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Abstract

Scientific visualization and simulation steering and
design are mostly addressed by non object-oriented
(OO) frameworks. Even though OO powerfully and
elegantly models many application areas, integration
of OO libraries in such systems remains complex. The
power and conciseness of object orientation is often
lost at integration, as combining OO and dataflow con-
cepts is very limited. We propose a visualization and
simulation system with a generic object-oriented way
to simulation design, control and interactivity, merg-
ing OO and dataflow modelling in a single abstraction.
Advantages of the presented system over similar ones
are illustrated by a comprehensive set of examples.

1 Introduction

Better insight in complex simulations has led to
the advent of computational steering systems, which
change, monitor the simulation parameters and di-
rectly manipulate the visualized data. Dataflow sys-
tems add to this interactive process design: networks
of computational modules exchanging data to perform
the desired task are created by connecting icons in a
visual programming tool. Object-oriented (OO) de-
sign is, on the other hand, the favourite approach to
building extensible and reusable component libraries.
Making the components of such libraries available to
the interactive process design in dataflow steering sys-
tems would give the end-users the conciseness, ele-
gance and reusability of OO code, often appreciated
only by code designers. Many systems offer steering,
visualization, and code integration, but no single one
addresses all these and the extra requirement of inter-
active integration and component manipulation from
existing OO libraries in a unitary, easy to learn way.

We addressed the above by designing VISSION, a
generic environment for VIsualization and Steering
of SImulations with Objectual Networks. VISSION

is founded on a new abstraction which fully merges
the dataflow concept [2, 4] with OO modelling [3,
1, 12]. Existing/new OO code integration is almost
transparent, especially since VISSION automatically
constructs its GUIs from the given code (extending the
approach presented in [5]). This paper presents VIS-
SION from a user perspective, its OO design is detailed
in [6]. Section 2 lists the main requirements of generic
simulation systems and the main limitations of exist-
ing ones. Section 3 shows how VISSION fulfills these
requirements. Applications of VISSION are presented
in Section 4. We conclude the paper with further re-
search directions.

2 Background

We target the needs of three user groups: end-
users (EU) need to steer simulations via virtual cam-
eras, direct manipulation, and GUI widgets. Ap-
plication designers (AD) build applications for vari-
ous EU domains and thus need generic (interactive)
tools to select and assemble domain-specific com-
ponents [10]. Component developers (CD) need to
build/extend/reuse the components easily (not con-
strained by the target environment). Often the same
person takes all three roles (e.g. a researcher who
writes own code as a CD, builds experiments as
an AD, and then monitors / steers the final ap-
plication as an EU). The cycle repeats, (EU in-
sight triggers application redesign, which may ask
for new/specialized components), so role switching
should be easy. Hardly any visualization/simulation
system covers all these demands and has a simple, yet
generic solution for the role transition. Turnkey sys-
tems excel in custom tools/GUIs for specific tasks, are
easy to learn and use, but are by definition not ex-
tensible. OO libraries [1, 3, 12] are highly extensi-
ble, but need manual programming of data flows and
GUIs. Dataflow systems using visual programming



[2] are extensible and customizable, but still have lim-
itations. Few support both by-value and by-reference
data transfer between modules (limitation L1), even
fewer allow user-defined types for the modules’ inputs
and outputs (limitation L2). Many systems use dif-
ferent languages for module implementation, user in-
terface, scripting, and dataflow control, making them
hard to learn and use (limitation L3). Constructs from
an (OO) language often don’t map to another, so CDs
must use the languages’ common subset(limitation
L4) [4, 3, 2], or manually adapt their code (limitation
L5). The set of system GUI widgets is often not exten-
sible (e.g. to edit directly new data types) (limitation
L6). L5 and L6 imply that GUI construction can not be
automated (limitation L7). Few systems support mod-
ule inheritance, i.e. creating new modules by reusing
and/or combining existing ones and writing only the
new features (limitation L8). Another class of appli-
cations such as tracking and steering systems enhance
monolithic simulations by manual insertion of ’system
calls’ [11, 8, 7] and thus provide no support for the
CD, as they have no ’component’ notion.

Overall, simulation and visualization software can
be seen as spanning a continuum between two ex-
tremes (see Fig. 1). At one end of the spectrum,
(object-oriented) application libraries offer the ’pure’
computational code blocks with full control on cus-
tomization and extensibility by using the program-
ming language mechanisms of their design language.
Libraries are however not directly usable by end users,
as they have to be manually provided with e.g. GUIs
and control flow in an end-application context. At
the other extreme, turnkey systems are directly (and
easily) usable by end-users via specialized GUIs and
other interaction policies. Their extensibility and cus-
tomizability is however quite limited, as they are usu-
ally designed to cover specific, fixed application do-
mains. The challenge we see is to provide a sys-
tem which covers the entire continuum, offering vari-
ous mechanisms (extensibility, customizability, inter-
active control) for various user classes (component de-
signers, application designers, end users respectively).

 Application                  Turnkey
OOLibraries                   Systems

user interaction features +-

customizability / extensibility+ -

Figure 1: Application systems trade-offs

3 Overview of VISSION

Integration of dataflow/visual programming with
component OO modelling comes naturally as all
previous demands are fulfilled complementarily
by dataflow systems (interactivity,visual program-
ming,GUI construction,steering) and OO libraries

(customizability, extensibility,high-level modelling).
Some systems [2],[4] take this path, but none merges
dataflow and OO concepts in a single concept. The
listed problems are merely alleviated. VISSION’s
fundamental concept, called metaclass, completely
merges OO and dataflow modelling, and addresses
the presented demands as follows.

From the OO modelling viewpoint, modules are
implemented as C++ classes, organized by the CD in
application libraries. From a dataflow perspective,
a module (called a metaclass) enhances a C++ class
with a dataflow interface, i.e. a set of typed input and
output ports and an update function. The ports and up-
date function are specified in terms of the C++ class’s
public part: when a port is read/written, a C++ method
is called to read/write the port’s data. Ports are typed
by the C++ types of their underlying members. Meta-
classes are object-oriented entities, so they can inherit
from each other, thus enabling the reuse of existing
metaclasses to create new ones (addresses limitation
L8). Besides ports, metaclasses can hold help data and
GUI preferences. All information used to ’promote’
a C++ class to be loadable by VISSION resides in its
metaclass. Our solution differs fundamentally from
most systems forcing users to insert system calls in
their code [2, 7, 8] or to inherit from a system base
class [1], [3] and thus addresses limitation L5.

Figure 2 exemplifies the above for two C++ classes
and their metaclasses: the IVSoLight metaclass has
three inputs for a light’s color, intensity, and on/off
state, implemented by its C++ class’s methods with
similar names, and of types IVSbColor (a RGB
triplet), float, and respectively BOOL. IVSoDirection-
alLight adds to IVSoLight the light’s direction, of type
IVSbVec3f (a 3D vector). Suitable widgets are au-
tomatically constructed from the ports’ types (3 float
typeins for the vector and the RGB color, a toggle
for the boolean, and a slider, as the preference spec-
ified, for the float). Separating this information from
the C++ class lets us enhance existing classes with
dataflow/GUI features non-intrusively (addresses L4).
In VISSION the user can load the desired metaclass li-
braries, browse a palette with the loaded metaclasses,
create new nodes (i.e. instances of metaclasses), con-
nect, clone, or delete existing nodes in a GUI similar to
[2, 4] (Fig. 4). The main differences between VISSION

and these systems appear as we look at the dataflow
mechanism.

3.1 The Dataflow Mechanism

Our dataflow mechanism is based on the full typing
offered by C++, implemented dynamically: data can
be passed between modules by value, by pointers or
by reference, and can be of any type (addresses limi-
tations L1 and L2). The data passing facilities we offer
are practically limited only by language mechanisms,



class IVSoLight 
{ public:
      BOOL       on;
      void           setIntensity(float);
      float           getIntensity();
      void           setColor(IVSbColor&);
      IVSbColor getColor();
};

class IVSoDirectionalLight: public IVSoLight
{ public:
      void            setDirection(IVSbVec3f&);
      IVSbVec3f getDirection();
};

node IVSoLight
{ input:
     WRPort "intensity" (setIntensity,getIntensity) 

                 editor: Slider
     WRport "color"       (setColor,getColor)
     WRport "light on"   (on)
}

node IVSoDirectionalLight: IVSoLight
{ input:
     WRPort "direction" (setDirection,getDirection)
}     

Metaclasses: C++ classes:

Figure 2: C++ class hierarchy and corresponding metaclass hierarchy

output port

input ports

   metaclass name
IVSoDirectionalLight

instance name
         obj0

Figure 3: Left: Visual icon for a metaclass. Several graphical signs encode the ports’ C++ types, by value/by ref-
erence transfer, and other attributes. Right: automatically built GUI for the metaclass

not by system mechanisms. This offers not only much
greater flexibility as compared to other systems which
implement a limited set of data passing facilities, but
also a formal comprehensive framework for data pass-
ing, as described by C++’s language mechanisms.

A port of type A can thus connect to one of type B
if the C++ type A conforms to the C++ type B by triv-
ial conversion, subclass to baseclass, constructors, and
conversion operators. The user interactively builds
networks having the same type checking and freedom
he would enjoy in a C++ compiled program. This
powerfully generalizes the dataflow typing used by
other systems: Oorange, based on Objective C, offers
by-reference but no by-value transfer. AVS/Express
limits data types to its own V language which is far less
powerful than C++ (it lacks constructors, destructors
and multiple inheritance). Compiled tools (vtk, Inven-
tor) are only statically extendable, as all types must be
known at compile time, making them unsuitable for a
dynamic, interactive modelling environment.

VISSION offers node groups containing subgraphs
up to an arbitrary depth, which can be interac-
tively constructed by adding nodes and ports to an
empty group. We generalize Oorange’s nodes, AVS’s
macros, and Inventor’s node kits by offering the pos-
sibility to create group types, i.e. ’subnetwork tem-
plates’ which can be saved in libraries and instantiated

later, exactly as modules can. From the application de-
signer’s perspective, group types and metaclasses are
identical, i.e. they are manipulated identically in the
network editor and the library browser. The difference
between group types and metaclasses appears at the
component designer level: while metaclasses require
writing C++ code and the metaclass specification (and
thus some knowledge of C++ / metaclass design and
language syntax), group types can be designed inter-
actively and thus offer a programming-free manner to
create new types by combining existing ones.

Finally, VISSION supports networks having loops
with no distinction between up and down stream di-
rections(as compared to [2]). This is a natural way to
describe iterative processes or to implement direct ma-
nipulation as dataflows from camera modules to other
data processing modules.

VISSION consists of three main parts: the object
manager, the dataflow manager, and the interaction
manager (Fig. 5), based on two lower level compo-
nents: the C++ interpreter and the library manager,
communicating by sharing the dataflow graph. The
element enabling us to elegantly and easily remove
the limitations similar systems have is a C++ inter-
preter [13] which constitutes VISSION’s kernel ele-
ment. Port connections/disconnections, data transfer
between ports,update method invocation, GUI-based
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Figure 4: The network editor and the dataflow graph. Nodes are created from metaclasses shown in the library
manager’s GUI.

inspection and modification of ports, automatic GUI
construction, and interpreted scripts are uniformly im-
plemented as small C++ fragments dynamically sent
to the interpreter. The interpreter cooperates with
the library manager to dynamically load application
libraries containing metaclasses and their compiled
C++ classes, with the object manager to create and de-
stroy nodes, and with the interaction manager to build
and control the GUIs. All application code is executed
from compiled classes, leaving a very small C++ code
amount to be interpreted. We estimated the perfor-
mance loss as compared to a 100% compiled system
to be under 2%, even for complex networks.

3.2 The GUI Interactors

GUI interaction panels (shortly interactors) are
provided to examine and modify the nodes’ ports, con-
nect or disconnect ports, or perform actions on nodes.
Interactors create the third object hierarchy in VIS-
SION, isomorphic with the C++ class and metaclass
hierarchies. The widgets of an interactor are based on
their ports’ types: a float port can be edited by a slider,
a char* port by a textual type-in, a three-dimensional
VECTOR port by a 3D widget manipulating a vec-
tor icon in 3-space, a boolean by a toggle button, etc
(Fig. 6, 3). The set of GUI widgets for basic types can
be extended by the AD with widgets for user-defined
types. This allowed us to provide GUI widgets for
some types of specific libraries, such as 3D vectors,
colors, rotation matrices, light values, etc. This ad-

dresses limitation L6. VISSION automatically asso-
ciates widgets with port types by choosing from the
given widgets the one whose type best matches the
port’s type. The best match rules we designed for se-
lecting a widget to edit a given type are based on a dis-
tance metric in type space: if a widget specially de-
signed for a given type exists, it will be used to edit
that type, else VISSION selects a widget whose type
can be converted to the type to edit by a minimal num-
ber of conversions, similarly to the conversion rules of
the C++ language. If no custom widget is available for
a given type, VISSION uses a generic widget that offers
a text-based editor for any C++ type.

The AD can thus customize the look of a GUI, ei-
ther by creating new GUI widgets or by associating the
existing ones with other types (e.g. prefer a float type-
in instead of a slider for a float port), and still have the
interactors built automatically (this addresses limita-
tion L7). Note in this sense that widgets can be de-
signed after and independently of the types they edit,
An application’s GUI can thus be enriched with a bet-
ter GUI even after all its components have been de-
signed, and even at run-time, by dynamically loading a
new widget library. After the new widgets are loaded,
the EU can customize the GUIs of his running appli-
cation simply by clicking on its widgets and selecting
other compatible widgets to be used instead.

Finally, the EU can type commands directly in C++
in a GUI window to be interpreted (Fig. 6), an inter-
action mode preferred by some users over the wid-
get metaphor, or load and execute C++ source code.



This allows the EU to write animations based on ar-
bitrarily complex control sequences directly in C++
without having to learn a new animation language (see
Fig 7c for an example of a finite element simulation
based animation). Remark that the choice for C++
as a scripting and command-line language imposes
no higher learning burden on the average end user
as compared to systems using simpler run-time lan-
guages. Although using C++ for designing complex
applications and frameworks is more complex and has
a slower learning curve than e.g. using C or Fortran,
our case is different: using C++ as a scripting lan-
guage means that only its simplest features will actu-
ally be employed (e.g. control structures such as loops
and tests), which are no more complex to write than
the ones offered by any scripting language. However,
advanced users can directly employ the more sophisti-
cated language features of C++ if they desire. Limita-
tion L4 is thus addressed, as C++ is VISSION’s single
language for application class coding, dataflow typ-
ing, and run-time command-line interaction.

4 Applications

The following presents some of the applications we
have built with VISSION.

4.1 Scientific Visualization

We chose the Visualization Toolkit (vtk) [3], one of
the most powerful freely available scientific visualiza-
tion libraries, and integrated it into VISSION. As a ren-
dering back-end we fully integrated the Open Inventor
library. The EU can interactively pick any vtk or In-
ventor class, instantiate it, and connect it with other
nodes, without knowing C++ or even knowing they
are written in C++. We wrote a single ’adapter’ class
of around 120 C++ lines to connect all of Inventor’s
rendering and direct manipulation (superior to vtk’s
rendering, which we didn’t use) to the vtk pipeline.
Scalar, vector, tensor, and imaging visualizations were
created with the vtk-Inventor metaclasses (Fig. 7 a,i,g,
Fig 7 f, Fig 7 e, respectively Fig 7 j) with the same ease
as if using AVS or a similar system. The integration
of both libraries as visual components required writ-
ing around 320 metaclasses, of an average length of 6
text lines, and absolutely no change to the two libraries
(of which, Inventor was not even available as source
code).

4.2 Global Illumination

Radiosity simulations often requiredelicate tuning
of many input parameters, and thus can not be used as
black box pipelines. Testing new algorithms requires
also the configurability of the radiosity pipeline. Non-
programming experts however rarely have these op-
tions in current radiosity software. We addressed this

by including a radiosity system written in C/C++ by
us before VISSION was conceived, into VISSION. Its
output (3D mesh with vertex intensities) was easily
passed for visualization to Inventor by the creation
of an ’adapter’ module. Users can now change all
the ’hidden’ parameters along the radiosity pipeline,
easily insert new algorithms by subclassing (e.g. for
sharp shadow detection [14]), and visually monitor the
process convergence (Fig. 7 d).

4.3 Finite Element Simulations

Finite element (FE) software mostly comes as
packages providing interaction by a batch file in-
put/output. We addressed this limitation by inte-
grating our FE C++ library [5] in VISSION. Re-
searchers can now interactively model and solve FE
problems, experiment with different numerical tech-
niques, and monitor error and convergence rates. Ex-
amples include 3D diffusion problems (Fig. 7 a), time-
dependent free convection problems (Fig. 7 c), wave
simulations (Fig. 7 h), or industrial steering turn-key
software [9]. (Fig. 7 b). Visualization is performed
again by the Inventor library.

5 Conclusion

VISSION is a generic environment for simulation
specification, monitoring, and steering which removes
many limitations of similar systems by combining
the powerful, yet so far independently used OO and
dataflow modelling concepts. We have enhanced the
traditional dataflow mechanism to an object-oriented
one by introducing the metaclass concept, which ex-
tends C++ classes with dataflow semantics in a non
intrusive manner. Adding application code is greatly
simplified as compared to similar systems: appli-
cation library design is clearly separated from the
system-specific dataflow information held in the meta-
classes. We have provided a mechanism for auto-
matic, modular GUI construction based on the OO
metaclass concept, and a way to add type-specific,
user-defined widgets, based on OO typing. Compo-
nent designers included libraries for scientific visu-
alization and rendering (420 classes), radiosity (18
classes) and finite elements (25 classes) in VISSION

in a short time (approximately 2 months, 5 days, 3
days respectively). Application designers and end
users could use VISSION in a matter of minutes. We
aim to extend VISSION’s OO aspects with features
such as class hierarchy browsing, automatic docu-
mentation, and a generalization of the dataflow model
to include also code flow, that is to have modules
synthesize, exchange and execute C++ code frag-
ments, creating multiple new possibilities for model-
ing simulations. While the implementation of code
flow is almost trivial in VISSION due to its C++ in-
terpreter engine capability to parse and execute C++



Interaction ManagerC++ Interpreter

Editor Widnow

"type"

Center

Name
Value

ROTOR  r1

12.45
-123.2
  60.66

Editor Widnow

Editor Widnow

End user

Dataflow Graph

Dataflow Manager

Library  Manager

Application libraries

Application developer

Figure 5: Architecture of the simulation and visualization system

Figure 6: GUI widgets for interaction with metaclasses

code fragments dynamically, a formal framework of
the code flow paradigm still needs to be developed.
Besides this, we try to include other application ar-
eas as computer vision interfaces and feature track-
ing. More references on VISSION ar available online,
at http://www.win.tue.nl/math/an/alext.
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Figure 7: Visualizations and simulations performed in the VISSION environment


