
Technical tips: Step 4 

 

1. Computing distances between two feature vectors 

Let A = (a1,….an) be a feature vector. Typically A contains elements that describe different features, each having its 

own nature. An example is below: 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Here, we have a feature vector of 45 elements. The first five elements (a1…a5) indicate elementary features, e.g., 
surface area, compactness, AABB volume, diameter, and elongation. Next, we have 10-bin histograms for the 
descriptors A3 (a6..a15), D1 (a16..a25), D2 (a26..a35), and D3 (a36..a45).  
 
Now consider two such vectors A and B. How to compute the distance between them? There are several problems 
of,  and solutions for, that. 
 
(1) Different feature ranges 
 
The first problem relates to the fact that the involved features may have different ranges. As such, simply using the 
values a1..a45 as above could make features which have high ranges count more than features which have low ranges. 
 
A solution for this is to normalize the features so they have the same range. This should be done differently for 
single-value features and for multiple-value (e.g. histogram) features. 
 
• Single-value features: Normalize by standardization, which is less sensitive to outliers than min-max 

normalization. 
• Histogram features: Normalize by dividing by the area (element count). 
 
The above two normalizations bring, statistically speaking, both single-value and histogram features in the (absolute-
value) range [0,1]. By statistically speaking, we mean that single-value features could still be outside of the [0,1] 
absolute-value range for a few samples which have really outlier values. We arguably like to keep these as such, 
since they describe truly different data values. 
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surface area 

compactness 

AABB volume 

diameter 

eccentricity 

a16 a25 a26 a35 a36 a45 … … … … 

A3 histogram D1 histogram D2 histogram D3 histogram 



 
(2) Different distance ranges 
  
You may have noticed that there is an asymmetry in how we normalize single-value and multiple-value features: 
Single value features are normalized considering the entire set of feature-values in the process (when computing the 
standard deviation). Histogram features are normalized independently per histogram: We don’t compute anything 
like the ‘standard deviation histogram’.  
 
As such, there is a problem: After the normalization (1), the range of the distances between feature-values for the 
different features a1, a2, … can be very different. For example 
 
• The range of eccentricity (elongation) values can span the whole spectrum [0,1] after normalization. Indeed, our 

shape database can have all shapes ranging from close to a ball to close to a pencil. Consequently, the range of 
distances between elongations can also span the whole spectrum [0,1].  

• The D4 histogram values for a set of shapes can be very similar. Hence, the range of distances between D4 
histograms (computed e.g. with the EMD metric or any similar histogram-distance) can be much smaller than 1. 
For area-normalized histograms, note that a distance of 1 between two histograms is huge and would likely 
never be attained in practice. 

 
If we do not address this problem, then features having a small range of distances will count little in the overall 
distance function. 
 
There are multiple ways to address this problem: 
 
• Feature weighting: For every set of feature-values which, together, form a feature, add a weight wi (so that the 

sum of all wi equals one). The image below shows this on the example feature-vector at the beginning: 
 
 
 
 
 
 
 
        Then, adjust the weights wi, relative to each other, so as to boost the variations of the features having small  
        ranges. In practice, this would typically mean leaving w1…w5 equal to each other and making them smaller than  
        the weights w7…w9 used for the narrow-range histograms. The advantage of this method is that it is very simple  
        to implement. However, playing around with weights can cost quite some time until the desired results are  
        achieved. 
 
• Distance weighting: Rather than weighting the feature values, we can go to the ‘root’ of the problem and weigh 

the distance values themselves. This is exactly what the standardization does for the single-value features: It 
actually considers the spread of values (by measuring their standard deviation, which is a distance) and 
normalizes them by this spread. We can generalize this also for multiple-value features such as histograms.  
 
Consider e.g. the feature-vector elements a6…a15 which, together, create the D1 descriptor. We can them 
compute all distances d(a6…a15 ,b6…b15) between the elements 6..15 of two feature vectors A and B over an 
entire shape database. These give all possible values for the distances between D1 descriptors over our 
database, computed by any desired distance function (Euclidean, EMD, cross-bin matching, etc). Then, we can 
standardize these distances, just before combining them with the other feature distances (that is, for a1..a5 and 
a16…a45) to yield the final distance. This way, even small variations in D1 will count similarly to e.g. large 
variations in a1.  
 

a1 a2 a3 a4 a5 a6 a15 a16 a25 a26 a35 a36 a45 … … … … 

w1      w2        w3        w4         w5           w6        …       w6           w7         …         w7          w8         …      w8        w9         …      w9 



Note that this histogram standardization is strongly dependent on the quality of the extracted descriptors: If, 
for instance, we have a poor computation of D1, which yields more or less the same values for all shapes, then 
the standardization above will artificially amplify tiny differences in D1 which likely mean nothing, leading to 
poor matching. 
 

 
 
  


