
ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

Graph Edge Bundling by Medial Axes

Ozan Ersoy
Institute Johan Bernoulli, University of Groningen

o.ersoy@rug.nl

Alexandru Telea
Institute Johan Bernoulli, University of Groningen

a.c.telea@rug.nl

Abstract

We present a new method for bundling edges of general graphs,
based on 2D medial axes of edge sets which are similar in terms
of position. We combine edge clustering, distance fields, and 2D
medial axes to progressively bundle general graphs by attract-
ing edges towards the centerlines of level sets of their distance
fields. Our method allows for an efficient GPU implementation.
We illustrate our method on several large real-world graphs.

1 Introduction

Graphs are among the most important data structures in in-
formation visualization. Classical visualization metaphors for
graphs include node-link diagrams [16], matrix plots [29], and
graph splatting [30]. For specific types of graphs, such as hier-
archies (trees), additional methods exist such as treemaps.

As the size of a graph increases, node-link visualizations are
challenged by clutter, i.e. unorganized groups of nodes and
edges onto small screen areas. To reduce clutter, and also help
the simplified depiction of large graphs with an emphasis on
structure, several methods have emerged [11], such as edge
bundling. Bundling starts with node positions, either given or
computed by a layout algorithm. Edges found to be close in
terms of graph structure, endpoints position, data attributes, or
combinations thereof, are drawn as tightly bundled curves. This
trades clutter for overdraw and produces images which better
emphasize the graph structure. Bundles can be rendered using
various effects such as blending or shading [15, 20, 27].

In this paper, we present a novel approach for bundling gen-
eral graphs. We combine edge clustering, distance fields, and
2D medial axes to construct bundled layouts by iteratively at-
tracting edges towards the centerlines of level sets of their dis-
tance fields. Besides clustering, we work image-based, with
an efficient implementation in graphics hardware. Our method
creates strongly branching (organic-like) bundles which always
have a tree structure. This type of look emphasizes how several
edges ’join’ together into, or split from, main structures.

In Section 2, we review related work on edge bundling. Sec-
tion 3 presents our new algorithm. Section 4 details implemen-
tation. Section 5 presents examples on large real-world graphs.
Section 6 discusses our method. Section 7 concludes the paper.

2 Related work

Reducing clutter in graph visualization is organized as follows.
Graph simplification techniques reduce clutter by simplify-

ing graphs prior to layout e.g. by grouping strongly connected

subgraphs into so-called metanodes [1, 2]. This reuses existing
node-link layouts out of the box, but can be sensitive to simpli-
fication parameters, which further depend on the type of graph
being processed. Also, the simplification events yield a set of
discrete graphs rather than a smooth exploration scale [20]. Fi-
nally, simplification changes node positions (collapse to metan-
odes), which is unwanted when positions encode information.

Edge bundling techniques trade clutter for overdraw, by rout-
ing geometrically and semantically related edges along similar
paths. This helps visually finding groups of nodes related to
each other by groups of edges (the bundles). Dickerson et al.
merge edges by reducing non-planar graphs to planar ones [9].
Holten pioneered edge bundling for compound (hierarchy-and-
association) graphs by routing edges along the hierarchy layout
using B-splines [14]. Gansner and Koren use area optimiza-
tion metrics [13] to bundle edges in a circular layout similar
to [14]. Dwyer et al. use curved edges in force-directed lay-
outs to minimize crossings, which creates bundles [10]. Force-
directed edge bundling (FDEB) creates bundles by attracting
control points on close edges [15]. FDEB can be optimized us-
ing multilevel clustering techniques [12]. For directed graphs,
flow maps use a binary clustering of nodes to route edges [21].
Several methods use control meshes to route curved edges,
e.g. [22, 31]; a Delaunay-based extension called geometric-
based edge bundling (GBEB) [7]; and ’winding roads’ (WR)
which use Voronoi diagrams for 2D [20] and 3D [19] layouts.

3 Algorithm

The medial axis, or skeleton, of a 2D shape is a curve locally
centered with respect to the shape’s boundary [6]. Skeleton
branches capture well the topology of elongated shapes [18, 24].
Hence, if we could create such shapes from sets of graph edges,
their skeletons could be suitable locations for bundling. To this
end, our proposed skeleton-based edge bundling method is as
follows:

1. cluster edges into groups, or clusters, Ci which have strong
geometrical and optionally attribute-based similarity;

2. for each cluster C, compute a thin shape Ω surrounding its
edges using a distance-based method;

3. for each Ω, compute its skeleton SΩ and feature transform
of the skeleton FTS;

4. for each cluster C, attract its edges towards SΩ using FTS;

5. repeat from step 1 or 2 to reach the desired bundling level.

1

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

We start with an unbundled graph G = (V,E) with nodes V
and edges E. Node positions vi ∈ R2 come either from input
data or from laying out G with any existing method e.g. spring
embedders [16]. Edges ei ∈ E are sampled as a set of points
connected by lines. The start point es

i and end point es
i of an

edge are the positions of the nodes the edge connects. Edge
points may come from input data, e.g. when bundling a graph
with explicit edge geometry, or by uniformly sampling the line
segments (es

i ,e
e
i). Our algorithm iteratively updates these edge

points to bundle edges, as explained next.

3.1 Clustering

To obtain elongated 2D shapes, needed for our bundling de-
scribed next in Sec. 3.3, we first cluster edges using a similar-
ity metric which groups same-direction, spatially close, edges,
using the clustering method described in [27]. We have tested
several clustering algorithms: hierarchical bottom-up agglomer-
ative (HBA) clustering using full, centroid, single, and average
linkage, and k-means clustering, both with Euclidean and sta-
tistical correlation (Pearson, Spearmans rank, Kendalls τ) dis-
tances. HBA with full linkage and Euclidean distance given by

d(ei,e j) =

√
N

∑
k=1
‖eik− e jk‖2 (1)

where eik,k∈1,N,N∈[50,100] are uniformly spaced along the edges
gives clusters with geometrically close edges which naturally
follow the graph structure. d can be easily adapted to use edge
data attributes [27]. Using the same N for all edges removes
edge length bias. HBA delivers a dendrogram D= {Ci}with the
edge set E as leaves and similarity (linkage) values d(C), equal
to the full linkage of cluster C increasing from root to leaves.
We next do a partition P = {Ci ∈ D|d(Ci)< δ} of E based on a
similarity value δ , set as explained further in Secs. 3.5 and 4.

3.2 Shape construction

For any shape Φ ⊂ R2, we define its distance transform DTΦ :
R2→ R+ as

DTΦ(x ∈ R2) = min
y∈Φ
‖x−y‖ (2)

For a cluster C = {ei}, denote the set of polylines correspond-
ing to its edges ei by ∆(C)⊂ R2. Given a distance value ω , we
construct a compact 2D shape Ω⊂ R2 surrounding ∆(C) as

Ω = {x ∈ R2|DT∆(C)(x)≤ ω} (3)

where DT∆(C) is the distance transform of the drawing ∆(C) of
C. The shape’s boundary ∂Ω is the level set of value ω of
DT∆(C). This is equivalent to dilating ∆(C) with a distance ω

set to a small fraction (e.g. 0.05) of the bounding box of G.

3.3 Skeleton construction

Given a shape Ω computed from an edge cluster, we next com-
pute its skeleton SΩ defined as

SΩ = {x ∈Ω|∃y,z ∈ ∂Ω,y 6= z,‖x−y‖= ‖x− z‖= DT∂Ω(x)}
(4)

i.e. the set of points in Ω which admit at least two different
and closest points on ∂Ω, also called feature points. Given S,
we now compute its so-called one-point feature transform FTS :
R2→ R2, defined as

FTS(x) = {y ∈ S|DTS(x) = ‖x−y‖} (5)

i.e. one of the feature points of x. The skeleton is the identity
set of FTS, i.e. ∀x ∈ S,FTS(x) = x. Note that Eqn. 5 uses the
distance transform DTS of the skeleton S, and not the distance
transform DT∂Ω of the shape. We compute distance transforms,
one-point feature transforms, and skeletons in discrete image
(screen) space. This allows efficient implementation (Sec. 4)
and also using the skeleton for edge bundling, as described next.

3.4 Edge attraction

We start with some observations. First, a cluster C = {ei} con-
tains only spatially close edges. By construction, the skeleton
S of a cluster is locally centered with respect to the (similar)
edges in that cluster, i.e. a good candidate to bundle towards.
Secondly, FTS(x)−x gives, for each point x ∈R2, the direction
vector from x to the closest skeleton point to x, i.e. the direc-
tion to bundle towards. We use these observations to bundle the
edges ei ∈C by attracting them towards S as follows.

First, we compute all branch termination points, or tips, T =
{ti} of S using a simple and efficient 3×3 pixel template-based
method [17]. Next, we compute all skeleton paths Π = {πi ⊂
S} between any two tips ti and t j. Paths are stored as pixel
chains and are found using depth-first search from each ti on
the skeleton pixel-adjacency-graph. For each ei ∈ C with start
and end points es

i and ee
i respectively, we select a skeleton path

π(ei)∈Π so that {FTS(es
i),FTS(ee

i)}⊂ π(ei), i.e. a path passing
through the feature points of both edge end points. If there are
several such paths in Π, we pick any one of them, the particular
choice having no further impact.

We now use π(ei) to bundle ei along the skeleton, as follows.
Consider a point x ∈ ei located at arc-length distance λ (x) from
es

i . We move x towards FTS(x) with a distance which is large if
x is far away from FTS(x) or close to the middle of the edge:

xnew =

[
1−αφ

(
λ (x)
λ (ee

i)

)]
x+αφ

(
λ (x)
λ (ee

i)

)
FTS(x) (6)

α ∈ [0,1] controls bundling tightness. The function φ : [0,1]→
[0,1] defined as

φ(t) = [2 min(t,1− t)]K (7)

modulates the motion amount: The edge’s end points es
i and

ee
i do not move at all; points close to these end points move

less; and points around the middle of the edge move most. This
produces the curved edge profile we require for bundling, and
also keeps edge end points fixed. The parameter K controls how
much edges twist when bundled. Values of K ∈ [3,6] give very
similar results to known bundling methods e.g. [14, 15, 20]. For
any x ∈ S, FTS(x) = x (Sec. 3.3), so for such points we have

2

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

xnew = x (Eqn. 6), i.e. points which have reached the skeleton,
the extreme bundling location, stop moving.

Equation 6 is equivalent to advecting edge points x in the
gradient field −∇DTS. Distance transforms of any shape except
a straight line have div ∇DTS 6= 0 [23]. Hence, our attraction
typically shortens and/or lengthens edges. Since we compute
the edge points x in Eqn. 6 by uniformly sampling edges in
arc-length space, attraction removes points where edges con-
tract (div ∇DTS < 0) and inserts points where edges dilate
(div ∇DTS > 0) as needed.

3.5 Iterative edge bundling

Applying the clustering, shape construction, and edge attrac-
tion steps outlined above yields a small amount of bundling of
a graph layout. We repeat this process iteratively until a user-
specified number of iterations I is reached. More iterations yield
tighter bundles. This process is strictly monotonic, i.e. edges
can only get closer to their clusters’ skeletons (hence to each
other) by construction, as explained below (see also Fig. 1).

For the first clustering, we use a high similarity threshold δ

to guarantee elongated, thin, clusters for any edge spatial distri-
bution in the input graph (Sec. 3.1). This is essential for getting
the initial bundling under way. Indeed, weakly coherent clusters
would contain edges that intersect each other at large angles;
hence the shapes surrounding them, and their skeletons, would
be meaningless bundling cues. For subsequent iterations, we de-
crease δ and recluster each few (3..5) iterations. This produces
fewer, increasingly larger, clusters. However, these clusters are
locally elongated, since they contain already partially bundled
edges. Hence, coarsening the clustering will not group unre-
lated edges. The overall effect is bottom-up bundling: First, the
closest edges get bundled into fine-scale local bundles, which
next increasingly merge into coarser-scale bundles.

Similarly, we decrease α during the iterative process. Initial
large α values yield strongly coherent initial bundles, needed
for clustering stability as outlined above. Subsequent relaxed α

values allow edges in more complex, larger, bundles to adjust
themselves. Concrete values for δ and α are given in Sec. 4.2.

4 Implementation

4.1 Image-based operations

We compute shapes, skeletons, skeleton tips, and distance and
feature transforms in an image-based setting. For this, we use a
Nvidia CUDA 1.1 implementation of exact Euclidean distance-
and-feature transforms [4]. We extended this technique to com-
pute robust skeletons based on the augmented fast marching
method (AFMM) in [28]. The AFMM guarantees that no spu-
rious branches appear due to boundary perturbations, which in
turn guarantees stable bundling cues. Table 1 shows statistics
for several graphs bundled with our method. Table 2 shows tim-
ings per algorithm phase.

Our CUDA implementation takes 4 milliseconds per dis-
tance, feature transform, and skeletonization for an image of

Graph Nodes Edges Clusters/iteration Time
I = 1 I = 5 I = 10 (sec.)

Airlines 235 2099 90 15 9 6.3
Migrations 1715 9780 57 14 7 4.1
Radial 1024 4021 94 30 24 7.4
France air 34550 17275 207 40 26 29.2
Poker 859 2127 86 28 23 5.2

Table 1: Graph statistics for datasets used in this paper.

800 by 800 pixels on an Nvidia GT 330M GT card, in line
with figures reported in [4]. A CPU-only implementation such
as [28] is roughly 100 times slower. Clustering is also fast. The
CPU implementation in [8] constructs the complete dendrogram
of a graph of 10K edges in 0.1 seconds on a 2.8 GHz PC. We
also tried the GPU-based clustering in [5], which is roughly 10
to 15 times faster. Note that only a few clustering passes are
needed for a complete layout (Sec. 3.5). All in all, our method
takes 5 to 30 seconds for producing a final layout for the graphs
we tested (Tab. 1, right column), i.e. 25 milliseconds per cluster
times the total number of clusters processed during the I = 10
iterations plus the clustering time.

Graph Tips Points Inflation Holes Skel. Paths Attraction
(I = 5) (ms) (ms) (ms) (ms.) (ms)

Airlines 22 8388 77 120 314 98 20
Migrations 28 9780 78 134 339 170 77
Radial 14 21580 80 96 357 45 17
France air 34 23759 81 148 374 222 88
Poker 28 2385 64 117 238 146 13

CUDA 2 8 2 < 12 3

Table 2: Bundling performance. Per-cluster average time for the
different phases of our method. First rows show CPU timings.
Last row shows CUDA timings (uniform for the tested graphs).

4.2 Parameter setting

Our method has a few parameters: clustering similarity thresh-
old δ , edge advection factor α , and number of iterations I.

Clustering similarity threshold δ : Specifies the level at which
we cut the cluster dendrogram to obtain edge sets to bundle at
the current iteration (Sec. 3.1). We set δ as a linearly decreasing
function on the iteration number t ∈ [1, I] from δ (1) = 0.95 to
δ (I) = 0.7. This yields strongly coherent clusters in the first
iteration, regardless of initial edge positions, and also locally
strongly coherent clusters in the subsequent iterations (Sec. 3.5).

Edge advection factor α: Values α ∈ (0,1) control how much
edges approach the skeleton at one iteration. Too high values
yield tight bundles and convergence in few iterations, which is
fine for graphs having relatively grouped edges, but cannot de-
clutter complex graphs. Too low values allow the process to
adapt itself better to newly discovered clusters as the edges ap-
proach each other, but convergence requires more iterations. In

3

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

iteration 1 iteration 2

iteration 12iteration 10

iteration 4 iteration 7

Figure 1: Iterative bundling of the US migrations graph. Colors indicate edge clusters (see Sec. 3.5).

practice, we set α as a linearly decreasing function of the itera-
tion number from α(0) = 0.9 to α(I) = 0.2.

Number of iterations: We obtained tight bundles of a few pix-
els wide after I ∈ [10,15] iterations for all studied graphs. This is
expectable since (1−α)I becomes very small for α < 1, I > 10.
In practice, we always set I = 10.

The method is not sensitive to precise parameter settings. We
explain this by the stability of the inflated shape skeletons to
small local variations of the positions of edges, and the smooth-
ing effect of the entire iterative process on the layout.

5 Applications

Figure 2 compares the SBEB with existing bundling methods
for several graphs1 (see also Tab. 1). Images (a,b) show an air
traffic graph (nodes are city locations, edges are flight paths).
Images (c,d) show a graph of poker players from a social net-
work. Edges encode people that played against each other. The
node layout is done with a spring embedder [3]. Given the av-
erage node degree and node layout used, related nodes tend to
form similar-size cliques. Bundling further simplifies this struc-
ture; bundles encode sets of players which played against each
other. Images (e-h) show the known US migrations graph bun-
dled with the WR, GBEB, FDEB, and our method (SBEB).
Overall, SBEB produces strong bundling, and emphasizes the
structure of connections between groups of close cities (due to
the skeleton layout cues). Less bundling can be achieved by less
iterations (Fig. 1). Adjusting the bundling parameters (Sec. 4.2),
SBEB can create bundling styles similar to either GBEB (higher

1More examples are available at www.cs.rug.nl/Shapes/SBEB

bundle curvatures, more emphasis on the graph structure) or
FDEB (smoother bundles). Images (i,j) show the US airlines
graph bundled with the FDEB and SBEB respectively. SBEB
generates stronger bundling (more overdraw) but arguably less
clutter. Note also that SBEB generates tree-like bundle struc-
tures which is useful when the exploration task at hand has an
inherent (local) hierarchical nature, e.g. see how traffic connec-
tions merge into and/or split from main traffic routes.

6 Discussion

Our method (SBEB) compares to related techniques as follows.

Generality: SBEB handles directed or undirected graphs. By
default, we assume directed graphs. Edges between the same
sets of nodes in opposite directions will belong to different clus-
ters, hence create different bundles. To treat undirected graphs,
we symmetrize the edge similarity function (Eqn. 1).
Structured look: Except HEB, other bundling methods do not
emphasize a structured, tree-like, look of the bundles, since
there is no explicit bundle hierarchy. SBEB models hierarchy
by the cluster skeletons (at fine level) and by the simplified clus-
ter structures (at coarse level).
Robustness: SBEB operates robustly on all graphs we tried it
on, i.e. yields a set of stable skeletons and bundling converges
towards a stable state. This is explained by the inherent robust-
ness of the skeletonization method used (Sec. 3.3). Intuitively,
adding or removing a small number of nodes or edges will not
change the bundling since the distance-based shapes and their
skeletons are robust to small changes.
Speed and simplicity: Since image-based and using a GPU im-
plementation, SBEB is considerably faster than [15] and slightly

4

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

a) c)b) d)

e) f)

g) h)

i) j)

Figure 2: Air traffic graph (a: original, b: bundled). Poker graph (c: original, d: bundled). Migrations graph (e: FDEB, f: GBEB, g:
WR, h: SBEB). Airlines graph (i: FDEB, j: SBEB). Colors in (a-d,h,j) indicate clusters (displayed for method illustration only).

faster than [20]. We note that it is not clear if the timings re-
ported in [20] include also the cost of computing the Voronoi
diagram underlying the grid graph. The only faster bundling
method we know is MINGLE [12], which takes 1 second for
the US migrations graph and 0.1 seconds for the US airlines
graph, in contrast to our 4.1 seconds and 6.3 seconds respec-
tively. MINGLE and SBEB share some resemblance in bottom-
up aggregation of edges, but also have some differences. MIN-
GLE compares edges essentially based on endpoint positions,
whereas we use the entire edge trajectory, which should allow
us to bundle graphs with curved edges better. The complexity
of MINGLE is O(|E|log|E|) for a graph with E edges, whereas
SBEB is O(|C|) where C is the average cluster size. A better
cluster selection than our current iso-linkage cut in the cluster
tree (Sec. 3.1) would reduce |C| and thus make SBEB faster.
SBEB works entirely image-based rather than by a combina-
tion of hierarchical mesh-based and image-based data struc-
tures. Our CUDA skeleton code is available at [26].

Algorithmics: In contrast to FDEB [15] which bundles edge
pairs iteratively, we bundle increasingly larger edge clusters
along their skeletons in one single step. In the limit, SBEB

behaves like FDEB, i.e. if we treat only the most cohesive
leaf cluster at each iteration. This is impractical, as it would
artificially increase computational costs without any benefits.
While Lambert et al. [20] use shortest paths in a node-based
grid graph to route edges, SBEB uses only edge information.
Distance fields and skeletons are also used in [27] for shading
cues, whereas we use skeletons to actually compute edge lay-
outs. In comparison to [21], where bundles split in exactly two
sub-bundles, our bundle splits can have any degree, as implied
by the underlying skeletons.

Limitations: There is no hard reason why SBEB should be
preferable to other bundling heuristics, apart from the intuition
that a skeleton represents the local center of a shape. The qual-
ity of our layouts (or any other bundled layout) is still to be
judged subjectively. Any bundling inherently looses informa-
tion: edges are overdrawn, so cannot be identified separately;
and edge directions are distorted. Hence, bundling should be
used for those applications where one is interested in coarse-
scale connectivity patterns and/or when explicit graph simplifi-
cation e.g. is not an option. SBEB can be adapted to incorpo-
rate additional bundling constraints e.g. maximal deformation

5

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

of certain edges: the skeletons provide only bundling cues but
the attraction phase can decide whether, and how much, to bun-
dle any given edge. In the long term, it is interesting to use
shape perception results from computer vision [6] to quantita-
tively reason about the quality of a bundled layout. Our image-
based approach may prove more amenable to quantitative anal-
ysis than other bundling heuristics which are harder to describe
in terms of imaging operators. However, this is a challenging
task and requires further in-depth study.

7 Conclusion

We have presented a new method for creating bundled lay-
outs of general graphs. Using the centeredness property of 2D
skeletons, we create elongated shapes from a graph with given
node positions, and use skeletons as guidelines to bundle simi-
lar edges. Our layout amounts to a sequence of edge clustering
and image processing operations which can be efficiently imple-
mented on the GPU to achieve higher performance than existing
comparable methods.

We plan to exploit skeleton properties to generate bundling
variations. Modifying the Euclidean distance metric would
yield layouts similar to cartographic diagrams [25]. We plan
to use bundle-bundle and bundle-node distance fields to glob-
ally optimize the layout for maximal readability and incorpo-
rate spatial constraints like labels, bundle crossing minimiza-
tion, and node-edge overlap reduction. In the long run, we plan
to study the optimality criteria of bundled layouts by using ex-
isting results from shape perception in computer vision which
are directly applicable to our skeleton-based layout method.

References

[1] J. Abello, F. van Ham, and N. Krishnan. AskGraphView: A large
graph visualisation system. IEEE TVCG, 12(5):669–676, 2006.

[2] D. Archambault, T. Munzner, and D. Auber. Grouse: Feature-
based and steerable graph hierarchy exploration. In Proc. Euro-
Vis, pages 67–74, 2007.

[3] D. Auber. Tulip visualization framework, 2011. tulip.
labri.fr.

[4] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel banding al-
gorithm to compute exact distance transform with the GPU. In
Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and
Games, pages 134–141, 2010.

[5] D. Chang, M. Kantardzic, and M. Ouyang. Hierarchical cluster-
ing with cuda/gpu. In Proc. ISCA, pages 130–135, 2009.

[6] L. Costa and R. Cesar. Shape analysis and classification: Theory
and practice. CRC Press, 2000.

[7] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-based
edge clustering for graph visualization. IEEE TVCG, 14(6):1277–
1284, 2008.

[8] M. de Hoon, S. Imoto, J. Nolan, and S. Myiano. Open source
clustering software. Bioinformatics, 20(9):1453–1454, 2004.

[9] M. Dickerson, D. Eppstein, M. Goodrich, and J. Meng. Confluent
drawings: Visualizing non-planar diagrams in a planar way. In
Proc. Graph Drawing, pages 1–12, 2003.

[10] T. Dwyer, K. Marriott, and M. Wybrow. Integrating edge routing
into forcedirected layout. In Proc. Graph Drawing, pages 8–19,
2007.

[11] G. Ellis and A. Dix. A taxonomy of clutter reduction for infor-
mation visualisation. IEEE TVCG, 13(6):1216–1223, 2007.

[12] E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel ag-
glomerative edge bundling for visualizing large graphs. In Proc.
PacificVis, pages 187–194, 2010.

[13] E. Gansner and Y. Koren. Improved circular layouts. In Proc.
Graph Drawing, pages 386–398, 2006.

[14] D. Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE TVCG, 12(5):741–748, 2006.

[15] D. Holten and J. J. van Wijk. Force-directed edge bundling for
graph visualization. Comp. Graph. Forum, 28(3):670–677, 2009.

[16] I.Tollis, G. D. Battista, P. Eades, and R. Tamassia. Graph draw-
ing: Algorithms for the visualization of graphs. Prentice Hall,
1999.

[17] R. Klette and A. Rosenfeld. Digital geometry: Geometric meth-
ods for digital picture analysis. Morgan Kaufmann, 2004.

[18] I. Kovacs, A. Feher, and B. Julesz. Medial-point description of
shape: A representation for action coding and its phychophysical
correlates. Vision research, 38:2323–2333, 1998.

[19] A. Lambert, R. Bourqui, and D. Auber. 3D edge bundling for ge-
ographical data visualization. In Proc. Information Visualisation,
pages 329–335, 2010.

[20] A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing
edges into bundles. Comp. Graph. Forum, 29(3):432–439, 2010.

[21] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow
map layout. In Proc. InfoVis, pages 219–224, 2005.

[22] H. Qu, H. Zhou, and Y. Wu. Controllable and progressive edge
clustering for large networks. In Proc. Graph Drawing, pages
399–404, 2006.

[23] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. Hamilton-
Jacobi skeletons. IJCV, 48(3):215–231, 2002.

[24] K. Siddiqi and S. Pizer. Medial Representations: Mathematics,
Algorithms and Applications. Springer, 1999.

[25] R. Strzodka and A. Telea. Generalized distance transforms and
skeletons in graphics hardware. In Proc. VisSym, pages 221–230,
2004.

[26] A. Telea. CUDA skeletonization and image processing toolkit,
2011. www.cs.rug.nl/˜alext/CUDASKEL.

[27] A. Telea and O. Ersoy. Image-based edge bundles: Simplified
visualization of large graphs. Comp. Graph. Forum, 29(3):543–
551, 2010.

[28] A. Telea and J. J. van Wijk. An augmented fast marching method
for computing skeletons and centerlines. In Proc. VisSym, pages
251–259, 2002.

[29] F. vam Ham. Using multilevel call matrices in large software
projects. In Proc. InfoVis, pages 227–232, 2003.

[30] R. van Liere and W. de Leeuw. GraphSplatting: Visualizing
graphs as continuous fields. IEEE TVCG, 9(2):206–212, 2003.

[31] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen. Energy-based
hierarchical edge clustering of graphs. In Proc. PacificVis, pages
55–62, 2008.

6

