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Abstract

We present a fast and simple adaption of the well-known
mean shift technique for image segmentation to compute
bundled layouts of general graphs. For this, we first trans-
form a given graph drawing into a density map using kernel
density estimation. Next, we apply the equivalent of mean
shift segmentation on this image, i.e. sharpen the image my
moving the drawn edges upstream in the density’s gradient.
We implement our method using standard graphics acceler-
ation techniques. Our results are similar to state-of-the-art
graph bundling methods but require a fraction of their cost.
We demonstrate our method on several large graphs.

1 Introduction

Graphs are ubiquitous in many information analysis and in-
formation visualization applications. General graphs can be
visualized by node-link diagrams [29], matrix plots [30], and
graph splatting [31]. In recent years, graph bundling meth-
ods have gained increased attention.Given a set of node po-
sitions, edges being close in terms of graph structure, po-
sition, data attributes, or combinations thereof, are drawn
as tightly bundled curves. This trades clutter for overdraw
and produces images which emphasize the graph structure.
Blending or shading can be used to add information or em-
phasize structure [14, 19, 27]. Bundling methods exist for
both compound (hierarchy-and-association) [13] and general
graphs [14, 4, 21, 19, 11, 9, 24]. However attractive, most
bundling algorithms for general graphs are quite complex
and/or have high computational costs.

In this paper, we present a new method for bundling gen-
eral graphs. We work entirely image-based: Given a graph
drawing, we first convolve the edges and construct an edge
density map. Next, we iteratively advect edges upstream in
the density’s gradient while recomputing the map. This pro-
cess, which is similar to the well-known mean shift image
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segmentation technique [3], delivers a layout with well sep-
arated and smooth bundle structures.

The structure of this paper is as follows. Section 2 re-
views related work on edge bundles. Section 3 presents our
method. Section 4 details implementation and shows results
on real-world graphs. Section 5 discusses our method. Sec-
tion 6 concludes the paper.

2 Related Work

Related work in reducing visual clutter in large graphs can
be organized as follows.

Graph simplification techniques reduce clutter by simpli-
fying the graph prior to layout e.g. by creating metanodes of
strongly connected nodes and edges, next drawn by classical
node-link layouts [1, 2]. Simplification can be sensitive to
parameters which may depend on the graph type. Also, sim-
plification events yield a set of discrete graphs rather than
a continuous exploration scale [19]. Thirdly, simplification
changes node positions (collapse to metanodes). This is un-
wanted when positions encode information.

Edge bundling techniques trade clutter for overdraw by
routing related edges along similar paths. Details on clutter
causes and reduction strategies are given in [7]. Bundling
can be seen as sharpening the edge spatial density, by mak-
ing it high along bundles and low elsewhere. Bundles help
finding node-groups related to each other by edge-groups
(bundles) which are separated by white space [11]. Dick-
erson et al. merge edges by reducing non-planar graphs
to planar ones [5]. Holten bundled edges in compound
graphs by routing edges along the hierarchy layout using B-
splines [13]. Gansner and Koren bundle edges in a circular
node layout similar to [13] by area optimization metrics [12].
Dwyer et al. use curved edges in force-directed layouts
to minimize crossings, which implicitly creates bundle-like
shapes [6]. Force-directed edge bundling (FDEB) creates
bundles by attracting edge control points [14], and was
adapted to separate opposite-direction bundles [24]. The
MINGLE method uses multilevel clustering to accelerate the
bundling process [11]. Flow maps produce a binary clus-
tering of nodes in a directed flow graph to route curved
edges [21]. Control meshes are used to route curved edges,
e.g. [22, 33], a Delaunay-based extension called geometric-
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based edge bundling (GBEB) [4], and ’winding roads’ (WR)
which use Voronoi diagrams for 2D and 3D layouts [19, 18].
Skeleton-based edge bundling (SBEB) uses the skeletons
of the graph drawing’s thresholded distance transform as
bundling cues to create strongly ramified bundles [9].

Several bundle rendering techniques exist: edge color in-
terpolation for edge directions [13, 4]; transparency or hue
for edge density, or for edge lengths [19]. Bundles can be
drawn as compact shapes whose structure is emphasized by
shaded cushions [27, 23]. Graph splatting visualizes node-
link diagrams as continuous scalar fields using color and/or
height maps [31, 16]. Semantic lenses can be used to inter-
actively explore overlapping bundles [15].

3 Algorithm

Given a graph drawing G ⊂ R2 and a point x ∈ G, we can
think of bundling as an operator B : R2→R2 which displaces
x based on the spatial information in G∩νε(x) where νε(x)
is a small neighborhood centered at x. The result B(G) is a
new layout whose edges are gathered in dense groups (bun-
dles) separated by low edge-density areas (white space). In-
tuitively, B is an image processing function which sharpens
the local spatial density ρ of edge points.

We model ρ using kernel density estimation (KDE) meth-
ods [26]: Given a graph drawing G = {ei}1<i<N consisting
of edges ei ⊂ R2, we can estimate ρ : R2→ R+ as

ρ(x) =
N

∑
i=1

∫
y∈ei

K
(

x−y
h

)
(1)

where K : R2→ R+ is a density kernel of bandwidth h > 0.
ρ can be computed by convolving G with K, or building an
accumulation map of K over G.

The map ρ reflects the local edge density. A drawing with
uniformly distributed edges yields a flat map. Large ρ val-
ues are zones of high edge density. More interestingly, local
maxima of ρ are roughly in the middle of local edge agglom-
erations. Ersoy et al. have shown that these are good posi-
tions for placing edge bundles [9], and compute these points
as the medial axes of the Euclidean distance transform of
G thresholded at a small value τ > 0. In contrast, we define
bundling centers as the local maxima of a continuous density
map computed with nonlinear kernels. As we shall see, this
implies several differences and advantages for our method.

Given the density map ρ , we next define our kernel den-
sity estimation edge-bundling (KDEEB) operator B as the
solution of the following ordinary differential equation

dx
dt

=
h(t)∇ρ(t)

max(‖∇ρ(t)‖,ε)
(2)

for all points x in the graph drawing, with initial conditions
given by the input graph. The density gradient ∇ρ is nor-
malized in a regularized manner – the ε = 10−5 denomina-
tor value takes care of zero gradients. Normalizing ∇ρ con-
strains the movements ‖dx‖ to the kernel bandwidth h(t).

Since h(t) decreases in time (as explained next), this stabi-
lizes the advection process. Eqn. 2 is solved by Euler inte-
gration, i.e. we construct B(G) by iteratively computing the
density map ρ and advecting the points x ∈ G in the direc-
tion of ∇ρ . Eqn. 2 sharpens the density ρ starting with the
(typically straight-line, unbundled) input graph G and ending
with a tightly bundled graph whose density map asymptoti-
cally reaches bundle-aligned Dirac impulses.

a) iteration 0

b) iteration 3

c) iteration 6

d) iteration 10

Figure 1: Evolution of density map and corresponding
bundling for the US migrations graph.

Essentially, the above process (Eqns. 1 and 2) are very
similar to the mean shift process [3]. For example, if we
think of an edge (in our case) as being a sample point (in
the mean shift case), our formulation finds bundles as the
modes of the initial kernel density estimation by using the
same gradient ascent as mean shift. Following the analogy,
a bundle is equivalent to a cluster found by mean shift seg-
mentation. Similarly to mean shift, we use an Epanechnikov
kernel K(x) = 1−‖x‖2, which optimally approximates the
ρ in a minimal variance sense [8, 17]. At each step i of the
numerical integration, we decrease h by a geometric series
hi = λ ihmax, where hmax is the initial kernel bandwidth, set
to the average inter-edge distance in the input graph G, and λ

is a kernel bandwidth reduction factor. Setting λ ∈ [0.5,0.9]
yields a kernel size which follows the average edge density.
The initial value hmax creates a smooth density ρ where any
edge point is influenced by at least one other edge and also
avoids density overestimations. During integration, edges
get closer, so we decrease the kernel hi to avoid density over-
estimation. A similar strategy was also used in several ap-
plications of mean shift. Decreasing hi also decreases the
advection speed, which stabilizes the process as the signal ρ

is increasingly ’sharpened’. In other words, edges converge
towards the local density maxima instead of jumping from
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one side to the other of such maxima. More advanced meth-
ods for estimating the kernel bandwidth, such as data-based
adaptive selectors can be used, if desired [25, 17, 3]. How-
ever, we do not need an exact density estimation for graph
bundling since we only use the density’s gradient and recom-
pute the density iteratively, so our simple heuristic suffices.

Figure 1 shows several iterations of the density map,
drawn as a height plot (normalized in height for display pur-
poses) and corresponding bundled layouts for the US migra-
tions graph [14, 9]. The density map gets sharper during the
iterative solving of Eqn. 2. This bundles edges along the den-
sity local maxima or distribution modes. As the density map
gets sharper, the distance between local maxima increases,
so bundles get tighter and separated by more white space.

4 Implementation

We implement our method using a GPU image-based ap-
proach, as follows (see also Fig. 2).
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Figure 2: KDE edge bundling pipeline.

4.1 Graph representation

First, we discretize all edges ei of the input graph into sets of
points xi j, by using a small sampling step δ equal to roughly
1% of the size of the graph’s bounding box, similarly to other
methods [14, 13, 9, 19]. This typically yields several tens of
sample points per edge on average.

4.2 Density computation and gradient estimation

To compute the density map gradient ∇ρ needed by Eqn. 2),
we can splat the kernel gradient ∇K, precomputed into two
OpenGL 2D luminance textures ∂K/∂x and ∂K/∂y, at all
edge sample points xi j, and accumulate results into two
floating-point buffers by additive blending. Maximal effi-
ciency is achieved by drawing OpenGL point sprites scaled
by the bandwidth hi (Sec. 3). The accumulation buffers’ size
matches the screen size.

A better approximation of the kernel density estimation
(Eqn. 1) is obtained if we use edge-aligned kernels. For
this, we use elliptical kernels aligned with the edge segments
(xi j,xi j+1), i.e. draw rectangles textured by the radial kernel
K centered at the edge sample points, aligned with the edge
segments, and of size h (across the edge) and equal to the
average of ‖xi j − xi j+1‖ (along the edge). Another option
is to use one-dimensional half-kernels stored as 1D textures
and drawn as rectangles tangent to the edge segments. The

latter method was used by Ersoy et al., with a different (dis-
tance) kernel, to create distance profiles [27]. Edge-aligned
kernels allow a lower edge sampling rate, since kernels are
scaled separately along and across edges, thus increase splat-
ting speed without decreasing the KDE quality.

4.3 Advection

After obtaining the gradient of our edge density map, we ad-
vect each edge by Euler integration of Eqn. 2 on the edge
sample points xi j. Edge endpoints are kept fixed. Since
we first compute the gradient map and then advect all edge
points, integration is explicit, which parallelizes easily. After
each advection step, we resample the edges (Sec. 4.1). This
is needed since div ∇ρ 6= 0 and edge endpoints are fixed, so
advection stretches and/or shrinks edges, which can lead to
edge self-intersections or subsampled edge fragments.

4.4 Smoothing

After each iteration, we do 5..10 Laplacian smoothing it-
erations of the advected edges with a kernel of fixed size,
roughly 8δ , similar to [14]. This removes small-scale ad-
vection artifacts caused by the imprecise estimation of the
density map ρ which is, in turn, due to errors in the kernel
bandwidth estimation (Sec. 3), on the one hand, and to dis-
cretization errors in the finite edge sampling and finite kernel
splat texture resolution (Sec. 4.2), on the other hand. Arti-
facts show up as small-scale undulations in the density map,
which cause extra divergence points, i.e. slight rotations, of
∇ρ . In turn, gradient imprecisions cause edges to become
jagged during advection, thus yield slight zig-zags in the fi-
nal bundles. Laplacian smoothing completely removes this
problem and generates smooth bundles. Our smoothing is
equivalent to anisotropically filtering the density map, prior
to gradient estimation, with a kernel aligned with the map’s
curvature minor eigenvector, i.e. along its ridges [32]. How-
ever, this type of image filtering is considerably more expen-
sive, and clearly more complicated, than our Laplacian edge
smoothing.

4.5 Iterative bundling

For all tested graphs, 8..10 iterations of gradient computa-
tion, advection, and smoothing yields a stable layout. The
process is monotonic: edges move in a single direction rather
than back-and-forth. This is due to the structure of the den-
sity map gradient: If two edge points x,y∈G are within each
other’s bandwidths at an iteration, both are equally advected
towards the midpoint (x+ y)/2, since we use the same ker-
nel size and shape at all points. For a more formal discussion
on the stability of the original mean shift procedure, we refer
to [3].
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a) SBEB c) SBEB d) KDEEBc) d)

f) KDEEB

g) SBEB h) KDEEB

i) FDEB j) KDEEB

k) GBEB l) WR

e) SBEB

b) KDEEB

Figure 3: Bundling examples. Radial graph (a,b); Poker graph (c,d); France airlines (e,f); US migrations, clustered (g,h); US
migrations, unclustered (i,j,k,l); Colors mark different edge clusters. More examples at [20]

4.6 Examples

Figure 3 compares our KDEEB with recent bundling meth-
ods: FDEB [14], GBEB [4], SBEB [9], and WR [19].

Overall, we produce tighter bundles than FDEB and GBEB,
and smoother bundles than SBEB. While SBEB requires
an edge pre-clustering on similar directions and positions
(Fig. 3 a,c,f,g), we obtain similar or better results, i.e. tight,
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smooth, well-separated bundles, with no clustering at all. If
edge clusters are provided, we can use these by bundling
each cluster separately. For example, in Fig. 3 (a,b), which
shows a software dependency graph with edges grouped
by structural similarity, KDEEB delivers better separated
bundles, than SBEB. Also, compare Fig. 3 g (US migra-
tions graph, pre-clustered on edge similarity, bundled with
SBEB) with KDEEB where we bundle each cluster sepa-
rately (Fig. 3 h). Our result is more similar to bundlings
which do not use clustering (e.g. our method, Fig. 3 j or
WR, Fig. 3 l) than to SBEB. This indicates that our method
could be used in cases where we want to bundle parts of a
graph separately, e.g. interactive exploration or online graph
bundling. Per-cluster bundling does not decrease the speed
of our method, since its complexity is O(EI/δ ) for a graph
with E edges, I bundling iterations, and an edge sampling
step δ .

5 Discussion

5.1 Comparison

Several differences are visible between our method vs exist-
ing methods (see Fig. 3 and more images at [20]): We pro-
duce smoother, less twisting, bundles than GBEB and SBEB,
and tighter bundles than FDEB and MINGLE.

Equations 1 and 2 share some aspects with FDEB [14]
and SBEB [9]. As FDEB, we move edge points close to
each other, but we do not need any additional edge compat-
ibility metrics ([14], Sec. 3.2). As SBEB, we move edges
close to their local center. While SBEB computes this center
explicitly as medial axes of thresholded distance functions
of similar-direction edges, we move edges towards their im-
plicit local center via the density map gradient. Eqn. 2 re-
sembles solving the Eikonal equation [28], as we move edges
with equal speed along a radial kernel gradient, which resem-
bles the gradient of an Euclidean distance map. However, we
recompute this gradient at each step, while [28] uses a fixed
motion direction given by an explicit initial boundary.

GPU image-based techniques based on a density map
computed from a graph drawing are also used by [10]. How-
ever, the aim is different: We ’concentrate’ the density sig-
nal, and keep nodes fixed, to bundle edges, while [10] works
in the opposite direction, spreading nodes towards less dense
areas in order to declutter a given layout.

5.2 Performance and simplicity

Our entire bundling code is under 1000 lines of C#, and con-
sists of four simple steps: density computation (Sec. 4.2),
edge advection (Sec. 4.3), and edge smoothing (Sec. 4.4).
Compared to other bundling methods whose implementa-
tions we could study [14, 19, 9], our pipeline is simpler, e.g.
we do not require graph clustering, skeletons, Voronoi dia-
grams, or spatial search structures. We only use OpenGL

1.1 as compared to the more complex CUDA or pixel shader
code in [9, 19].

Graph Nodes Edges Edge Bundling time (sec.)
samples 8800 GTX GeForce 580

US airlines 235 2099 86K 1.4 0.5
US migrations 1715 9780 220K 3.6 1.5
Radial 1024 4021 290K 4.5 1.5
France air 34550 17275 330K 3.8 1.8
Poker 859 2127 50K 0.8 0.4
Random 200K 100K 4.8M 43 18

Table 1: Graph statistics for datasets used in this paper.

Table 1 shows running times on two Nvidia cards, both
on a 3.3 GHz Core i5 PC, for 10 iterations. The Edge sam-
ples column shows the number of sample points on all graph
edges. Advection, resampling, and smoothing are done in
C# on 4 threads, which takes about 40% of the entire time,
the remainder being OpenGL-based splatting. These steps
can be easily accelerated further with e.g. vertex shaders
or CUDA. However, even without this extra boost, KDEEB
is much faster than similar approaches - on average for the
tested graphs, 16 times vs FDEB [14], 6 times vs GBEB [4],
5 vs than SBEB [9], and 4 vs WR [19]. The only faster
bundling method we know is MINGLE [11]: 2..3 times faster
than KDEEB for graphs up to 2000 edges, and about the
same speed for larger graphs. The lower performance of
KDEEB for small graphs is due to the relatively large amount
of work done in C# on the CPU for these graphs, which gets
dominated by GPU computations for larger graphs. Also,
note that MINGLE arguably produces more cluttered, less
bundled, layouts, as it uses only the start and endpoints of
edges to bundle these, whereas we use the entire edge paths,
as illustrated by the images available online at [20].

Memory-wise, we only need to store three frame buffers
equal to the screen size (density map and its two gradient
components). This means practically zero data overhead
atop of the edge samples which store the bundled layout.

6 Conclusion

We have presented a new method for creating bundled lay-
outs of general graphs. Our approach offers a simple, (GPU)
parallelizable method which is several times faster, and ar-
guably simpler to implement, than comparable methods.
Our method produces bundled graph layouts with tight and
smooth structures, robustly handles graphs of widely vari-
able complexity and size, and requires no complex user pa-
rameter settings. We show how to constrain bundling to
avoid arbitrary-shaped obstacles placed in the embedding
space at user-selected positions, and also a way to glob-
ally route bundles outside the nodes’ position area. Our ap-
proach, which follows an image sharpening technique, opens
new ways for analyzing and refining graph bundling based
on well understood image processing techniques.
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Several future work directions exist. Speed-wise, our
method can directly use a fully-parallel (e.g. CUDA) opti-
mization. Secondly, by modifying the splat kernels, different
bundling styles could be obtained e.g. orthogonal layouts.
Following the mean shift analogy, we can use our method to
perform image-based segmentation of a given graph layout.
Finally, adapting our method to perform 3D graph bundling
is straightforward and fast, as our recent work-in-progress
shows.
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