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ABSTRACT

Aims. We explored the use of broadband colors to classify stars, galaxies, and quasi-stellar objects (QSOs). Specifically, we applied
sharpened dimensionality reduction (SDR)-aided classification to this problem, with the aim of enhancing cluster separation in the
projections of high-dimensional data clusters to allow for better classification performance and more informative projections.
Methods. The main objective of this work was to apply SDR to large sets of broadband colors derived from the CPz catalog to obtain
projections with clusters of star, galaxy, and QSO data that exhibit a high degree of separation. The SDR method achieves this by
combining density-based clustering with conventional dimensionality-reduction techniques. To make SDR scalable and have the abil-
ity to project samples using the earlier-computed projection, we used a deep neural network trained to reproduce the SDR projections.
Subsequently classification was done by applying a k-nearest neighbors (k-NN) classifier to the sharpened projections.
Results. Based on a qualitative and quantitative analysis of the embeddings produced by SDR, we find that SDR consistently produces
accurate projections with a high degree of cluster separation. A number of projection performance metrics are used to evaluate this
separation, including the trustworthiness, continuity, Shepard goodness, and distribution consistency metrics. Using the k-NN classifier
and consolidating the results of various data sets, we obtain precisions of 99.7%, 98.9%, and 98.5% for classifying stars, galaxies, and
QSOs, respectively. Furthermore, we achieve completenesses of 97.8%, 99.3%, and 86.8%, respectively. In addition to classification,
we explore the structure of the embeddings produced by SDR by cross-matching with data from Gaia DR3, Galaxy Zoo 1, and a
catalog of specific star formation rates, stellar masses, and dust luminosities. We discover that the embeddings reveal astrophysical
information, which allows one to understand the structure of the high-dimensional broadband color data in greater detail.
Conclusions. We find that SDR-aided star, galaxy, and QSO classification performs comparably to another unsupervised learning
method using hierarchical density-based spatial clustering of applications with noise (HDBSCAN) but offers advantages in terms of
scalability and interpretability. Furthermore, it outperforms traditional color selection methods in terms of QSO classification perfor-
mance. Overall, we demonstrate the potential of SDR-aided classification to provide an accurate and physically insightful classification
of astronomical objects based on their broadband colors.
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1. Introduction
Source detection and classification of celestial objects are key
steps in any astronomical analysis. Examples include the clas-
sification of stars based on their spectral characteristics, the
categorization of galaxy morphologies by following the Hubble
sequence (Hubble 1926) and the identification of quasi-stellar
objects (QSOs), also known as quasars. In each case, classifi-
cation requires either high spatial or spectral resolution, which
traditionally are expensive in terms of telescope time.

With the advent of multiwavelength surveys, many sophisti-
cated color selection criteria have been developed to isolate stars,
galaxies, and active galactic nuclei (AGNs) of which QSOs are
a subclass. Simple color–color plots have been extensively used
for object classification. For example, Daddi et al. (2004) derived
a two-color selection technique using B-, z-, and K-band pho-
tometry to isolate star-forming galaxies (SFGs) at z > 1.4 from
quiescent galaxies. Similarly, Patel et al. (2012) used a rest-frame

⋆ Corresponding author; martenlourens@gmail.com

U–V versus V–J diagram with galaxies at 0.6 < z < 0.9 to
distinguish SFGs from quiescent galaxies. These diagrams are
particularly useful at breaking the degeneracy between red qui-
escent galaxies and reddened SFGs. Additionally, Patel et al.
(2012) combined the sample with imaging data from the Hubble
Space Telescope (HST) to examine the structure of galaxies in
the UV J diagram. They found that most quiescent galaxies have
properties that are characteristic of early-type systems, whereas
SFGs display properties of late-type systems. The large spread of
SFGs in the UV J diagram is largely explained by the inclination
of each system. Another example of color selection techniques is
AGN identification using empirical mid-infrared (MIR) selec-
tion criteria. Compared to soft X-ray, ultraviolet (UV; using
UV-excess selection, Schmidt & Green 1983), and optical stud-
ies, MIR studies are more robust against dust obscuration of
AGNs. MIR studies including the works by Stern et al. (2005),
Stern et al. (2012), and Assef et al. (2018), using either data from
Spitzer or the Wide-field Infrared Survey Explorer (WISE), take
advantage of the fact that the MIR spectral energy distribution
(SED) of obscured and unobscured AGNs is different from that
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of normal galaxies. Lastly, to isolate stars from other objects,
criteria based on color selection are typically not used. Instead,
many surveys use measurements of the extent of objects. An
example of this is the star-galaxy separation performed within
the Sloan Digital Sky Survey (SDSS) photometric pipeline,
which uses the difference between cmodel (i.e., the magni-
tude obtained from the best-fitting linear combination of the de
Vaucouleurs and exponential profiles) and point spread function
(PSF) magnitudes to determine whether an object is a star or a
galaxy (Lupton et al. 2002).

Currently, sophisticated automated methods are required to
extract useful astrophysical information from the ever-increasing
volume of extragalactic surveys. As illustrated by Dubath et al.
(2017), employing machine-learning methods in the data pro-
cessing pipelines of such surveys offers a viable solution to a
range of problems, including source classification and photomet-
ric redshift estimation (see e.g., Carliles et al. 2010). Broadly,
there are two different classes of machine-learning methods that
can be distinguished by the strategy employed during the train-
ing phase. The first is supervised learning, which uses a training
set including input features, for example multiwavelength colors,
and output labels, such as the class of the astronomical object, to
learn the underlying correlations between the input features and
output labels. A well-known application of supervised learning
is the stellarity parameter in Source Extractor (Bertin & Arnouts
1996, taking inspiration from Odewahn et al. 1992), which uses
a neural network trained to determine whether a source is a
star based on the extent of sources in astronomical images.
Another supervised learning technique is a Bayesian classifi-
cation technique called kernel discriminant analysis (KDA) or
kernel density classification (Richards et al. 2004, 2009), which
was used for the photometric selection of UV-excess QSOs from
the SDSS. Further applications of supervised learning meth-
ods include the use of decision trees (DTs) or support vector
machines (SVMs). For example, Ball et al. (2006) demonstrated
the use of DTs for star-galaxy classification using data from the
SDSS DR3. Vasconcellos et al. (2011) extended upon this by
experimenting with various DT algorithms finding that func-
tional trees (FTs) perform best for separating stars and galaxies
using photometric data from SDSS DR7. Furthermore, Clarke
et al. (2020) used spectroscopically labeled sources from SDSS
DR15 to train a random forest (RF) classifier to classify stars,
galaxies, and QSOs. Lastly, Kurcz et al. (2016) show how SVMs
can be used to classify stars, galaxies, and QSOs using the W1
magnitude and W1 − W2 color from WISE and training using
spectral labels from SDSS DR10. The second class of methods
is unsupervised learning, which searches for data clusters in the
feature space and assigns labels to points based on the clusters to
which they belong. A disadvantage of these methods is that they
are often unpredictable and harder to understand compared to
supervised learning methods, making them difficult to interpret.
There exist many different algorithms for unsupervised learn-
ing, with varying numbers of hyperparameters, making some
harder to tune than others. One such algorithm is HDBSCAN
(Campello et al. 2013), hierarchical density-based spatial cluster-
ing of applications with noise. This algorithm has been applied
by Logan & Fotopoulou (2020, hereafter LF20) to the CPz data
set (Fotopoulou & Paltani 2018, hereafter FP18), which con-
sists of a diverse set of stars, galaxies, and QSOs that were
selected based on their complete photometric coverage in the
optical, near-infrared (NIR), and MIR wavelengths, to perform
star, galaxy, and QSO classification. HDBSCAN is an extension
of the previous DBSCAN algorithm (Ester et al. 1996), which
converts a data set into a hierarchy of connected components

based on the distance between objects and defines clusters based
on a predefined minimum cluster size. Both algorithms define
distances between points as the “mutual reachability distance,”
which ensures that sets of sparse and far-away (outlier) points
are viewed as being spaced further from higher density regions.
This increases the separation between the data and the noise.
HDBSCAN extends the DBSCAN algorithm by labeling clusters
based on their stability within the hierarchy.

In this paper, we aim to demonstrate that broadband col-
ors can be used to classify stars, galaxies and QSOs through
2D projections of the high-dimensional data. This is not a
simple proposition – it is challenging to distinguish data clus-
ters in a 2D projection. To confront this challenge, Kim et al.
(2022b) proposed a method called sharpened dimensionality
reduction (SDR), which sharpens the high-dimensional data
before projecting it via conventional dimensionality reduction
(DR) methods. We show that SDR can be used to aid the classi-
fication of stars, galaxies and QSOs based on the 2D projections
of high-dimensional sets of broadband colors.

The structure of this paper is as follows. Sect. 2 presents the
data sets that we use for classification. Sect. 3 introduces vari-
ous quality metrics that we use to quantify the performance of
our projections and classifiers. Sect. 4 discusses the classifica-
tion model used to perform star, galaxy, and QSO classification.
Sect. 5 presents the results of applying our classification on the
data sets introduced in Sect. 2. We also look at the various sub-
clusters present in the projection and determine whether they
convey meaningful insights by cross-matching with various cat-
alogs. Finally, Sect. 6 compares our results to those obtained
through HDBSCAN by LF20 and another classification method
based on color selection criteria.

2. Data sets

In this work, we use the CPz catalog for SDR-aided classifica-
tion, first introduced by FP18 and revised by LF20 to include
unsupervised star, galaxy, and QSO classification results from
HDBSCAN1. The original purpose of the CPz catalog was to
perform classification-aided photometric redshift (z) estimation,
hence the abbreviation. The catalog consists of a set of spectro-
scopically observed sources from different surveys spanning a
combined redshift range of z ∈ [0–4] (see Fig. 2a of FP18) with
SDSS samples dominating at higher redshifts. The spectroscopic
surveys included in CPz are SDSS DR12 (Alam et al. 2015),
GAMA DR2 (Liske et al. 2015), VIPERS DR1 (Garilli et al.
2014), VVDS DR2 (Le Fèvre et al. 2013), PRIMUS DR1 (Coil
et al. 2011; Cool et al. 2013), and 6dF DR3 (Jones et al. 2004,
2009). The combined sample was filtered by FP18 such that
it only included sources of highest spectroscopic redshift qual-
ity. Subsequently, FP18 matched the remaining spectroscopic
sources to photometric detections by various surveys within an
angular radius of 1′′. The filters used by each of the photometric
surveys cover both the infrared and optical parts of the electro-
magnetic spectrum. The MIR W1 and W2 filters originate from
the WISE ALLWISE data release (Wright et al. 2010; Mainzer
et al. 2011; Cutri et al. 2013). The NIR filters, Z, Y , J, H, and Ks,
originate from the first cycle of ESO near-IR Public VISTA sur-
veys (Arnaboldi et al. 2007), that is, VIKING (Edge et al. 2013)
and VIDEO (Jarvis et al. 2013). The optical u, g, r, i, and z filters
originate from SDSS DR12 (Alam et al. 2015), CFHTLS-T0007
Wide (Hudelot et al. 2012), and KiDS DR2 (de Jong et al. 2015).

1 The revised catalog is available at the CDS through https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/633/A154
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Table 1. Attributes used for SDR-aided star, galaxy, and QSO classification.

Attribute list Colors

CPzS K − Y3 K − J3 K − z3 K − H3 J3 − K3 Y3 − K3 J3 −W1 Y3 −W1 J − K
H3 − K3 H3 −W1 Y − K H − Y3 Y3 −W2 J3 −W2 i − g3 z3 −W1 z3 − K3
z − u3 H − J3

CPzG g − J Y −W1 J3 −W1 Y3 −W1 J3 −W2 H3 −W2 Y3 −W2 z3 −W2 K − J3
H3 −W1 z3 −W1 K − H3 H −W2 K −W2 W1 −W2 i −W2 g − K g − H
i −W1 r − H g3 − i3 r − z3 r − i r3 − i3 K3 −W2 r − z r − Y3
H − J3 i − u3

CPzQ J3 −W1 Y3 −W1 J3 −W2 H3 −W2 Y3 −W2 z3 −W2 K − J3 H3 −W1 z3 −W1
K − H3 H −W2 K −W2 W1 −W2 g − J i −W2 g − K g − H i −W1
r − H g3 − i3 r − z3 r − i r3 − i3 K3 −W2 r − z r − Y3 H − J3
i − u3

The CPz catalog consists of total and 3′′-aperture apparent
magnitudes in the u, g, r, i, z, Y , H, J, and Ks bands and total
magnitudes in the W1 and W2 bands. These 20 magnitudes were
corrected for Galactic extinction using the Schlegel et al. (1998)
maps of Galactic absorption and the Cardelli et al. (1989) extinc-
tion law for the Milky Way. Using each of these magnitudes,
one can construct a total of 190 unique colors. This is bound to
introduce correlations apart from any correlations inherent to the
photometric data itself. Generally, machine learning algorithms
are very sensitive to the presence of correlations in the input data.
Therefore, it is important to remove these correlations as much as
possible and end up with a set of most informative colors, a pro-
cess called feature selection. LF20 attempted to achieve this by
constructing multiple RF classifiers for each binary classification
problem (i.e., STAR/non-STAR, GAL/non-GAL, and QSO/non-
QSO). The resulting RFs were used to obtain a ranked list of
colors in order of importance to the classification problem. The
top ten of the different color lists are given in Table 2 of LF20.
These feature sets still possess significant correlation between
different attributes (see Fig. 2 of LF20). This correlation arises
because RFs only look at individual attributes at each point in the
decision tree, making these classifiers insensitive to correlations
between different attributes. Therefore, LF20 decided to com-
bine these lists of important colors with those obtained from the
A, B and C RF classifiers in FP18, which were significantly less
correlated, to generate numerous attribute sets. A grid search was
performed over these sets to find an optimal set for each binary
classification problem. The results are listed in Table 3 of LF20.
We use the same sets of attributes in this work. For clarity, we
list them here in Table 1. When we refer to, for example, the
CPzS dataset, which contains stars, galaxies, and QSOs, we are
referring to a specific set of colors constructed from the full CPz
sample and not to only the objects labeled as stars in the CPz
catalog.

Here we apply supervised-learning techniques to train clas-
sifiers to label sources based on their location in the projection
space provided by the SDR method. Therefore, we require
ground-truth class labels to train and validate the performance
of these classifiers. The class labels are provided by the CPz
catalog used by LF20. The class labels were assigned either auto-
matically, in the case of SDSS spectra, or manually, in the case
of VIPERS and VVDS; the other surveys in the CPz catalog do
not have labels. A breakdown of the different labels is shown in
Table 1 of LF20. In 52% of cases the spectrum had class label
UNKNOWN. Therefore, LF20 chose to label these samples as

STAR whenever z < 0.0015 and the remaining samples as GAL
(i.e., galaxy). Sources labeled as AGN were omitted from the
final catalog. After these changes and removals, LF20 ended up
with a catalog comprised of in total 48 686 sources of which 7731
were labeled as STAR, 36 763 were labeled as GAL and 4192
were labeled as QSO.

3. Performance metrics

In this section, we discuss several metrics used to evaluate the
performance of projection and classification algorithms. We will
use such metrics next in Sect. 5 to assess the performance of our
proposed joint projection-and-classification pipeline.

3.1. Projection quality metrics

A projection is deemed to be of high quality if it captures
well the relationships between high-dimensional data in a low-
dimensional (in our case, 2D) space. We use (scalar) quality
metrics to quantify the preservation of such relations. We dis-
tinguish between three different classes of such metrics, as
follows.

The first class of quality metrics are “local neighborhood
metrics.” These metrics compare the neighborhoods of samples
in both data (i.e., feature) space and projection space and quan-
tify whether various local neighborhood relations are preserved
in the projection. The two metrics used in our work are the
trustworthiness and continuity metrics.

Trustworthiness (Venna & Kaski 2001) is defined as

Mt(k) = 1 −
2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Uk

i

(r(i, j) − k), (1)

where N is the number of samples in the data set D and k is
the number of nearest neighbors to consider2. The set Uk

i con-
sists of the k nearest neighbors of the sample i in the projection
P(D) that are not among the k nearest neighbors of i in the fea-
ture space. The quantity r(i, j) specifies the rank of the point j
when data vectors are ordered based on their Euclidean distance
to a point i in the feature space. All of this ensures that the sec-
ond term in Eq. (1) quantifies the “proportion of false neighbors”
and punishes the metric based on how far these false neighbors
2 In this formulation k should always be smaller than N/2 for the metric
to be properly normalized.
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are out of the set of nearest neighbors in the feature space (in
terms of rank). When the trustworthiness is close to one, the
second term in Eq. (1) is close to zero and there are very few
false neighbors in the projection. Conversely, when the trustwor-
thiness is close to zero, the second term is close to one and there
are many false neighbors in the projection.

Continuity is closely related to trustworthiness (Venna &
Kaski 2001). Continuity can be computed by swapping D and
P(D) in the definition of trustworthiness, that is,

Mc(k) = 1 −
2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Vk

i

(r̂(i, j) − k), (2)

where N and k are as in Eq. (1). The set Vk
i consists of the k

nearest neighbors of the sample i in the feature space that are
not among the k nearest neighbors in the projection. The quan-
tity r̂(i, j) specifies the rank of the point j when data vectors
are ordered based on their Euclidean distance to a point i in the
projection space. Hence the second term in Eq. (2) quantifies
the “proportion of missing neighbors” after the projection and
penalizes the metric based on how far the missing neighbors are
out of the set of nearest neighbors after the projection. When the
continuity is close to one, the second term in Eq. (2) is close to
zero, meaning there are few missing neighbors in the projection.
Conversely, when the continuity is close to zero, the second term
in Eq. (2) is close to one, indicating that there are many missing
neighbors in the projection. Taken jointly, the Mt and Mc met-
rics quantify whether local neighborhoods are preserved well in
a projection.

The second class of scalar projection performance metrics
are “distance preservation metrics.” These metrics quantify the
preservation of pointwise distances in the projection space with
respect to the data space. In this work, we use the “Shepard good-
ness” metric, defined as the Spearman rank correlation of the
Shepard diagram. The Shepard diagram is a scatter plot showing
two measurements of distances between objects, where one dis-
tance is the true distance and the other is the distance in some
other representation of the objects (Upton & Cook 2014). In
our case, these two distances are between points in the feature
and projection spaces, respectively. Hence, our Shepard diagram
reads

(∥∥∥xi − x j

∥∥∥ , ∥∥∥P(xi) − P(x j)
∥∥∥), with Shepard goodness given

by

MS =
Cov (R(X),R(Y))
σR(X)σR(Y)

, (3)

with R(·) denoting the ranking of a vector of samples and X and Y
denoting the distances between data in the feature and projection
spaces, respectively. The Shepard goodness attains values in the
interval [−1, 1], indicating respectively negative and positive cor-
relation between point-wise distances in the data and projection
spaces. Negative correlation implies that points close together in
the data space are placed far apart in the projection space. Con-
versely, positive correlation indicates that points close together
in the data space are also close together in the projection space.
An MS = 0 value indicates no correlation between distances in
the data and projection spaces. As for values MS ≤ 0, this tells
that the projection is useless in depicting the actual data-space
relations.

The last class of scalar projection performance metrics are
“class separation metrics.” These metrics quantify the degree of
separation between clusters of different class label in the projec-
tion space. In our work, we use the distribution consistency and
neighborhood hit metrics.

The distribution consistency metric is inspired by the metric
introduced by Sips et al. (2009). This metric uses entropy, com-
puted for the distribution of m class labels among the k nearest
neighbors of each data point x ∈ D, as a measure of class purity.
Let nci (x) be the number of data points of class ci in the nearest
neighbor set of point x. The Shannon entropy for each data point
then reads as

H(x, k) = −
m∑

i=0

nci∑m
j=0 nc j

log2

 nci∑m
j=0 nc j

 . (4)

The entropy H is zero when all neighbors have the same class
label. Additionally, H = log2(m) when all m classes are mixed
equally in a neighborhood. We define the distribution consis-
tency MDC by summing over all data points and normalizing it to
zero when all m classes are mixed equally in the neighborhood
of each point; and to one when all m classes are well separated
in the projection; that is,

MDC(k) = 1 −
1

N log2(m)

∑
x∈D

H(x, k)

= 1 +
1

N log2(m)

∑
x∈D

m∑
i=0

nci∑m
j=0 nc j

log2

 nci∑m
j=0 nc j

 . (5)

The neighborhood hit metric is the average over all fractions
of k nearest neighbors for each point i that have the same class
label as i. Formally it is defined as

MNH(k) =
1

kN

N∑
i=1

∣∣∣∣{ j ∈ Nk
i : c j = ci

}∣∣∣∣ . (6)

Here | · | denotes the cardinality of a set, Nk
i is the set of nearest

neighbors of a point i in the projection space and ci denotes the
class label of a point i. A metric value of one implies that data
with different labels are well separated.

We note that both of the above cluster separation metrics are
only relevant when data are labeled and labels are assigned accu-
rately in line with data clusters present in the high-dimensional
space.

In practice, several metrics are jointly used to assess a pro-
jection’s quality, since different metrics capture different quality
aspects (Nonato & Aupetit 2019; Espadoto et al. 2021). To opti-
mize the SDR parameters of the classification model introduced
in Sect. 4 we maximize only the distribution consistency met-
ric. This ensures the projection has the best possible degree
of class separation. The other metrics are used to evaluate the
preservation of neighborhoods and distances to verify whether
we can still draw other conclusions from the projections about
the structure of the high-dimensional color space.

3.2. Classification performance metrics

To quantify classification performance, we need to distinguish
between binary and multi-label classifiers. Binary classifiers dis-
tinguish between two populations, for example, positive and
negative, whereas multi-label classifiers distinguish between
multiple populations, for example, {star, galaxy,QSO}. For both
classifier types, one can construct a confusion matrix from which
performance metrics can be derived in a straightforward manner.
A confusion matrix represents the counts of predicted vs. actual
values. For a binary classifier, the confusion matrix contains true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN) counts. The metrics derived from such a matrix
and used in this work are
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Accuracy. The number of correct predictions divided by the
total number of predictions, representing the average perfor-
mance of the classifier over all classes:

Maccuracy =
TP + TN

TP + TN + FP + FN
; (7)

Precision. The number of true positives divided by the total
number of elements labeled as belonging to the positive class;
also known as “positive predictive power” or, in astronomy, as
“purity:”

Mprecision =
TP

TP + FP
. (8)

For a multi-class classifier one can have multiple values for the
precision depending on which class is referred to as the “pos-
itive” class and which classes are referred to as the “negative”
classes;

Recall. The number of true positives divided by the total
number of elements that belong to the positive class; also known
as “sensitivity,” “hit rate,” “true positive rate,” or, in astronomy,
as the “completeness:”

Mrecall =
TP

TP + FN
. (9)

Just as for precision, a multi-class classifier can have multiple
values for recall depending on which classes are referred to as
“positive” and “negative;” and

F1 score. The harmonic mean of the precision and recall,
representing an equal trade-off between the two:

MF1 = 2 ·
Mprecision · Mrecall

Mprecision + Mrecall
. (10)

A high precision is important to be confident about the reli-
ability of the classifier, however, this should not come at the
cost of losing many of the samples to other classes due to
misclassification.

4. Classification model

4.1. Sharpened dimensionality reduction (SDR)

SDR is an integral part of the classification model proposed in
this paper. SDR was introduced by Kim et al. (2022b) to tackle
the problem of distinguishing high-dimensional data clusters in a
2D projection3. They demonstrate that, for projection techniques
that yield poor cluster separation in the 2D space, adding the
sharpening step as a preprocessing of the high-dimensional data
can enhance the obtained cluster separation.

SDR consists of two separate steps, local gradient cluster-
ing (LGC) followed by applying a DR technique of choice,
such as one of the well-known techniques Landmark Multidi-
mensional Scaling (LMDS) (De Silva & Tenenbaum 2004; Cox
& Cox 2008), t-distributed Stochastic Neighbor Embedding (t-
SNE) (van der Maaten & Hinton 2008), and Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al. 2018).
The goal of LGC is to precondition the high-dimensional data
set, allowing the DR method to provide better cluster separation.

3 The method is referred to as “High-Dimensional Sharpened Dimen-
sionality Reduction” (HD-SDR) in Kim et al. (2022b).

Note LGC techniques such as described in Fukunaga & Hostetler
(1975) and later refined by Comaniciu & Meer (2002) have been
used for image segmentation applications and, more recently,
the simplification of 2D and 3D trail-sets Hurter et al. (2012);
Lhuillier et al. (2017). The key difference to LGC as used in SDR
is its application to enhance the density of data having many
more dimensions than the usual three present in color images or
trail sets.

LGC achieves this density enhancement by iteratively shift-
ing samples along the density gradient in the direction of
higher density. Following the procedure introduced by Kim et al.
(2022b), the sample density is estimated by constructing a kernel
density estimate (KDE) as

ρ̂(xi) =
∑

x j∈N
k
i

K


∥∥∥xi − x j

∥∥∥
hi

 . (11)

In SDR, the choice forK is a parabolic, also known as Epanech-
nikov, kernel (Epanechnikov 1969), which is optimal in a mean-
squared error (MSE) sense. The set Nk

i is the set of k nearest
neighbors of a point xi. The parameter hi specifies the bandwidth
of the kernel at position xi, set to the distance to the kth-nearest
neighbor of xi. This ensures that the KDE is insensitive to the
cluster scale. After estimating the local density ρ for xi, the sam-
ple can be shifted upward along the normalized density gradient
using the update rule

x′i = xi + α
∇ρ̂(xi)

max (∥∇ρ̂(xi)∥ , ϵ)
, (12)

where α ≥ 0 is the learning rate and ϵ = 10−5 is a regularization
parameter to cater for small gradients. This update rule is applied
for a total of T iterations. After each iteration, the KDE defined
by Eq. (11) is recomputed.

4.2. SDR-NNP

A major drawback of the SDR technique discussed in Sect. 4.1 is
its quite high running time – about 3 hours for a 40K sample, 6-
dimensional, dataset. Also, SDR does not have an out-of-sample
(OOS) ability. That is, one cannot project a given dataset and,
when new data arrives (making the dataset larger), reuse the
earlier-computed projection and only focus effort on the new
data points. To mitigate these issues, Kim et al. (2022a) intro-
duced sharpened dimensionality reduction with neural network
projections (SDR-NNP). This method leverages the scalabil-
ity, ease-of-use and OOS ability of neural networks by training
a deep neural network to reproduce the projection provided
by SDR, yielding a method which is three to four orders of
magnitude faster than SDR.

Given the above, we use SDR-NNP in our work, based on the
deep learning architecture shown in Fig. 1, implemented using
TensorFlow (Abadi et al. 2015). It consists of multiple “dense
blocks” that halve the number of data dimensions every two lay-
ers. The first dense block has dimensions equal to those of the
input layer to allow the input data to transform nonlinearly in
the high-dimensional data space before projection. The second
dense block has a dimensionality that is 3/4 that of the first
dense block. Each dense block consists of a dense layer with
linear activation, a batch normalization layer, a leaky rectified
linear unit (leakyReLU) activation layer, and a dropout layer. The
batch normalization layer rescales each batch of data to have
zero mean and unit variance. This ensures stability for higher
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Fig. 1. Deep neural network architecture used for SDR-NNP.

learning rates, making neural network optimization faster (Ioffe
& Szegedy 2015). The dropout layer is only active during train-
ing and randomly sets input units to zero at a specified “dropout
rate.” This prevents the network from overfitting on the train-
ing set. The final part of the neural network consists of a dense
layer paired with a sigmoid activation layer. The sigmoid activa-
tion layer ensures that the coordinates of the 2D projected points
generated by the network are normalized between zero and one.

To optimize a neural network we need to specify a loss func-
tion λ which quantifies the deviation from the desired result. In
our work we use the mean absolute error (MAE)

λ =
1

2N

N∑
i=1

|xi − x̂i| + |yi − ŷi| (13)

between the ground-truth 2D coordinates (xi, yi) of the N
training-set samples provided by the SDR projection and the
corresponding 2D coordinates (x̂i, ŷi) inferred by the model.
Compared to other typical loss functions such as Mean Square
Error (MSE), MAE has shown better optimization results and
less sensitivity to outliers in various works that aim to learn DR
methods (Espadoto et al. 2020; Modrakowski et al. 2022). We
use the Adam optimizer (Kingma & Ba 2014) to find the opti-
mal set of model parameters corresponding to the lowest loss
(λ), as Adam performs well for large data sets with a high num-
ber of dimensions in the presence of noise and requires little
hyperparameter tuning.

4.3. Classification

The final step of our classification procedure combines the SDR-
NNP output with a classifier of choice. We considered four
different classifiers: k-nearest neighbors (k-NN), support vector
machines (SVM) (Chang & Lin 2011), a multi-layer percep-
tron (MLPC), and XGBoost (XGBC) (Chen & Guestrin 2016).
The k-NN classifier turned out to be the fastest and most easily
interpretable of these methods. As such, we use k-NN for the
classification presented in this paper.

4.4. Consolidation

We employ three methods to consolidate (combine) the results
obtained from the CPzS, CPzG, and CPzQ data sets using our
k-NN classifier. Namely, lowest entropy consolidation, the alter-
native method (Logan & Fotopoulou 2020), and the majority
vote method, as follows.

Lowest entropy consolidation uses the probability distribu-
tions for each sample yielded by the different classifiers to
compute the Shannon entropy and selects the classification with
the lowest entropy. Additionally, we use an upper limit for the
entropy to filter out samples for which none of the considered
classifiers yields a good result. These samples are assigned to a
post-consolidation “outlier” class.

The alternative and majority vote methods count the occur-
rence of different class labels. The alternative method assigns
any sample for which there is disagreement between the classi-
fiers to the post-consolidation outlier class. The majority vote
method is less strict and only assigns samples to the outlier
class when the vote is indecisive. In all other cases, samples are
assigned to the class with the largest number of votes.

5. Results

5.1. SDR-aided classification

Sect. 4 introduced the classification method we use to classify
stars, galaxies and QSOs. Our classification model consists of
an SDR-NNP model, which reproduces the projections provided
by SDR, and a classifier working in the 2D projection space.
We now explain how the SDR method, SDR-NNP model, and
classifier are trained and optimized.

Technical set-up. We optimize the SDR parameters with
respect to the distribution consistency (MDC) metric by per-
forming a grid search. Since this metric is high when class
purity is high (Sect. 3.1), this ensures the projection has the
best possible degree of cluster separation, which, in turn, should
help our classification. We tested various DR methods includ-
ing the previously mentioned LMDS, t-SNE, and UMAP, along
with Neighborhood Preserving Embedding (NPE) (He et al.
2005), Locally Linear Embedding (LLE) (Roweis & Saul 2000),
Laplacian Eigenmaps (Roweis & Saul 2000), Local Tangent
Space Alignment (LTSA) (Zhang & Zha 2004), and linear LTSA
(Zhang et al. 2007). Of these DR methods, LMDS was one of the
best performing in terms of the projection performance metrics
introduced in Sect. 3.1. As such, we detail this method next.

Landmark multidimensional scaling (De Silva & Tenenbaum
2004) is an approximation of the classical MDS algorithm
(Cox & Cox 2008) which scales well computationally with
the sample count N. Landmark multidimensional scaling uses
classical MDS to project NL ≪ N “landmark points,” or con-
trol points, in the 2D space such that distances between these
points are best preserved. Next, LMDS embeds the remaining
N − NL points by triangulating their positions with respect to
the already placed landmark points. In our work, we consid-
ered landmark ratio values NL/N ∈ [0.005, 0.1] with increments
of 0.005. Prior to LMDS, we perform a data sharpening step,
as described in Sect. 4.1. For the LGC step herein, we tested
combinations of α ∈ [0.005, 0.06] with 0.005 increments; k ∈
{25, 75, 125, 175, 225, 275, 325}; and T ∈ {10, 15, 20}.

Projection results. Figure 2a shows the LMDS projection
of the CPzS data set having the highest distribution consistency,
with MDC ≈ 0.899, over all our tested parameter values. The pro-
jection was computed using a subset of 10 000 samples randomly
selected from the full projected data set consisting of 48 686 data
points. This projection was generated using a landmark ratio of
0.08. In comparison, Fig. 2b shows the sharpened LMDS pro-
jection (SLMDS) having an MDC ≈ 0.937, which uses the same
landmark ratio as the projection in Fig. 2a. For this projection,
we used the values α = 0.03, k = 325, and T = 10.
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(a) LMDS (b) SLMDS

Fig. 2. Comparison between LMDS and SLMDS projections. Panels (a) the LMDS projection (MDC ≈ 0.899) and (b) SLMDS projection (MDC ≈

0.937 with α = 0.03, k = 325, and T = 10), for the CPzS data set. All plots use a landmark ratio of 0.08. Samples are colored by the labels provided
by the CPz catalog.

Table 2. Projection performance metrics for the projections shown in Figs. 2a and 2b.

Mt(k = 500) Mc(k = 500) MS MDC(k = 500) MNH(k = 500)

LMDS 0.925 0.968 0.913 0.899 0.945
SLMDS 0.920 0.948 0.890 0.937 0.957

To better compare the two projections, Table 2 shows the val-
ues of all their performance metrics (Sect. 3.1). The values for
trustworthiness (MT ) and continuity (MC) indicate only a small
proportion of false and missing neighbors, so both LMDS and
SLMDS preserve local neighborhood relations well. The Shep-
ard goodness values (MS ) show that inter-point distances are also
well-preserved up to a monotonic scaling relation. The values for
the distribution consistency (MDC) and neighborhood hit (MNH)
metrics show that SLMDS enhances cluster separation compared
to standard LMDS with only a limited decline in MT , MC , and
MS . The improvement in cluster separation can also be verified
visually by comparing Figs. 2a and 2b. When comparing these
graphs, it is important to note that rotation and reflection dif-
ferences between projections of the same data set can exist. For
instance, the blue point cluster appears to the left in the LMDS
projection (Fig. 2a and to the right in the SLMDS projection
(Fig. 2b). Such variations are irrelevant for the quality of a pro-
jection since, as explained in Sect. 3, a good projection aims to
preserve the data structure, that is, the relative positions of points
with respect to each other, and not their absolute positions within
the 2D projection space. It is well known in projection literature
that the embedding coordinates (x and y in our case) do not have
any particular meaning (Nonato & Aupetit 2019; Coimbra et al.
2016; Broeksema et al. 2013).

Deep learning the projection. Having established that
SLMDS improves cluster separation compared to standard
LMDS projections, we next train the SDR-NNP model intro-
duced in Sect. 4.2 to mimic the SLMDS projection in Fig. 2b.
As explained earlier, this will give us the desired computational
scalability and OOS ability. For this process, we used 80% of the
data set for training and 20% for testing. The train–test split was
performed in a stratified way to preserve the relative fractions of
stars, galaxies, and QSOs in both train and test sets.

Figure 3 shows the resulting SDR-NNP projection (top two
graphs) and the training history (bottom graph). To find the
best set of model parameters, we used 20 000 training epochs.
We used cross-validation to prevent overfitting at each training
epoch, where 25% of the training data were set aside for vali-
dation. To check whether our model overfits the training set, we
plot the validation loss together with the training loss (Fig. 3
bottom). As visible, there is no increase of the validation loss
relative to the training loss, and therefore there is no overfitting.
Furthermore, we plot separately the training loss and inferential
training loss, because the batch normalization layers in the neu-
ral network behave differently during training and inference. As
visible from Fig. 3 bottom, these two values are nearly identical
over the training period. Finally, we compare the final training
loss (computed at the end of the 20K training epochs) with the
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Fig. 3. SDR-NNP results for the CPzS data set. Top left: SDR embedding of the test set using 20% of the full data set. Top right: corresponding
SDR-NNP embedding. Bottom: training loss, validation loss and inferential training loss as a function of training effort (epochs).

test loss. The final training loss (rightmost point in the bottom
graph in Fig. 3) is equal to 0.0099. The test loss has a value of
0.0101. These values are close, implying that the trained neural
network generalizes well to unseen data.

Comparing the SDR and SDR-NNP embeddings in Fig. 3,
we see that SDR-NNP removes much of the segmentation
present in the SDR embedding, making the projection appear
more continuous – that is, the black, blue, and orange points
appear less separated into small “islands” in SDR-NNP as com-
pared to SDR. However, these plots show that SDR-NNP keeps
the essence of the data separation we are after, namely that the
star (black), galaxy (yellow), and QSO (blue) clusters appear
separated from each other. As we shall see next, this is precisely
the separation we need for classification.

Classification. As mentioned in Sect. 4.3, we have consid-
ered four different classifiers. We next focus on the results for
the k-NN classifier, which, as explained in Sect. 4.3, yielded
the best results from four tested classifiers. In the following, we
again used a stratified train–test split where 80% of the data were
used for training the classifier and 20% were used for testing,
respectively.

Figure 4 shows the k-NN classification results for projec-
tions of the CPzS, CPzG, and CPzQ data sets generated through
SDR-NNP trained on their corresponding SLMDS projections.
The left plots show the respective SDR-NNP projections (scat-
ter plots) atop of the decision maps generated by k-NN. That is,
all data points which project in a 2D area (decision zone) hav-
ing a given color will be assigned the label corresponding to that
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Fig. 4. Decision boundaries and confusion matrices for the SDR-aided classifiers trained on each of the three datasets presented in Table 1. Left:
decision boundaries of a k-NN classifier trained on the projection obtained by SDR-NNP for the CPzS (4a), CPzG (4b), and CPzQ (4c) data sets.
Right: confusion matrices for the three classifiers.
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Table 3. Post-consolidation performance of classification.

Consolidation method MAccuracy Class MPrecision MRecall MF1

STAR 0.997 0.970 0.983
Lowest entropy 0.919 GAL 0.989 0.940 0.964

QSO 0.985 0.639 0.775

STAR 0.997 0.966 0.982
Alternative 0.972 GAL 0.984 0.989 0.987

QSO 0.956 0.831 0.889

STAR 0.997 0.975 0.986
Majority Vote 0.980 GAL 0.980 0.993 0.987

QSO 0.936 0.868 0.900

color by the classifier. Since we use a k-NN classifier in the 2D
projection space, the decision zones are roughly equivalent to
Voronoi diagrams of the respective three sets of labels (STAR,
GAL, and QSO). Neighbor pixels in these 2D maps which have
different colors indicate decision boundaries, that is, locations
where the k-NN classifier changes the inferred label. We note
that more general (but more complex) methods exist for comput-
ing and visualizing decision maps (Wang et al. 2023; Rodrigues
et al. 2019). However, in our case, we do not need to use such
methods, since our classifier directly works on the 2D, rather
than the high-dimensional, data space. The images in the right
column of Fig. 4 show the confusion matrices for the respective
three classifiers.

The results in Fig. 4 show that k-NN is able to generate
both accurate and precise simultaneous classifications of stars,
galaxies and QSOs based on the SLMDS-NNP projections of the
various data sets. The highest accuracies of 97.9% are achieved
using the classifiers based on the CPzG and CPzQ data sets. Fur-
thermore, each of the trained models classifies stars with near
one hundred percent precision, and galaxies with 98% precision,
respectively. The most challenging class to classify is the QSO
class, for which we achieve a maximum precision of 94% by the
classifier trained using the CPzG data set. Additionally, the QSO
class also has the lowest completeness (or recall).

Consolidated results. To boost performance for QSO clas-
sification, we consolidate the results yielded by the three
SLMDS-NNP based k-NN classifiers, following the three con-
solidation methods introduced in Sect. 4.4.

Table 3 shows the results. The star and galaxy classification
performance is similar to that yielded by the three individ-
ual classifiers, but there is an improvement in terms of QSO
classification performance. We also see that the lowest-entropy
consolidation method yields the lowest completeness for the
galaxy and QSO classes, mainly due to the large number of
outliers selected by this method. This is due to the chosen
post-consolidation entropy threshold of 0.1.

The outliers selected by each of the consolidation methods
lie mostly along the decision boundaries shown in Fig. 4. Graphs
demonstrating this are not included in this article for space rea-
sons. The post-consolidation outlier class of the lowest entropy
method contains 26 stars, 427 galaxies and 246 QSOs. The large
number of galaxies is unsurprising, since 76% of the full data
set consists of galaxies; on the other hand, QSOs only consti-
tute 9% of the full data set. Part of this can be explained by the
way star and galaxy labels were assigned. As explained in LF20,
52% of the CPz sample had class label “UNKNOWN.” There-
fore, they decided to assign labels to these samples according to

the spectroscopic redshift of each object. Samples with a redshift
less than 0.0015 were assigned to the star class, while samples
with a higher redshift were assigned to the galaxy class. This
can cause QSOs to have been mistakenly labeled as galaxies,
explaining the relatively high number of post-consolidation out-
liers. Additionally, in the rare cases where galaxies are moving
toward us or away from us with a velocity less than 450 km s−1,
galaxies can become mislabeled as stars.

The classification performance metrics in Table 3 clearly
show that, while the lowest entropy consolidation results have
lower values for accuracy and recall, we achieve a higher pre-
cision for the QSO class compared to not using consolidation.
The higher precision is due to the entropy threshold, which
ensures fewer sources are misclassified by assigning them to
the outlier class. The alternative method is the second-best per-
forming method in terms of precision whilst retaining a high
completeness. With a precision of 95.6%, the alternative method
shows a marginal improvement over the individual SLMDS-
NNP based k-NN classifiers. Finally, the majority vote method
forms the best trade-off between precision and completeness for
QSO classification, as evident from its F1 score (MF1).

5.2. Physical interpretation of subclusters in SDR projections

Many SDR projections contain subclusters, for example, the
SLMDS projection shown in Fig. 2b. To determine whether these
subclusters convey any relevant information and to unravel the
overall structure of the SDR projections, we can cross-match the
objects in these subclusters with existing astronomical catalogs.
This process is akin to the way many of the traditional color
selection criteria in astronomy were developed; see for example
Daddi et al. (2004) and Patel et al. (2012).

Stellar subclusters. We first consider the subclusters
present in the stellar sample of the SLMDS projection of the
CPzS data set. To determine whether these subclusters are physi-
cal clumps or result from an artificial oversegmentation of the
projection (due to SDR’s LGC step, see Sect. 4.1), we cross-
match them with the astrophysical parameters data set of Gaia
DR3 (Gaia Collaboration 2016, 2023), generated from Gaia
data using the GSP-Phot module in the Apsis (Astrophysical
parameters inference system) pipeline (Creevey et al. 2023).
These parameters allow us to plot Hertzsprung–Russell (HR)
and surface gravity–effective temperature diagrams, shown in
Fig. 5. The vertical branch around 6000 K in both of these
plots is the giant branch. We observe that the subclusters not
only convey temperature information but also the spectral type
of the stars, by noticing a shift in effective temperature of stars
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Fig. 5. Analysis of the subclusters present in the SLMDS projection using astrophysical parameters from Gaia DR3 (Gaia Collaboration 2023;
Creevey et al. 2023). Left: SLMDS projection of the CPzS data set with selected subclusters, each marked by an individual color. HR (middle) and
surface gravity (log g) versus effective temperature (Teff) (right) diagrams. In these two plots, points are colored by their cluster, as given by the
SDR projection.

within the same subcluster as we move up in magnitude and
down in surface gravity. In addition, since LMDS is a distance-
preserving DR technique, we infer from Figs. 5 and 2b that stars
with a low effective temperature (in blue), which roughly coin-
cide with the M spectral class, have colors that most closely
match those of galaxies. The HR and surface gravity–effective
temperature diagrams both show that the sharpening step of
SDR has oversegmented the stellar data, since the sequences
in both of these diagrams are continuous. However, this exer-
cise demonstrates that the projection still retains important
astrophysical information, even if it is (perhaps unnecessarily)
oversegmented.

Galaxy subclusters. We now examine the structure of the
galaxy sample in the SLMDS projection of the CPzS data set. We
cross-match with the Galaxy Zoo 1 (GZ1) data release (Lintott
et al. 2008, 2011) and a catalog of stellar masses and star for-
mation rates from Chang et al. (2015). The former allows us to
determine whether there is a clear separation between early and
late-type galaxies in the projection similar to that found by Patel
et al. (2012) in the UV J diagram. The latter data set allows us
to investigate whether there is a clear distinction between SFGs
and quiescent galaxies.

The GZ1 data contains morphological classifications of
nearly 900 000 galaxies from SDSS DR6 and 7 (Adelman-
McCarthy et al. 2008; Abazajian et al. 2009), classified by
hundreds of thousands of volunteers. The task of each volunteer
was to assign each object to one of six categories. The cate-
gories are elliptical (which likely also includes lenticular, that
is, S0, galaxies), clockwise spiral galaxies, anti-clockwise spiral
galaxies, some other kind of spiral galaxy (for example edge-
on), star or unknown, and merger. The votes for each object were
subsequently combined into fractions which can be used for fur-
ther study. Lintott et al. (2011) used the techniques described by
Bamford et al. (2009) to remove the bias introduced by the sur-
vey limits of SDSS. The survey limits can cause small, faint or
distant galaxies to be misclassified as elliptical galaxies due to
spiral arms not being visible in SDSS images. To alleviate this
effect, Bamford et al. (2009) devised a technique to estimate this
bias and correct for it by assuming the morphological fraction
within bins of fixed galaxy size and luminosity to be constant
in redshift. Since redshift is a required parameter for this tech-
nique, objects needed to be spectroscopically observed by SDSS.
Lintott et al. (2011) supplemented the redshifts provided by

SDSS DR6 with those provided by DR7 which meant that 92%
of the objects in the main galaxy sample of GZ1 had spectro-
scopic redshifts. Furthermore, the debiasing procedure requires
a homogeneous distribution of a substantial number of galaxies,
that is, at least 30, to be present in each bin in the size ver-
sus absolute magnitude space at low redshifts. This limits the
debiasing procedure to objects with reliable r-band magnitudes,
sizes that are not outliers from the normal galaxy distribution
and redshifts between 0.001 and 0.25. The debiasing technique
used by Lintott et al. (2011) resulted in a set of three debiased
fractions: the debiased fractions of objects assigned to any of the
spiral (psp), elliptical (pel) and otherwise (i.e., star, merger, or
unknown) (px) categories.

We find a total of 15 412 matches with GZ1, of which 13 467
have spectroscopic redshifts between 0.001 and 0.25. The debi-
ased fractions for each sample in the SLMDS projection of
the CPzS data set are shown in Fig. 6. To check the validity
of the debiased vote fractions, we also include a plot showing
the redshifts of the various objects. From these plots we infer
that there is no clear indication that many of the subclusters
within the galaxy class produced by SDR convey anything mean-
ingful about the morphological type of the galaxies. However,
there seems to be a separation between late-type (i.e., spiral)
and early-type (i.e., elliptical) galaxies toward the top left cor-
ner of the SLMDS projection. Analogous to traditional color
selection, one can develop selection criteria to classify these
samples as spiral galaxies. Alternatively, one can apply cluster-
ing algorithms. However, the lack of OOS support of SDR and
the stochastic nature of LMDS make these methods impractical
for large-scale classification and irreproducible. To mitigate this
issue, we need an SDR-NNP model that is able to reproduce the
galaxy subclusters in the SDR embedding.

Furthermore, we note that there appears to be a redshift gra-
dient in the top left plot of Fig. 6. This gradient is likely caused
by the fact that the CPzS data set contains colors constructed
using apparent magnitudes as opposed to rest frame magnitudes.
This causes the same set of colors to probe different parts of
a galaxy’s spectrum when galaxies are located at different red-
shifts. Further exploration using rest frame colors might uncover
other underlying causes for the spread in the main galaxy cluster
but that is left for future work.

In addition to inspecting the morphologies of galaxies, we
also examine the specific star-formation rate (sSFR) (i.e., the
SFR per unit stellar mass of the galaxy), stellar mass, and dust
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Fig. 6. CPzS data set projected using SLMDS cross-matched with the GZ1 classifications. The top left plot shows the redshift of the galaxies
in GZ1. The classifications (i.e., top right, bottom left, and bottom right plots) are color coded by the debiased vote fractions of the spiral (psp),
elliptical (pel), and otherwise (i.e., star, merger, or unknown) (px) categories following from the debiasing technique of Bamford et al. (2009). For
reliable debiasing of the classifications, the redshift should be in the range 0.001–0.25 (Lintott et al. 2011).

luminosity of the galaxies in the CPzS data set. These parame-
ters were obtained by cross-matching with a catalog produced
by Chang et al. (2015) by fitting SEDs to the optical and MIR
spectra obtained by SDSS and WISE and are used to color-code
the projected galaxy data in Fig. 7. We find a total of 14 670
matches.

We observe a gradient in stellar mass similar to the redshift
gradient observed in the top left panel of Fig. 6. This can be due
to the selection functions of the various surveys included in the
CPz catalog which can cause low-mass galaxies to be underrep-
resented at higher redshifts. The dust luminosity (bottom panel
of Fig. 7) also shows a slight gradient in this projection, with
galaxies with a low dust luminosity being closer to the stellar

sample in the SDR projection. We do not find a coherent struc-
ture in the distribution of sSFR in the projection (top panel of
Fig. 7).

Comparing Figs. 5 and 6, we notice that the colors of ellip-
tical galaxies most closely resemble M stars in the CPz catalog.
This observation is motivated by the fact that LMDS is a distance
preserving DR method, implying that the 2D projection should
preserve distances between the color coordinates in the high-
dimensional space. Coupled with the sharpening step, we have
shown that SLMDS still preserves distances reasonably well –
see the value of the Shepard goodness metric in Table 2. Most
of the galaxies in the subcluster closest to the M-star subclus-
ter in Fig. 5 are ellipticals with a redshift ∼0.08. Furthermore,
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Fig. 7. CPzS data set projected using SLMDS cross-matched with a
catalog of sSFRs (top), stellar masses (middle), and dust luminosities
(bottom) of various galaxies composed by Chang et al. (2015).

Fig. 8. CPzS data set projected using SLMDS with the redshifts of the
various QSOs color coded.

they have sSFR < 10−11 yr−1, that is, they are quiescent. Addi-
tionally, they have stellar masses 1010–1011 M⊙, typical of ellip-
tical galaxies and relatively low dust luminosities of ∼109 L⊙.
These properties suggest that these galaxies are best repre-
sented by an old stellar population with little dust obscuration in
the NIR.

Examining Table 1, we note that many of the colors in the
CPzS data set are comprised of NIR broadband magnitudes.
Therefore, the projection likely reflects mostly NIR color rela-
tions. From Fig. 14 in Verro et al. (2022), which provides the
contribution of red giant branch (RGB) stars and thermally
pulsing asymptotic giant branch (TP-AGB) stars to the K-band
luminosity in various single stellar population (SSP) models
using the X-shooter Spectral Library, we see that, for old stellar
populations with ages >∼ 2 Gyr, the K-band luminosity is mostly
dominated by RGB stars, which are K and M giants. This might
explain why these elliptical galaxies closely resemble M stars
in terms of their NIR colors and why they are placed closely
together in the SLMDS projection.

QSO subclusters. Finally, we examine the redshift distri-
bution of the QSO sample in the SLMDS projection of the CPzS
data set. Figure 8 shows this projection with the redshifts color
coded. We observe a redshift gradient similar to the one observed
for the main galaxy sample in the top left panel of Fig. 6 with
most low-redshift QSOs (z ≤ 1) overlapping with the galaxy
cluster. In analogy to the galaxies, this gradient is likely caused
by the set of colors probing different parts of the QSO’s spectral
energy distribution (SED).

6. Summary and conclusions

In this paper we aimed to answer the question whether broadband
colors can be used to accurately and simultaneously classify
stars, galaxies and QSOs; specifically, we looked at the added
value of dimensionality reduction (DR) methods as tools to
assist the aforementioned classification process. For this, we
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proposed to precondition the high-dimensional data, consisting
of broadband colors, to sharpen the high-dimensional data clus-
ters, to increase the corresponding separation between clusters in
a 2D projection constructed with DR methods. For this, we used
SDR, which improves the cluster separation of the well-known
LMDS projection method, and SDR-NNP, which improves the
computational performance and adds OOS ability to the SDR
method. We next showed that such an enhanced 2D separation
can be obtained and, importantly for our goal, this separation
helps training relatively simple classifiers (k-NN) in the 2D
projection space to achieve highly accurate results in terms of
labeling stars, galaxies, and QSOs.

We considered three data sets, the CPzS, CPzG, and CPzQ,
constructed from the CPz catalog, which contains data from sev-
eral surveys. The CPz catalog was introduced by Fotopoulou &
Paltani (2018) and later revised by Logan & Fotopoulou (2020).
Each of the data sets are composed of unique sets of colors
(Table 1), which lie mainly in the NIR, and are optimized for
the three binary classification problems, that is, star/non-star,
galaxy/non-galaxy, and QSO/non-QSO.

Our results show that SDR (and SDR-NNP) can be used to
consistently produce projections with a high degree of cluster
separation between stars, galaxies, and QSO clusters – see Fig. 4.

To quantitatively evaluate the degree of cluster separation,
we used two cluster separation metrics – distribution consis-
tency and neighborhood hit. To further evaluate how well our
projections preserve the data structure – and thus if we can
use such projections to extract reliable astrophysical informa-
tion – we examined the projections’ neighborhood and distance
preservation metrics. Results for trustworthiness and continu-
ity show that, while the SDR sharpening step changes the
structure of the high-dimensional data, neighborhood relations
are still well-preserved. Furthermore, the Shepard goodness, a
distance-preservation metric, shows that global distances are
also well-preserved by SDR (up to a monotonic scaling). We next
investigated the structure of the projection of the CPzS data set
generated using sharpened LMDS and find that we can unravel
structures present in it and obtain results similar to those derived
from color–color diagrams.

To further address two key limitations of the SDR projec-
tion method – its lack of out-of-sample (OOS) ability, which
makes its results stochastic; and its low computational scalabil-
ity – we used deep learning to emulate the projections produced
using SDR. Our methods also allow one to experiment with
the embeddings, for example, applying SDR-NNP to k-corrected
galactic colors to determine whether the main galaxy cluster
indeed becomes more compact (see Sect. 5). On the positive
side, SDR-NNP is simple to construct, easy to train, and yields
good cluster separation between the star, galaxy, and QSO sam-
ples, so that one can use the resulting 2D projections to construct
high-quality classifiers for stars, galaxies, and QSO samples with
minimal effort. On the negative side, SDR-NNP fails to fully
reproduce the precise segmentation within the star, galaxy, and
QSO samples. From the training history plotted in Fig. 3, we see
that, to preserve such fine-structure, larger and/or more complex
neural networks are needed. We reserve the exploration of such
neural networks for future work.

In this work we mainly focus on three data sets mostly
composed of different NIR broadband colors, all derived from
the CPz catalog. Future work is needed to examine how SDR-
aided classification performs on different data sets containing,
for example, only optical broadband colors. In addition, one may
be justified to investigate how SDR-aided classification can be

applied to individual large astronomical surveys, which usually
only have a smaller set of filters over a more limited wavelength
range.

To classify stars, galaxies and QSOs, we proposed a novel
approach that uses only the information present in the 2D projec-
tion space. We showed that, due to the high separation produced
by SDR in data space, a relatively simple classifier, k-NN, can
already yield very good performance using only this 2D space,
as tested on the CPzS, CPzG, and CPzQ data sets. To improve
QSO classification performance, we consolidated the results
using three consolidation methods. We achieve the highest pre-
cision for the QSO class using the lowest entropy consolidation
method, with 99.7%, 98.9%, and 98.5% precision for classi-
fying stars, galaxies, and QSOs, respectively. In comparison,
Logan & Fotopoulou (2020) achieve a respective precision of
99.6%, 98.4% and 94.9% using HDBSCAN and the alterna-
tive consolidation method. Separately, Stern et al. (2012) were
able to identify Spitzer MIR AGN candidates with 95% preci-
sion using a simple criterion based on NIR colors developed
using WISE data. We achieve the highest completeness for
the QSO class using the majority vote consolidation method,
with 97.5%, 99.3%, and 86.8% completeness for classifying
stars, galaxies, and QSOs, respectively. In comparison, Logan
& Fotopoulou (2020) achieve completenesses of 97.8%, 99.0%,
and 88.1%, respectively, using highest-probability consolidation,
while Stern et al. (2012) obtained a MIR AGN completeness of
only 78%.

Summarizing the above, our SDR-aided star, galaxy, and
QSO classification method produces results on a par with,
or even (slightly) exceeding, the results obtained using HDB-
SCAN by Logan & Fotopoulou (2020) in terms of precision
and completeness. Furthermore, our method outperforms tradi-
tional color selection techniques such as presented by Stern et al.
(2012) in terms of precision and completeness whilst retaining
interpretability. Compared to HDBSCAN, SDR-aided classifi-
cation has a number of advantages. Firstly, it has OOS ability
through the use of SDR-NNP models. This ability makes it more
scalable than HDBSCAN, which needs to be rerun every time
new data becomes available. Additionally, one can apply SDR
on a small representative subset of the full data set and then
train an SDR-NNP model to project the rest of the data. More-
over, SDR-aided classification is less of a “black-box,” as it is a
supervised-learning method. This allows the user to inspect the
decision boundaries in the projections and determine whether
the classification works properly. We have also demonstrated
that one can validate whether SDR projections are accurate
by computing various projection performance metrics. Finally,
we have shown that our SDR-aided classification can be inter-
preted to reveal astrophysical properties of the classified objects,
something that appears difficult with HDBSCAN. An example
of another application of SDR-aided classification allowing for
astrophysical interpretation is the analysis of GALAH+ DR3
(Buder et al. 2021) and Gaia DR3 (Gaia Collaboration 2023)
data to understand the formation of the Milky Way’s halo (Kim
2023).

The code developed for this research is written in Python
and consists of two modules. The first module, called “pySDR,”
wraps the code developed by Kim et al. (2022b) to apply
Sharpened Dimensionality Reduction in Python. The second
module, named “SHARC” (SHArpened Dimensionality Reduc-
tion & Classification), is used to apply all the analysis pre-
sented in this paper. This includes computing performance
metrics, SDR optimization, training a neural network to apply
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SDR, performing classification, and consolidating classification
results4.
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