
Technical tips: Step 3 (continued) 

 

1. Checking histogram features (continued) 

The last technical tips document introduced a few simple ideas to check the features you have been computed. We 

elaborate on these below, specifically for features represented by histograms, such as the shape property 

distributions (A3,D1,…,D4). Walk through these tips in turn in the order below: 

 

(1) Normalizing histograms 

To meaningfully compare two histograms computed on different number of elements, these need to be normalized. 

This ‘factors out’ the number of elements from the computation. This is especially important for the shape property 

distributions which are typically computed for different number of points (D1), point-pairs (D2), point-triplets 

(A3,D3), and sets of four points (D4). Moreover, normalized histograms will be easier to use when computing shape 

distances (see Module 4). 

Normalizing a histogram H = {hi} is simple: Replace each value hi by hi / Si hi. This way, each bar becomes a percentage 

in [0,1], regardless of the total number of samples Si hi. 

 

(2) Sampling the space of possibilities 

All shape-property distributions use combinations of 1, 2, 3, or even 4 vertices from the N vertices of a shape. 

Obviously, when N is large (thousands), this yields too many combinations to compute (N to N4). To reduce this space 

of possibilities to something manageable, we can use smart subsampling. The key idea behind is to consider only n 

(from the Nk possible ones) so that we don’t favour, in this choice, specific parts of the space of possibilities. 

A simple algorithm to do this is as follows (example given for the D3 descriptor): 

 
Algorithm input: n, where n < N3   //number of samples to evaluate 
int random();    //returns a random integer in 0..N-1 
int k = pow(n, 1.0/3.0)   //compute number of samples along each of the three dimensions 
for (int i=0;i<k;++i) 
{   
    int vi = random(); 
    for (int j=0;j<k;++j) 
    { 
        int vj = random(); 
        if (vj==vi) continue;   //do not allow duplicate points 
        for (int l=0;l<k;++l) 
        { 
            int vl = random(); 
            if (vl==vj || vl==vi) continue; 
            construct triangle with vertices (vi,vj,vl); evaluate its area;           
        } 
    } 
} 

 



(3) Interpreting histogram features 

As explained in the last tech tips, a plausible feature (meaning, a feature which likely performs well for shape 

retrieval) should take similar values for similar shapes, and different values for different shapes, respectively. Hence, 

a simple way to check the plausibility of features is to compute histograms for various shapes whose similarity we 

know and then see if the histograms reflect this similarity. 

Consider the division of shapes into classes in the database. Arguably, shapes in the same class are more similar than 

shapes in different classes. Hence, we can visually check if the histograms of shapes in the same class are more 

similar than those of shapes in different classes. 

 

Two problems can occur here: 

• We have shapes in different classes with similar-looking histograms; this may create false positives during 

retrieval; 

• We have shapes in the same class with different-looking histograms; this may create false negatives during 

retrieval. 

 

This is illustrated by some concrete examples: 

 



 
Figure 1: A3 descriptors for all shapes, grouped per class 

In this image, we’d like to have (1) very similar graphs within each plot (similar histograms of shapes in same class) 

and different overall graphs in different plots (different histograms of shapes in different classes). We see that the 

latter property holds reasonably well, though, not for all classes (some plots are quite similar). Within each plot, the 

curves are quite well grouped, which is good – same-class shapes yield similar histograms.  

 

The plot below shows a different story: 



 
Figure 2: D1 histograms for shapes, grouped per class. 

Compared to the A3 histograms, we see now a wide variation in distances between shapes, even within the same 
class. This means that either A3 is very sensitive to the actual shape, or it is suboptimally computed. Either way, 
this is not good for retrieval, since it will create likely many false negatives. Also, it is hard to say that each class 
exhibits a particular ‘signature’ formed by its histograms. This implies the possibility to have a lot of false positives 
during retrieval. In each case, seeing the above indicates there is likely trouble with the A3 features computed. 
 

(4) Improving histogram features 

Say that you observed some of the problems of histogram features outlined above. How to improve the computation 

of such features? There are several simple steps one should follow in any case: 

• Sample count: Make sure you use sufficient samples for computing the respective feature. Consider e.g. D3: if 

you use a total of, say, 10000 combinations (of the 3 points), uniformly distributed over the space of possibilities, 

this means roughly that only pow(10000,1/3)= 21 vertices are considered (!!!) Clearly, this is a too low number. 

A far more reasonable number is to consider 100 such vertices, thus a total of 1003 = 1 million combinations. If 

coded smartly, this is not a too long computation. 

• Debugging the computation: Take two particular shapes which you find extremely similar. Compute and 

compare their histograms. You should really get two very identical plots. If not, there is surely a problem in the 

histogram computation. Check that the shapes are uniformly sampled; and that you are normalizing the 



histograms properly. These are two often-met mistakes. In particular, the shape property distributions are quite 

sensitive to a good spread of the sample points over a shape’s surface. 
 


