of baryons minus the number of antibaryons, i.e. B = Nb −Nb̄

and all elementary particles have a baryon number of +1, 0 or -1. For examples
protons, neutrons have a baryon number of 1 and are therefore called baryons.
Similarly antibaryons (antiprotons etc.) have a baryon number -1. Leptons
such as electrons have a baryon number 0. Only later it was discovered that
every baryon is actually composed of three quarks, which therefore changed the
definition to Eq. (7). Quarks have by definition a baryon number of 1/3 and
for antiquarks B = −1/3.
In a baryon symmetric universe there are as many baryons as antibaryons, and
therefore B = 0. To create a universe where B 6= 0, baryon number must
be violated. However, all Feynman diagrams in the Standard Model of parti-
cles conserve baryon number. Thus one might think that baryogenesis is not
possible within the SM, but baryon number is actually violated through a non-
perturbative effect. In section 5 I will come back to this.
Let us for simplicity assume that there are reactions that violate baryon num-
ber. A very heavy particle X has two possible decay channels. For one decay a
baryon number B1 is created and has a branching ratio (probability) r, whereas
the other has a baryon number B2 and a branching ratio 1−r. As we will see in
section 4, in certain grand unified models, there are heavy X gauge bosons that
can decay to either two quarks, creating a baryon number of 2/3, or a lepton
and an antiquark, with lepton number 1 and baryon number -1/3. In all these
models B − L is conserved.
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Also there is an equal (we are considering an initially baryon symmetric uni-
verse) amount of heavy antiparticles X̄ that has two decay channels which create
baryon numbers −B1 and −B2 and has branching ratios r̄ and 1 − r̄. The av-
erage baryon number violation produced in the decay of one X particle and its
corresponding antiparticle is then

∆B = rB1 + (1− r)B2 − r̄B1 − (1− r̄)B2 = (r − r̄)(B1 −B2). (8)

Two things can be noticed from this equation. First of all, there need to be
two decay channels that create a different baryon number, i.e. B1 6= B2, in
order to violate baryon number. The reason for this is that if the same baryon
number is created in both decay channels, then we might as well have assigned
that baryon number to the unknown heavy particle X and there would be no
B violation. Secondly, the branching ratios for the decay of the particle X have
to be different from the branching ratio of its antiparticle X̄, i.e. r 6= r̄. If
they would be the same, just as many baryons as antibaryons would be created
and there would not be an asymmetry. r 6= r̄ only when both C and CP are
violated.

3.2 C and CP violation

Consider again a heavy X particle that can decay to, for example, two quarks
with a branching ratio r. The branching ratio is defined as

r =
Γ(X → q + q)

ΓX
, (9)

where ΓX is the total decay rate (remember that for B-violation we need at
least one other decay channel). For the branching ratio of the antiparticle X̄
we have a similar definition

r̄ =
Γ(X̄ → q̄ + q̄)

ΓX̄

. (10)

Conservation of CPT tells us that the total decay rate of a particle and its
antiparticle is equal, ΓX = ΓX̄ . Therefore we can write

r − r̄ =
Γ(X → q + q)− Γ(X̄ → q̄ + q̄)

ΓX
. (11)

Under C, all particles are replaced by its antiparticles and vice versa. When C
is conserved,

Γ(X → q + q) = Γ(X̄ → q̄ + q̄), (12)

and therefore r − r̄ = 0 and baryon number is not violated. Thus we need C
violation. However, we also need CP violation. To see this, we write

Γ(X → q + q) = Γ(X → qL + qL) + Γ(X → qR + qR), (13)

and similarly for the antiparticle. This gives

r−r̄ =
Γ(X → qL + qL) + Γ(X → qR + qR)− Γ(X̄ → q̄L + q̄L)− Γ(X̄ → q̄R + q̄R)

ΓX
.

(14)
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Under CP, qL → q̄R and qR → q̄L, and when CP is conserved,

Γ(X → qL + qL) = Γ(X̄ → q̄R + q̄R) (15)
Γ(X → qR + qR) = Γ(X̄ → q̄L + q̄L). (16)

Again, r− r̄ = 0 and baryon number is not violated. Thus, we need both C and
CP violation in order create a baryon asymmetry.

3.3 Departure from Thermal Equilibrium

The last of Sakharov’s conditions is quite tricky. In thermal equilibrium particles
and antiparticles will have identical distribution functions. To see this let’s
consider the phase space distribution functions

f(p) =
1

exp[(µ + E)/(kBT )]± 1
, (17)

where the +-sign is for fermions and the − for bosons, µ is the chemical potential
and E =

√
p2c2 + m2c4 the energy of the particles. The particle number density

for a certain species is then

N = g

∫
d3p

(2π~)3
f(p), (18)

where g is the number of degrees of freedom for the particle species. For rela-
tivistic particles, kBT � m,µ, Eq. (2) is obtained. For non-relativistic particles
m � kBT, µ, this is evaluated to give

N = g

(
mkBT

2π~2c2

)3/2

e−(µ+m)/(kBT ). (19)

For relativistic particles and antiparticles it is easy to see (from Eq. (2)) that
they have the same particle number densities, since g is the same for a parti-
cle and its antiparticle. Therefore, for relativistic particles and antiparticles in
thermal equilibrium there is no baryon asymmetry. For non-relativistic particles
it is a bit harder to see. The CPT theorem ensures that particle and antipar-
ticle masses are equal, mb = mb̄. Also, in chemical equilibrium the chemical
potentials must be conserved, i.e for a reaction a + b → c + d the relation
µa +µb = µc +µd must hold. Since we have reactions like b+ b̄ → 2γ, we can see
that µb + µb̄ = 2µγ = 0, thus µb = −µb̄. But also, since we have baryon num-
ber non-conserving reactions, all chemical potentials must vanish. Therefore, in
thermal equilibrium the particle distribution functions and the particle number
densities of particles and antiparticles are equal, nb ≡ nb̄. So in order to create
a baryon asymmetry, a departure from thermal equilibrium is necessary.
Now we will see how the universe can depart from thermal equilibrium. Suppose
we have heavy particles X and antiparticles X̄ with masses MX = MX̄ that
exist in equal numbers, i.e. an initially baryon symmetric universe. At very
high temperatures, kBT � MX , the decay rate of the particles Γ is equal to the
inverse decay rate ΓID, i.e. particles are decaying as fast as they are formed and
no net baryon number is produced. As the temperature drops below the mass
of the particles, the X particles become non-relativistic and they want to decay
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Figure 2: The X particle density-to-photon density ratio as a function of M/T , where
M is the mass of the particle. For T > M , the X particles are as abundant as photons
and they do not decay. As T ∼ M , the X particle wants to decay and as long as
ΓD > H the equilibrium abundance is maintained. For the dotted line ΓD is smaller
than H when the temperature drops below M . The particle cannot decay and it
remains as abundant as photons. When H falls below ΓD, the X particle finally
decays, but its abundance its much greater than its equilibrium abundance, shown by
the vertical arrow. This is the departure from thermal equilibrium.

in a B violating reaction. Their thermal equilibrium abundance with respect to
(relativistic) photons can be obtained from Eqs. (2) and (19), and forgetting
about numerical prefactors this gives,(

nX

nγ

)
EQ

∼
(

mX

kBT

)3/2

e−mX/(kBT ), (20)

and similarly for X̄. The X and X̄ are decaying in a B non-conserving way,
but remember that since we are in thermal equilibrium, the number densities of
particles and antiparticles are equal and no baryon number is created. However,
the equilibrium abundance as in Eq. (20) is only maintained as long as the decay
rate is greater than the expansion of the universe, ΓD � H. Or because H−1 is
also the characteristic timescale at which the temperature T is changing, we can
also say that the reactions that drive the universe to thermal equilibrium have
to occur on a timescale shorter than the timescale at which the temperature is
changing.
Now suppose that however ΓD < H. As long as the temperature is high,
kBT � mX , the X and X̄ do not want to decay and exist in equal numbers,
comparable to the number density of photons nX = nX̄ ' nγ . But due to the
expansion of the universe the temperature drops until at some point kBT ' mX ,
and the particles want to decay. However, the particles cannot decay because
the expansion rate of the universe is too big compared to the decay rate ΓD.
Thus the X and X̄ remain as abundant as photons and the decay rate stays the
same, whereas in thermal equilibrium their abundance would look like Eq. (20).
This overabundance with respect to the equilibrium abundance is the departure
from equilibrium, which is shown in Fig. 2
Let’s make our discussion about the departure from thermal equilibrium more
quantitative, where Fig. 3 illustrates the Hubble rate and various rates for
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Figure 3: The log of important rates as a function of Z = M/T . The scattering
rate ΓS is not important in our simple model. The decay rate ΓD scales as 1/T for
T �M , but when T ∼M it reaches a constant value. The inverse decay rate ΓID is
at high temperatures equal to the decay rate, but is Boltzmann suppressed when the
temperature drops below the mass scale. For the Hubble rate H two lines are shown
that both scale as T 2. For the first line K = (ΓD/H)T=M > 1, i.e. as the temperature
drops below the mass scale the decay rate is greater than the Hubble rate H. In that
case thermal equilibrium is maintained and no baryon asymmetry is created. For the
second line K < 1, so ΓD < H when the temperature drops below the mass scale, and
there will be a departure from thermal equilibrium.

particle interactions, including (inverse) decays and scattering. First we take a
closer look at the Hubble rate H,

H2 ≡
(

ȧ

a

)2

=
~ρ

3cM2
P

, (21)

where M2
p = ~c/8πGN = 2.4 × 1018GeV is the reduced Planck mass and ρ is

the energy density, which for an ideal relativistic fluid is given by

ρ = g∗
π2

30
(kBT )4

(~c)3
, , (22)

where g∗ counts the effective relativistic degrees of freedom of all species in the
relativistic fluid, where for each fermionic degree of freedom we need to include
a factor 7/8. Combining Eqs. (21) and (22) gives us the following expression
for H,

H = g
1/2
∗

π√
90

(kBT )2

~Mpc2
= 0.33g

1/2
∗

(kBT )2

~Mpc2
. (23)

As the universe expands, the temperature drops and therefore the Hubble rate
decreases. Thus at some point the Hubble rate again falls below the decay rate
of the X particles, and the X particles will decay. At really high temperatures
the decay rate is suppressed by a factor 1/T due to a relativistic Lorentz γ
factor. When the temperature becomes comparable to the mass scale of the X
particles the decay rate reaches a constant value

ΓD = αX
mXc2

~
. (24)
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The decay rate is proportional to the mass of the particles and a dimensionless
parameter αX that depends on the strength of the decay interactions and the
number of decay channels. The particle will decay when ΓD ' H, i.e. at a
temperature

kBTX '
√

3αXmXc2mP c2/g
1/2
∗ . (25)

This temperature still needs to be below the mass scale of the particle, mXc2 >
kBT , otherwise the particle will not decay at all. This means that

mX ≥ 3αXMp/g
1/2
∗ . (26)

As an example, if the particles would decay through the weak interactions, then
αX ' 10−2, and taking g∗ to be of the order 102 (in the SM g∗ = 106.75), this
means that mX ' 1016GeV. In Grand Unified Theories the unification scale is
about 1016GeV, so this value seems reasonable. The next section contains more
information about GUTs and its application to baryogenesis.
Once the departure from equilibrium is established and the Hubble rate falls
below the decay rate, the particle freely decays since the inverse decay is blocked
by a Boltzmann factor exp[−mX/(kBT )]. Every decay of a particle/antiparticle
pair creates on the average a baryon number ∆B = (r − r̄)(B1 −B2). Suppose
now that the number density of particles is of the same order as the photon
density nγ . Then the total baryon number created is nB = nb − nb̄ ' ∆Bnγ .
Eq. (5) gives us the relation between nγ and s, and omitting numerical factors
this relation is s ' g∗nγ , with g∗ of the order of 102. So this means that
nB/s = ∆Bnγ/g∗nγ = ∆B/g∗. For nB/s ' 10−10 we only need a tiny C/CP
violation of 10−8, which seems reasonable.
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4 GUT Baryogenesis

4.1 Short introduction to grand unification

In the previous section a mechanism was sketched that could create the baryon
asymmetry. The ingredients we need are a very heavy particle X that decays
into baryons and antibaryons in a B-nonconserving way while also violating C
and CP at the same time. In the Standard Model baryon number is pertuba-
tively conserved, i.e. all Feynman diagrams conserve baryon (”quark”) number.
As we will see in section 5, baryon number is violated in the Standard Model
through a non-pertubative effect. However, for a long time it was believed that
baryogenesis could not occur within the SM.
In the late 1970’s Grand Unification Theories (GUTs) were developed, that
contained reactions that explicitly violate baryon number. Also, the energy
scale of grand unification was of the order of 1016 GeV, roughly the mass we
need for a heavy particle X in order to depart from thermal equilibrium and
create the baryon asymmetry. As a consequence, the baryogenesis scenario
was investigated from only the late 1970’s, whereas Sakharov already proposed
baryogenesis in 1967!
First a short introduction on GUTs. The renormalized couplings of the strong,
weak and electromagnetic interactions are not constant but depend on the en-
ergy scale, which is known as the running of the couplings. The couplings seem
to meet at the same point (once you include supersymmetry), at an energy scale
of EGUT = 2 × 1016 GeV. Thus, the strengths of all the forces were equal at
some point in the early universe.
This led physicist to develop Grand Unification, the idea that the strong, weak
and electromagnetic forces can be unified in a field theory with a single coupling
constant. Below the GUT energy scale the theory breaks down to the familiar
Standard Model (through spontaneous symmetry breaking). We already have
seen this happen in nature: the electroweak theory unifies the weak and elec-
tromagnetic forces into a single force, the weak force at a temperature above
∼ 100 GeV. Why not also unify the strong and electroweak force?
The Standard Model can be described by the SU(3)c × SU(2)L ×U(1)Y gauge
group, where SU(3) represents the strong interaction through eight massless
gluons, SU(2)L the weak interaction through the three (massless) W -bosons,
and U(1)Y represents the hypercharge field B. The SM gauge group is sponta-
neously broken down to SU(3)c ×U(1)EM at the electroweak phase transition,
where three of the four gauge bosons in SU(2)L × U(1)Y acquire a mass (the
W± and Z-bosons), and one remains massless (the photon), representing the
U(1)EM symmetry of electromagnetism.
Suppose now we have a grand unification gauge group G that spontaneously
breaks down to the SM gauge group at some high energy scale, or perhaps in
multiple steps, i.e.

G → ... → SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM . (27)

We want to find a gauge group G that contains all of the observed particles. For
the fermions we have three families, where each family has 15 members, namely
two quarks (eg. u and d) that each come in three colors and can be either left-
or righthanded (2×3×2 = 12), two left-handed leptons (eg. e−L and (νe)L), and
one righthanded lepton (e−R). The observation of neutrino oscillations allows for
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the extension with a righthanded neutrino.
The simplest gauge group that can accommodate all 15 particles in its represen-
tations is SU(5), the group of 5 × 5 unitary matrices. The 15 particles cannot
be accomodated in a single irreducible representation, but rather two, a 5- and
10-dimensional representation. In our discussion on GUT baryogenesis, this
group will be used as an example, because it is very simple and can illustrate
the principles. However, this group is more or less ruled out as GUT, because it
predicts a proton lifetime of τp ∼ 1030 years, whereas the experimental bound
is τp ≥ 1035 years [10]. An attractive option is SO(10), which is not yet ruled
out by proton decay. It contains a 16-dimensional irreducible representation
and has SU(5) as a subgroup. With the extra singlet another particle can be
incorporated in the group, namely the right-handed neutrino!
GUTs have many predictions and therefore both many successes and problems.
As for successes, GUTs predict charge quantization, the correct value of sin2 θw

(θw being the Weinberg mixing angle) and small neutrino masses appear natu-
rally through the see-saw mechanism. It also predicts certain relations between
fermion masses, of which some are correct, but most are not. More importantly
for our discussion on baryogenesis, it predicts baryon number violating inter-
actions. One consequence is proton decay, a generic feature of GUT models,
that has not been observed yet. Grand unification theories also predict mag-
netic monopoles, superheavy and extremely long-lived particles that are created
at high temperatures and that we should still see today (but do not). Inflation
solves the monopole problem, but it complicates the mechanism for GUT baryo-
genesis (more on this in the last part of this chapter). Even though the SU(5)
GUT model has practically been ruled out, I will still illustrate the principles
of GUT baryogenesis by looking at this model, because it is a nice way to show
how baryogenesis works. For more information on Grand Unification Theories
and GUT baryogenesis see, for example [11] and [12].

4.2 SU(5) GUT model

As mentioned before, In SU(5) the 15 fermions can be accommodated in two
irreducible representations. The 5-dimensional fundamental representation of
one family of quarks and leptons takes the form

Ψ =


d̄1

d̄2

d̄3

e−

ν

 , (28)

where the di represent the colored down quarks and the e− and ν the leptons.
Here it is convenient to consider all the quarks and leptons as being left-handed,
whereas the antiquarks are right-handed. The Lagrangian contains gauge in-
variant terms

L = iΨ̄γµDµΨ + ... = iΨ̄γµ(∂µ + ig

24∑
i=1

1
2
λiA

i
µ)Ψ + ... (29)

where the Ai
µ are the 52−1 = 24 gauge bosons. These include the 8 gluons that

couple the quarks, and the 3 W bosons and the B hypercharge field that couple
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Figure 4: Examples of Feynman diagrams in SU(5) involving the gauge bosons X
and Y originating from the term iΨ̄γµDµΨ

the leptons. The other 12 bosons we denote as superheavy X and Y bosons
(and their antipartners X̄ and Ȳ ). We can write a general 5× 5-matrix for the
gauge bosons

A ≡
24∑

i=1

1
2
λiAµ =

1√
2


X̄1 Ȳ1

g X̄2 Ȳ2

X̄3 Ȳ3

X1 X2 X3 W W
Y1 Y2 Y3 W W

 +
1
2
λ24B. (30)

When using this general form in Eq. (29), we see that the X and Y bosons
interact with (anti)quarks and (anti)leptons, and are therefore usually called
leptoquarks. For example (see Fig. 4), a e+ can decay to a d through an X
boson, and similarly a ν̄ to a d through a Y boson, making it is also easy to see
that X bosons have a charge Q = 4

3 and Y bosons a charge Q = 1
3 .

Apart from the 5-dimensional fundamental irreducible representation, we have
a 10-dimensional adjoint irreducible representation that contains the remain-
ing fields. It transforms as the antisymmetric product of two 5-dimensional
representations and for one family it takes the form

χab =
1√
2


0 ū2 −ū1 u1 d1

−ū2 0 ū3 u2 d2

ū1 −ū3 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0

 . (31)

The part of the Lagrangian containing this term takes the form

L = iTr(χ̄γµDµχ) = iχ̄acγ
µ(Dµχ)ac =

= iχ̄acγ
µ[∂µ + ig(

1
2
λ ·Aµ)adχdc + ig(

1
2
λ ·Aµ)cdχad]

= iTr(χ̄γµ∂µχ)− 2gχ̄acγ
µ(

1
2
λ ·Aµ)abχbc. (32)

Using the general form of A from Eq. (30), a number of new interactions arise,
see Fig. 5. For example, a u can decay to a ū through an X boson, or a d to a
ū through a Y boson. These processes, together with the interactions from Eq.
(29), allow the decay of a the proton (uud) to a positron (e+) and a neutral pion
(ūu) through the exchange of an X or Y boson. We see that in such processes
B is explicitly violated, since two quarks (B = 1

3 , L = 0) have a baryon number
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Figure 5: Examples of Feynman diagrams in SU(5) involving the gauge bosons X
and Y originating from the term iTr(χ̄γµDµχ)

2
3 , but an antiquark (B = − 1

3 , L = 0)and an antilepton (B = 0, L = −1) have
a baryon number B = − 1

3 . However, B − L is conserved in all the interactions
of SU(5). This will be important when we discuss electroweak baryogenesis in
the next chapter.
Apart from the heavy X and Y bosons, we need additional Higgs fields in order

to spontaneously break the symmetry at a very high energy scale ∼ MX to give
a mass to the heavy X bosons. This introduces more Higgs fields of which
twelve are eaten by the gauge bosons X. The Higgs particles also couple to the
fermions through Yukawa couplings but for our discussion on baryogenesis it
is not necessary to go into detail about this. We instead consider a simplified
model and show how GUT baryogenesis works.

4.3 Simplified SU(5) GUT Model

Suppose we have the following interaction Lagrangian

Lint = g1Xī2i1 + g2Xī4i3 + g3Y ī1i3 + g4Y ī2i4 + h.c..

X and Y are two superheavy bosons, i1→4 are light fermions and īa ≡ i†aγ0.
This interaction Lagrangian gives rise to the following decays of the X and Y
boson

X → ī1i2 X → ī3i4

Y → ī3i1 Y → ī4i2, (33)

and similarly for the antiparticles X̄ and Ȳ . In view of the previous section,
we could identify i1 and i2 with u, i3 with e− and i4 with d, and of course X
and Y with the heavy gauge bosons. The corresponding Feyman diagrams for
the decay at tree level are shown in Fig. 6. The goal is to calculate the average
baryon number violation produced in a decay of an X and a Y particle. Recall
section 3.1 and specifically Eq. (8), and note that we can write the average
baryon number produced in the decay of an X and X̄ boson as

∆B =
1

ΓX
[(Bi2 −Bi1)(Γ(X → ī1i2)− Γ(X̄ → i1ī2))

+ (Bi4 −Bi3)(Γ(X → ī3i4)− Γ(X̄ → i3ī4))], (34)

where ΓX is the total decay rate of the X particle, which is equal to the total
decay rate of the antiparticle ΓX̄ because of CPT conservation. Bi1→4 are the
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Figure 6: Tree-level Feynman diagrams for the decay of an X and Y boson in a
simplified SU(5) GUT model.

baryon numbers of the light particles. We now want to calculate the actual decay
rates, and we will start with the tree diagrams. For the decay X → ī1i2 the
amplitude is MX = g1, and similarly for X̄ → i1ī2 the amplitude is MX̄ = g∗1 .
The corresponding decay rates are

Γ(X → ī1i2) =
∫
|MX |2dPS = |g1|2IX

Γ(X̄ → i1ī2) =
∫
|MX̄ |2dPS = |g∗1 |2IX̄ (35)

where IX =
∫

dPS is a Lorentz invariant phase space measure. Since the masses
of the X particle and its antipartner X̄ are equal, IX = IX̄ . This means that at
tree level, Γ(X → ī1i2) = Γ(X̄ → i1ī2) (and similarly Γ(X → ī3i4) = Γ(X̄ →
i3ī4)), thus according to Eq. (34) no net baryon number is created.
Now let us look at quantum corrections to the decay process in the one-loop
case. The corresponding Feynman diagrams for the X and Y boson are shown
in Fig. 7. Now we can write the amplitude for the decay X → ī1i2 as the sum
of the tree-level diagram and the one-loop diagram, i.e. MX = g1 + g2g

∗
3g4FY .

FY is an integral over the internal momenta,

FY =
∫

d4q

(2π)4
(36)

Tr
(
ū(p1)

i(6p1 + 6q) + m3

(p1 + q)2 + m2
1 + iε

γµ 1
q2 + M2

Y

γν i(6p2 − 6q) + m4

(p2 − q)2 + m2
2 + iε

v(p2)εα(pX)
)
,

where p1,2 and m1,2 are the momenta and masses of the outgoing fermions and
q is the internal momentum of the Y -boson and MY its mass. Furthermore,
6p = γµpµ, with γµ matrices that satisfy the Dirac algebra, i.e. {γµ, γν} = 2ηµν .
Also we have added a row spinor ū(p1) for the outgoing anti-fermion, a column
spinor for the outgoing fermion v(p2) and a polarization vector for the incoming
vector boson εα(pX). Eq. (36) can have an imaginary part, which we will see is
important to create the baryon asymmetry. This imaginary part will only exist
when the X, Y bosons are heavier than m1 + m2 and m3 + m4, see also [13].
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Now we find for the decay rate

Γ(X → ī1i2) =
∫
M∗

XMXdPS

=
∫

(g∗1 + g∗2g3g
∗
4F ∗

Y )(g1 + g2g
∗
3g4FY )dPS

=
∫ (

|g1|2|FX |2 + |g2|2|g3|2|g4|2|FY |2 (37)

+g1g
∗
2g3g

∗
4FY + (g1g

∗
2g3g

∗
4FY )∗

)
dPS

= |g1|2IX + |g2|2|g3|2|g4|2IY + g1g
∗
2g3g

∗
4IXY + (g1g

∗
2g3g

∗
4IXY )∗,

where IXY =
∫

F (Y )dPS. Similarly we find for the decay X̄ → i1ī2

Γ(X̄ → i1ī2) = |g∗1 |2IX + |g∗2 |2|g∗3 |2|g∗4 |2IY + g∗1g2g
∗
3g4IXY + (g∗1g2g

∗
3g4IXY )∗. (38)

Therefore we find for the difference in decay rates

Γ(X → ī1i2)− Γ(X̄ → i1ī2) = g1g
∗
2g3g

∗
4IXY + (g1g

∗
2g3g

∗
4IXY )∗

−g∗1g2g
∗
3g4IXY − (g∗1g2g

∗
3g4IXY )∗

= 2IXY Im(g1g
∗
2g3g

∗
4)− 2I∗XY Im(g1g

∗
2g3g

∗
4)

= 4ImIXY Im(g1g
∗
2g3g

∗
4). (39)

By following the same steps in the calculation for X → ī3i4, we find that

Γ(X → ī3i4)− Γ(X̄ → i3ī4) = −g1g
∗
2g3g

∗
4IXY − (g1g

∗
2g3g

∗
4IXY )∗

+g∗1g2g
∗
3g4IXY + (g∗1g2g

∗
3g4IXY )∗

= −2IXY Im(g1g
∗
2g3g

∗
4) + 2I∗XY Im(g1g

∗
2g3g

∗
4)

= −4ImIXY Im(g1g
∗
2g3g

∗
4)

= −[Γ(X → ī1i2)− Γ(X̄ → i1ī2)]. (40)

Finally, we find for the average baryon number produced in the decay of an X
boson and its antipartner X̄

∆BX =
4ImIXY Im(g1g

∗
2g3g

∗
4)

ΓX
[(Bi1 −Bi2)− (Bi3 −Bi4)]. (41)

The alert reader might object that there is another one loop contribution for
the decay of X, namely with the X boson itself in the loop. However, it can
easily be verified that we would get contributions IXY g1g

∗
1g2g

∗
2 , thus real and

we would not have any C violation. We could do exactly the same calculation
for the decay of the Y boson, and we would find

∆BY = −4ImIY XIm(g1g
∗
2g3g

∗
4)

ΓY
[(Bi1 −Bi2)− (Bi3 −Bi4)]. (42)

Combining Eqs. (41) and (42), we find

∆B = ∆BX + ∆BY (43)

= 4
{

ImIXY

ΓX
− ImIY X

ΓY

}
Im(g1g

∗
2g3g

∗
4)[(Bi1 −Bi2)− (Bi3 −Bi4)].
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Figure 7: One-loop Feynman diagrams for the decay of an X(Y ) boson with a Y (X)
boson in the loop in a simplified SU(5) GUT model.

From this equation we can see a few conditions that are necessary for baryoge-
nesis. First of all, (some of) the couplings have to be complex. In the Standard
Model it is known from the CKM-matrix that some Yukawa couplings are com-
plex from the discovery of C and CP in the kaon system. There is therefore
no reason to believe this could not happen in a theory at a much higher tem-
perature scale. Secondly, the baryon number produced in the final states must
be different for the different decay channels. If both decays (of X for exam-
ple) would produce the same baryon number, we could have assigned precisely
that baryon number to the X particle and there would be no B violation. As
mentioned before, the masses of the X and Y bosons must be larger than the
combined masses of the particles they decay to (eg. m1 + m2 and m3 + m4),
because only then the phase space integrals IXY and IY X have an imaginary
part. Finally, the X and Y bosons must not be degenerate in mass, otherwise
ΓX = ΓY and Im(IXY ) = Im(IY X) and the Y bosons would destroy as much
baryon number as the X bosons create.
Coming back to GUT baryogenesis in SU(5), we see that all these requirements
can be met. We have already seen that the X and Y bosons decay to final states
with different baryon number, so baryon number is explicitly violated. As for
the complex coupling constants, there is no reason to believe that they are not
complex. The X and Y bosons are estimated to have a mass of 1016 GeV, much
larger than the quark and lepton masses. And finally, just like the W bosons,
the X and Y bosons are likely to have different masses.
All in all, one might say that GUT baryogenesis might have created the baryon
asymmetry of the universe. However, as already mentioned in the introduction
to this section, SU(5) predicts a lifetime of the proton of τp < 1030 year, whereas
the experimental bound is τp > 1035 year. Other GUT models can still cope
with this high lower bound on the proton lifetime, but then also inflation com-
plicates GUT baryogenesis. If there were an initial baryon asymmetry, inflation
would have diluted this number to a negligible value. As mentioned in section
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3.3, for a departure from equilibrium and successful baryogenesis extremely high
temperatures of T = 1016 GeV are needed. In the 1990s it was believed that the
reheating temperature never reached values higher than 109 GeV, because at
higher temperatures magnetic monopoles can be created. This is more or less a
necessity for inflationary models, since the magnetic monopole problem (the ab-
sence of magnetic monopoles) was one of the original motivations for inflation.
However it was shown in [14] that very heavy particles that violate B can still be
created at low temperatures through a non-perturbative effect. GUT baryogen-
esis is therefore still a possibility. For more on GUT bayogenesis after inflation
see for example [15]. This concludes our discussion of GUT baryogenesis. In
the next section we will see how baryogenesis is possible within the Standard
Model itself, and that this electroweak baryogenesis puts more restrictions on
GUT baryogenesis.
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5 Electroweak Baryogenesis

5.1 Baryon number violation in the Standard Model

At first it was thought that the Standard Model did not satisfy all three of
Sakharov’s conditions. Two of the three conditions could easily be seen: C and
CP violation have been discovered in the K0-K̄0-system in 1957 and 1964 re-
spectively. Furthermore, the universe is expected to have often undergone phase
transitions, creating a departure from thermal equilibrium and the possibility of
baryogenesis. The most obvious condition for creating the baryon asymmetry
from a baryon symmetric, baryon number violation, is however not so easily
seen to be satisfied.
At the classical level baryon number is conserved in the Standard Model. A
different way to say this is that all Feynman diagrams at tree level conserve
baryon number, i.e. the number of quarks minus antiquarks stays the same.
When one calculates the baryonic and leptonic current (the quark and lepton
parts of the vector current Jµ

V = Ψ̄γµΨ, defined as

Jµ
B = q̄γµq

Jµ
L = l̄γµl, (44)

one sees that these are conserved at the classical level, i.e. ∂µJµ
B = ∂µJµ

L = 0.
This means that there are time independent conserved charges, given by

B̂ =
∫

d3xJ0
B

L̂ =
∫

d3xJ0
L, (45)

where J0
B,L = ρB,L. The time independence can easily be verified by acting

with a time derivative on B̂ and L̂, and using the current conservation condition
∂µJµ

B = ∂µJµ
L = 0. When these currents are not conserved, the charges B̂ and L̂

are violated, i.e. there is baryon and lepton number violation! It turns out that
the baryonic and leptonic currents are not conserved when we look at quantum
corrections of the Standard Model and the so-called chiral (or triangle) anomaly,
corresponding to a Feynman diagram as shown in Fig. (8). First we split the
general vector current in a left- and right-handed part, i.e.

Jµ
V = Ψ̄γµΨ = Ψ̄LγµΨL + Ψ̄RγµΨR (46)

When we now calculate these currents, we would find that

∂µΨ̄LγµΨL = −cL
g2

16π2
Tr(FµνF̃µν)

∂µΨ̄RγµΨR = cR
g2

16π2
Tr(FµνF̃µν), (47)

where Fµν
a is the field strength tensor, which could for example be the SU(2) or

U(1) field strength tensor, and g is the corresponding gauge coupling. F̃ a
µν is the

dual of Fµν
a , defined by F̃ a

µν = 1
2εµνρσF ρσ

a . The constants cL and cR depend on
the specific gauge group. For example the gluons couple equally to the left- and
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Figure 8: Feynmann diagram that is responsible for the chiral (triangle) anomaly.

right-handed baryonic current, thus cL = cR and therefore the vector current
is conserved for SU(3) and there is no baryon and lepton number violation in
QCD. However, in SU(2)L the W -bosons do not couple to the right-handed
quarks and leptons (i.e. cR = 0), and in U(1)Y the gauge boson B couples
differently to left- and righthanded quarks and leptons (i.e. cL 6= cR). The final
result for the baryonic and leptonic current is

∂µJµ
B = ∂µJµ

L = −Nf
g2

w

16π2
Tr(WµνW̃µν) + Nf

g2
1

32π2
BµνB̃µν , (48)

where Wµν is actually the sum of the nonabelian SU(2)L field strength tensor
with the weak coupling gw and Bµν is the abelian U(1)Y field tensor with
coupling g1. Nf = 3 is the number of flavors. An important thing to notice
is that although both the baryon and lepton current are not conserved, the
combination Jµ

B − Jµ
L is and therefore B − L is a conserved quantity in the

Standard Model. One might now think that because the right-hand side of Eq.
(48) is nonzero, that baryon and lepton number are badly violated in the SM.
The problem is a bit more subtle than this. The term on the right-hand side
can be written as a derivative itself! Thus we can write

∂µJµ
B =

Nf

16π2

[
−g2

w∂µKµ + g2
1∂µkµ

]
Kµ = εµνρσW a

ν

(
∂ρW

a
σ +

gw

3
εabcW b

ρW c
σ

)
kµ =

1
2
εµνρσBν∂ρBσ, (49)

where Wµ and Bµ are the SU(2)L and U(1)Y fields. It seems that we can simply
shift the baryonic current and define a new current J̃µ

B = Jµ
B−

Nf

16π2

[
−g2

wKµ + g2
1kµ

]
that is conserved. For the abelian fields in kµ this is fine, because the fields fall
off quickly at infinity and its integral is zero. However, it turns out that their
are physical consequences for the shift in the current for the nonabelian fields,
because

g2
w

16π2

∫
d3xdt∂µKµ =

g2
w

16π2

[∫
d3xK0

]t=+∞

t=−∞
= NCS(∞)−NCS(−∞) ≡ ∆NCS

(50)
where NCS is the Chern-Simons number. This means that baryon number is
violated by ∆B = NF ∆NCS = 3∆NCS . The point is that the fields W a

µ can
be gauged away locally, but it cannot be gauged away throughout all space by
a gauge transformation. As long as the quantum fluctuations around the local
vacuum W a

µ = 0 are small, then ∆NCS = 0, but there exist large fields that
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Figure 9: Yang-Mills vacuum structere for non-abelian gauge theory. There are an
infinite number of topologically different vacua that differ by a Chern-Simons number.
At T = 0 tunneling can occur from one vacuum to another via instantons, violating
baryon and lepton number by 3. At finite T transitions can occur that hop over the
barrier, so called sphalerons transitions, where the sphaleron energy Esph ' 10 TeV.

can violate baryon number in steps of 3. We can make a picture of the so-called
vacuum structure of the gauge fields, see Fig. (9). There are an infinite number
of vacua, separated by some potential barrier. These barriers exist because
two vacua with different NCS cannot continuously be deformed into each other
without generating non-vacuum gauge fields. In 1976 ’t Hooft[16] showed that
large field configurations can tunnel through the barrier from a state |Ψ, B >
with a baryon number B to a state |Ψ, B ± 3 >with a baryon number B ± 3
with a probability per unit volume

< Ψ, B ± 3 | Ψ, B >∝ e−Sinst = e−4π/αW ∼ 10−164, (51)

where Sinst is the action of these special field configurations, ”instantons”, and
αW = g2

w

4π ' 1/29, the weak coupling constant. This result is valid at zero
temperature, and it explains why we have never seen baryon number violation
in experiments, because the probability is so small that it has never happened
in the lifetime of the universe. An easy way to verify this is to look at the
Hubble volume V = (c/H3 ' 1078, and thus the probability that such a baryon
violating process would happen in the entire universe is only ∼ 10−86. When
we now look at the lifetime of the universe ' 1017 s, it is evident that such a
process has never happened.
Kuzmin, Rubakov and Shaposhnikov[17] showed in 1985 that the story changes
at finite temperature. Then there are field configurations that could in principle
not tunnel through the barrier, but ”jump” over the barrier from one vacuum
to another. These field configurations are static saddle point solutions of the
classical field equations and sit on top of the barrier. They are called sphalerons,
which means ”ready to fall” in Greek, named by Klinkhamer and Manton[18].
To find the rate of these sphaleron processes, i.e finite T transitions between the
topological different vacua which violate B and L by 3, you need to calculate
fluctuations of the sphaleron around the saddle point. This rate per unit volume
was calculated by Arnold and McLerran and is [19]

Γsph

V
= c

(
Esph

kBT

)3 (
mW (T )

kBT

)4

(kBT )4e−
Esph
kBT , (52)
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where mW = gW v/2 is the mass of the W -boson and c is a constant. The
sphaleron energy can be calculated by looking at the saddle point solution, and
is

Esph =
2mW T

αW
B

(
mH

mW

)
, (53)

where mH is the mass of the Higgs boson and the function B takes values
between 1.56 and 2.72. So the energy of the sphaleron is approximately 10 TeV,
and the rate is therefore really small when we are at finite T but below the
electroweak phase transition (EWPT) at ∼ T = 100 GeV. Above the EWPT,
the Higgs boson is still in its symmetric vacuum, no symmetry breaking has
occurred and the mass of the W -boson is zero. Therefore, above the EWPT,
the energy of the sphaleron Esph = 0, so the energy barriers between different
vacua disappear and the rate becomes unsuppressed. From dimensional analysis
it was argued that Γsph/V scales as T 4, and lattice calculations showed that it
is[20]

Γsph

V
= (25.4± 2.0)α5

W

(kBT )4

c3~4
= (1.06± 0.08)× 10−6 (kBT )4

c3~4
. (54)

When we now take the thermal volume V = (~c)3

(kBT )3 we find that

Γsph ' 10−6 kBT

~
. (55)

Now we want to compare this to the Hubble rate and find out when the
sphalerons are in or out of thermal equilibrium. The Hubble rate H was al-
ready given in Eq. (23), and equating this to Eq. (55), we find a temperature
of

kBT ' 10−6g
−1/2
∗ Mpc

2 ' 1012GeV. (56)

Thus, sphalerons are out of thermal equilibrium at a temperature above 1013

GeV, and are in a state of equilibrium below this temperature. At the EWPT,
the sphaleron rate is exponentially suppressed as in Eq. (52), and quickly drops
below the Hubble rate again. This situation is also depicted in Fig. (10). A
number of observations can be made. First of all, any net baryon and lepton
number (created by for example GUT baryogenesis) at a temperature above
1013 GeV is washed away by sphaleron processes when these are in thermal
equilibrium. However, when we have some net B − L at a high temperature,
since sphaleron processes only affect B and L but not B − L, the B − L will
remain the same. This is crucial for leptogenesis[21], where a lepton number
can be converted in a baryon number, and this has been discussed in another
seminar[22].

5.2 Electroweak Phase Transition and CP violation in the
Standard Model

As outlined above, for theories that conserve B−L, any baryon number created
at temperatures above the EWPT, when sphalerons are in thermal equilibrium,
is washed out. Therefore we now consider the situation where the baryon asym-
metry is created during the EWPT (see for an early review for the principles of
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Figure 10: The log of the sphaleron rate Γsph and the Hubble rate H as a function
of 1/T . For T > 1013 GeV sphalerons are out of thermal equilibrium, and they reach
a state of thermal equilibrium at lower temperature. At the EWPT the sphaleron is
exponentially suppressed and drops quickly to a negligible value.

electroweak baryogenesis[23]). An important aspect is that the baryon asymme-
try created at the transition is not washed away after the transition has taken
place, i.e. the sphaleron rate has to be negligible after the phase transition.
It is essential to have a strong departure from thermal equilibrium at the EWPT.
This can happen when we have a sufficiently strong first order phase transition.
In a first order phase transition bubbles are formed bubbles that grow and
eventually fill all space. Inside the bubbles is the broken phase where the Higgs
expectation value is nonzero and where we have massive W+, W− and Z-bosons,
whereas outside the bubbles the universe still is in the symmetric phase with
massless W -bosons.
For a sufficiently large Higgs vacuum expectation v the sphalerons can be out of
equilibrium inside the bubbles, while they are still in thermal equilibrium out-
side the bubbles. In the bubble wall quantum mechanical reflection of particles
takes place, and due to CP violating interactions there will be an asymmetry
in the reflection between particles and antiparticles, thus creating the baryon
asymmetry. Important is that inside the bubble wall there are no sphaleron
interactions, i.e. the sphaleron rate is negligible. This happens when Esph is
large, and since this depends on mW = gW v/2 (see Eq. (53)), v has to be large.
The quantum mechanical reflection is however very poorly understood and the
calculation made is incomplete, because for example the effects of the plasma
have been completely ignored.
Kainulainen et al. [24] have performed a gradient expansion to first order in ~ of
the kinetic equations relevant for electroweak baryogenesis. They have derived
a constraint equation for the particle density

(k2 − |m|2 + ~
s

k̃0

|m|2θ′)gs
0 = 0, (57)

where gs
0 corresponds to the particle density in phase space, s = ±1 is the

projection of the spin of the fermions on the direction of motion of the bubble
wall and the mass of the particles is m(z) = |m|eiθ(z), with θ a CP violating
phase. k2 = k2

0 − ~k2 and k̃0 = sign[k0]
√

k2
0 − k2

‖, with ~k2 = k2
‖ + k2

z , where
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the z-direction is the direction of motion of the bubble wall. The constraint
equation gives four solutions

±k0 = ωs± =
√

~k2 + |m|2 − ~
s

k̃0

|m|2θ′ ' ω0 ± ~
s

2ω0ω̃0
|m|2θ′, (58)

where ω0 =
√

~k2 + |m|2 and ω̃0 =
√

ω2
0 − k2

‖ =
√

k2
z + |m|2. Thus it is clear

that particles with opposite spin have a different energy, and also particles and
antiparticles have a different energy. However, particles and antiparticles with
opposite spin will have the same energy. The gradient expansion to first order
in ~ of the kinetic equation is

∂tfs± + vs±∂zfs± + Fs±∂kz
fs±, (59)

where fs± are the distribution functions for particles (+) and antiparticles (-)
with spin s and vs± ≡ kz

ωs±
is the group velocity of the particles. The CP

violating force is then

Fs± =
−|m|2′

2ωs±
± ~

s

2ω0ω̃0
(|m|2θ′)′. (60)

If we now draw the analogy between the separation of charged particles in an
electric field by means of an opposite force acting on positively and negatively
charged particles, we can see that in this case particles with spin s and antipar-
ticles with spin −s will experience the same force. On the other hand particles
and antiparticles with the same spin experience an opposite force and are sepa-
rated by the CP violating force in the bubble wall. This can create the baryon
asymmetry at the EWPT. The calculation does take into account effects of the
surrounding plasma, but it is only valid when the momenta of the particles are
large (WKB approximation). A proper derivation of the creation of the baryon
asymmetry at a first order phase transition for particles at small momenta is
unfortunately still lacking.
During a second order phase transition the sphalerons also go from being in to
equilibrium to out of equilibrium, but the difference is that this happens now
uniformly throughout space. This means that below TEWPT ' 100 GeV the
sphaleron processes suddenly stop because the rate is negligible, and as a conse-
quence the baryon and lepton numbers created before the phase transition are
frozen in. But since before the EWPT the sphalerons were in thermal equilib-
rium (and we assume that B−L is conserved), this means that any preexisting
B +L is washed away. Therefore, one naively expects that a second order phase
transition does not create an extra baryon number, and the universe remains
baryon symmetric. However, Joyce and Prokopec[25] showed that in certain
non-standard cosmologies the baryon asymmetry can still be created at a sec-
ond order EWPT. The baryon to entropy density calculated after freeze out
is

nB

s
∼ k

g∗
δ 6CP

H

T freeze
, (61)

where k is some number of order 1, δ 6CP is a CP-violating parameter which is
< 1 and H

T freeze
is the ratio of the Hubble parameter to the temperature at the

time of freeze out. In typical cosmological models this ratio is ∼ 10−17, thus
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Figure 11: Phase diagram for the EWPT. For mH < 75 GeV, the phase transition
is first order and a baryon asymmetry can be created. For larger Higgs masses, the
transition is a crossover and a baryon asymmetry is created that is too small (∼ 10−20).

creating a baryon to entropy density ratio of < 10−19. In certain non-standard
cosmologies, such as a cosmology dominated by a kinetic term (kination era),
the ratio H

T freeze
can be of order ∼ 10−7, thus making it still possible to get a

sufficient baryon number production at a second order phase transition.
The nature of the phase transition depends on the mass of the Higgs boson.
The phase diagram for the EWPT is shown in Fig. (11). For small Higgs
masses mH < 75 GeV the EWPT is first order, which could in principle create
the baryon asymmetry. However, from experiments it is already clear that
mH > 114 GeV, indicating that the phase transition is a smooth crossover. This
means that in typical cosmologies, the baryon asymmetry cannot be generated
in the SM.
There is another problem in the electroweak baryogenesis scenario. In section 3
it was argued that we need a C and CP violation of about 10−8. In the Standard
Model a CP violating phase exists in the CKM-matrix, which originates from
the Yukawa terms when one tries to diagonalize the quark masses. By field
redefinitions, one can change the place where this CP violating phase is in the
CKM-matrix. We want to find an invariant phase, and Jarlskog[26] argued that
the amount of CP violation is of the order of 10−20. This is much too small to
create an η ∼ 10−10! However, there is still a debate going on whether or not
this number is a correct estimate for the total amount of CP violation within
the SM. For a different approach to calculate the amount of CP violation within
the SM, see for example [27].
As a summary on electroweak baryogenesis, we have seen that baryon number
violation is possible within the SM through sphaleron processes. If B − L is
conserved, the baryon asymmetry must be created at the electroweak phase
transition, which has to be strongly first order. However, a small Higgs mass is
needed for a first order transition, and experiments have already excluded this
possibility. Furthermore, the amount of CP violation in the SM is much too
small to account for the observed baryon asymmetry. In extensions of the SM,
such as the MSSM (i.e. Minimal Supersymmetric Standard Model), electroweak
baryogenesis is still possible. A first order phase transition can still happen for
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a large Higgs mass, and new particles bring in new couplings and therefore
more options for CP violation. Perhaps the new LHC can bring some answers
by excluding or confirming supersymmetry, and hopefully we will have some
results in the near future!

6 Summary and conclusions

The baryon asymmetry is one of the great mysteries of the universe. Why do
we see more matter than antimatter? Initial conditions with a baryon asym-
metry are excluded by the inflationary era. Therefore we need to somehow
dynamically create the baryon asymmetry. Baryogenesis, proposed in 1967 by
Sakharov, provides a scenario in which the asymmetry can be dynamically gen-
erated from an initially baryon symmetric universe. Only three ingredients are
necessary, namely baryon number violation, C and CP violation and a depar-
ture from thermal equilibrium. There are a few scenarios in which these three
conditions are satisfied.
GUT baryogenesis happens at temperatures of 1016 GeV, the Grand Unifica-
tion scale at which the strong, weak and electromagnetic couplings are equal.
Grand Unification Theories try to embed these three forces into a single the-
ory, which naturally have baryon number violating interactions. GUTs predict
proton decay, which has not been observed yet, excluding a number of these
unifying theories. Furthermore, in most inflationary models the reheating tem-
perature was never high enough to reach the GUT scale and create the baryon
asymmetry. GUT baryogenesis might still be possible after inflation through
non-perturbative effects, and is therefore still a possible mechanism for baryo-
genesis.
Baryogenesis is also possible within the Standard Model itself, because all three
of Sakharov’s conditions are satisfied. Baryon number violation is possible
through a non-perturbative effect, so called sphaleron processes. These pro-
cesses are in thermal equilibrium above the electroweak phase transition and
wash out any preexisting B + L asymmetry, for example an asymmetry that
was created at the GUT scale. B − L however is conserved through sphaleron
processes. At the electroweak transition, these sphaleron processes fall out of
equilibrium, and when the phase transition is strongly first order, a sufficiently
large baryon asymmetry can be created. However, the Higgs mass is already
too big for a first order phase transition. Another problem with electroweak
baryogenesis is that the estimated total amount of CP violation in the SM
(∼ 10−20 is far too small to explain the baryon asymmetry η ∼ 10−10, although
there reasons to believe that this number is not a correct estimate. Electroweak
baryogenesis could still happen in extensions of the SM, such as supersymmetry,
but we have to wait for results for the LHC to see what lies beyond the Standard
Model.
As a final remark, there a number of interesting other mechanisms for baryo-
genesis, the most promising one being leptogenesis[22]. Still the mystery of
the matter-antimatter asymmetry remains unsolved until now, and we can only
hope for a solution in the near future.
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