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Abstract. Automatic detection of brain anomalies in MR images is
challenging and complex due to intensity similarity between lesions and
healthy tissues as well as the large variability in shape, size, and loca-
tion among different anomalies. Even though discriminative models (su-
pervised learning) are commonly used for this task, they require quite
high-quality annotated training images, which are absent for most med-
ical image analysis problems. Inspired by groupwise shape analysis, we
adapt a recent fully unsupervised supervoxel-based approach (SAAD)
— designed for abnormal asymmetry detection of the hemispheres —
to detect brain anomalies from registration errors. Our method, called
BADRESC, extracts supervoxels inside the right and left hemispheres,
cerebellum, and brainstem, models registration errors for each super-
voxel, and treats outliers as anomalies. Experimental results on MR-
T1 brain images of stroke patients show that BADRESC outperforms
a convolutional-autoencoder-based method and attains similar detection
rates for hemispheric lesions in comparison to SAAD with substantially
fewer false positives. It also presents promising detection scores for le-
sions in the cerebellum and brainstem.

Keywords: Brain Anomaly Detection · Supervoxel Segmentation · One-
class Classification · Registration Errors · MRI.

1 Introduction

Quantitative analysis of MR brain images has been used extensively for the
characterization of brain disorders, such as stroke, tumors, and multiple sclerosis.
Such methods rely on delineating objects of interest — (sub)cortical structures or
lesions to solve detection and segmentation simultaneously. Results are usually
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cial support, and NVIDIA for supporting a graphics card.
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Fig. 1: Axial slices of three stroke patients from the ATLAS dataset [19] with
lesions (ground-truth borders in red) that significantly differ in location, shape,
and size. Figure referenced from [23].

used for tasks such as quantitative lesion assessment (e.g., volume), surgical
planning, and overall anatomic understanding [7, 17, 35]. Note that segmentation
corresponds to the exact delineation of the object of interest, whereas detection
consists of finding the rough location of such objects (e.g., by a bounding box
around the object), in case they are present in the image.

The simplest strategy to detect brain anomalies consists of a visual slice-by-
slice inspection by one or multiple specialists. This process is very laborious,
time-consuming, easily prone to errors, and even impracticable when a large
amount of data needs to be processed. Continuous efforts have been made for
automatic anomaly detection that delineates anomalies with accuracy close to
that of human experts. However, this goal is challenging and complex due to
the large variability in shape, size, and location among different anomalies, even
when the same disease causes these (see, e.g., Fig. 1). These difficulties have
motivated the research and development of automatic brain anomaly detection
methods based on machine learning algorithms.

Most automatic methods in the literature rely on supervised machine learning
to detect or segment brain anomalies. They train a classifier from training images
— which must be previously labeled (e.g., lesion segmentation masks) by experts
— to delineate anomalies by classifying voxels or regions of the target image.
Traditional image features (e.g., edge detectors and texture features) and deep
feature representations (e.g., convolutional features) are commonly used [3, 13,
30, 34, 35]. Some works propose a groupwise shape analysis based on estimating
the deformation field between a target image and a template (reference image)
after image registration [13, 34].

However, these methods commonly have three main limitations. First, they
require a large number of high-quality annotated training images, which is absent
for most medical image analysis problems [1, 15, 40]. Second, they are only de-
signed for the lesions found in the training set. Third, some methods still require
weight fine-tuning (retraining) when used for a new set of images due to image
variability across scanners and acquisition protocols, limiting its application into
clinical routine.

All the above limitations of supervised methods motivate research on unsu-
pervised anomaly detection approaches [4, 8, 14, 23–25, 33]. From a training set
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with images of healthy subjects only, these methods encode general knowledge
or assumptions (priors) from healthy tissues, so that an outlier who breaks such
general priors is considered anomaly [14]. As unsupervised brain anomaly de-
tection methods do not use labeled samples, they are less effective in detecting
lesions from a specific disease than supervised approaches trained from labeled
samples for the same disease. For the same reason, however, unsupervised meth-
ods are generic in detecting any lesions, e.g., coming from multiple diseases, as
long as these notably differ from healthy training samples.

Since many neurological diseases are associated with abnormal brain asym-
metries [43], an unsupervised method called Supervoxel-based Abnormal Asym-
metry Detection (SAAD) [24] was recently proposed to detect abnormal asymme-
tries in MR brain images. SAAD presents a mechanism for asymmetry detection
that consists of three steps: (i) it registers all images to the same symmetric
template and then computes asymmetries between the two hemispheres by us-
ing their mid-sagittal plane (MSP) as reference; (ii) a supervoxel segmentation
method, named SymmISF, is used to extract pairs of symmetric supervoxels from
the left and right hemispheres for each test image, guided by their asymmetries.
Supervoxels define more significant volumes of interest for analysis than regular
3D patches; and (iii) each pair generates a local one-class classifier trained on
control images to find supervoxels with abnormal asymmetries on the test image.
SAAD was further extended to detect abnormal asymmetries in the own native
image space of each test image [25].

Although SAAD claims to obtain higher detection accuracy even for small
lesions compared to state-of-the-art detection methods, its analysis is limited to
asymmetric anomalies in the brain hemispheres, ignoring lesions in the cerebel-
lum and brainstem. Moreover, if the same lesion is localized in both hemispheres
roughly in the same position (e.g., some cases of multiple sclerosis), it is not de-
tected due to the lack of asymmetries.

Inspired by groupwise shape analysis, in this work, we present BADRESC,
an unsupervised method for Brain Anomaly Detection based on Registration
Errors and Supervoxel Classification in 3T MR-T1 images of the brain. After
registering a target image to a standard template with only healthy tissues by
deformable registration, BADRESC assumes that registration errors for anoma-
lies are considerably different from the registration errors for healthy tissues.
Thus, BADRESC adapts the SAAD framework as follows. First, it replaces the
asymmetry maps with registration errors. A robust preprocessing is considered
to improve the quality of image registration. Second, it then analyses four macro-
objects of interest — right and left hemispheres, cerebellum, and brainstem — by
extracting supervoxels for each one separately. Finally, each supervoxel generates
a local one-class classifier for healthy tissues to detect outliers as anomalies.

This work is an extension of a previous one presented in [23], which originally
introduced BADRESC. While considering the same macro-objects of interest and
datasets, our contributions include:

– a more detailed explanation of BADRESC’s steps, especially supervoxel seg-
mentation (Section 2 and Appendix A);
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– an extended evaluation that considers another unsupervised baseline (like
ours), which consists of a convolutional-autoencoder-based approach; and

– more evaluation metrics: Dice, mean recall, and three other false-positive
metrics.

Experimental results on 3D MR-T1 brain images of stroke patients confirm
the accuracy of BADRESC to detect hemispheric lesions with only a few false
positives. Additionally, BADRESC presents promising results for the detection
of lesions in the cerebellum and brainstem.

This paper is organized as follows. Section 2 introduces preliminary concepts
on supervoxel segmentation and the considered framework used by BADRESC.
Section 3 presents BADRESC. Section 4 presents experiments, while Section 5
reports and discusses results. Section 6 concludes the paper and discusses some
possible future directions.

2 Iterative Spanning Forest (ISF)

One crucial step of our proposed method consists of extracting supervoxels inside
each macro-object of interest for subsequent analysis. Supervoxels are groups of
voxels with similar characteristics resulting from an oversegmentation of a 3D
image or region of interest. We call superpixels for 2D images. They preserve
intrinsic image information (e.g., the borders of tissues and lesions) and are used
as an alternative to patches to define more meaningful VOIs for computer-vision
problems [37, 45] and some medical image applications [35, 44]. Supervoxels are
a better alternative than 3D regular patches for our target problem, as (i) they
better fit lesions and tissues, and (ii) their voxels contain minimum heterogeneous
information.

In this work, we rely on the Iterative Spanning Forest (ISF) framework [42]
for supervoxel segmentation. ISF is a recent approach for both superpixel and
supervoxel segmentation that has shown higher effectiveness than several state-
of-the-art counterparts, especially when used for 3D MR image segmentation
of the brain [42]. ISF consists of three key steps: (i) seed sampling followed by
multiple iterations of (ii) connected supervoxel delineation based on the image
foresting transform (IFT) algorithm [11] (Appendix A), and (iii) seed recompu-
tation to improve delineation. We next present the theoretical background for
ISF as well as its algorithm.

2.1 Theoretical Background

Let the pair Î = (DI , ~I) be a d-dimensional multi-band image, where DI ⊂ Zd

is the image domain, and ~I : DI → Rc is a mapping function that assigns a
vector of c real-valued intensities ~I(p) — one value for each band (channel) of
the image — to each element p ∈ DI . For simplicity, assume that the term voxels
represents the d-dimensional-image elements.

An image can be interpreted as a graph GI = (DI ,A), whose nodes are
the voxels, and the arcs are defined by an adjacency relation A ⊂ DI ×DI ,
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with A(p) being the adjacent set of a voxel p. In this work, we consider the 6-
neighborhood adjacency for ISF. We refer to Appendix A for more details about
image graphs, paths, and connectivity functions.

For a given initial seed set S, labeled with consecutive integer numbers
{1, 2, · · · , |S|}, and a connectivity function f , ISF computes each supervoxel as a
spanning tree rooted at a single seed, such that seeds compete among themselves
by offering lower-cost paths to conquer their most strongly connected voxels. We
use the following connectivity function f given by

f(〈q〉) =

{
0, if q ∈ S,
+∞, otherwise,

f(πp · 〈p, q〉) = f(πp) +
[
α · ‖~I(q)− ~I(R(p))‖

]β
+ ‖q − p‖,

(1)

where ‖~I(t) − ~I(R(p))‖ is the Euclidean distance between the intensity vectors
at voxels R(p) and q, ‖q − p‖ the Euclidean distance between the voxels p and
q, 〈q〉 is a trivial path, πp · 〈p, q〉 the extension of a path πp with terminus q
by an arc 〈p, q〉, and R(p) the starting node (seed) of πp. The factors α and
β serve to control a compromise between supervoxel boundary adherence and
shape regularity. Although the authors of ISF have fixed α = 0.5 and β = 12
during the experiments [42], such factors are problem-dependent and should be
optimized to yield more accurate supervoxels. Fig. 2 shows the impact of α and
β for the superpixel segmentation of a 2D brain image.

2.2 The ISF Algorithm

Algorithm 1 presents a pseudo code for the Iterative Spanning Forest framework.
At each iteration (Lines 2–4), ISF performs connected supervoxel delineation on
the image I based on IFT (Line 3) — as described by Algorithm 2 (Appendix A)
— from a given seed set S ′, adjacency relation A, and the connectivity function
f described by Eq. 1. The seed set at Iteration 1 is the initial seed set S (Line 1).
Next, the seed set is recomputed by the function SeedRecomputation to improve
delineation (Line 4). This process continues until reaching N iterations. The
algorithm returns the optimum-path forest (predecessor map), root map, path-
cost map, and the supervoxel label map. Fig. 3 illustrates the execution of ISF.

In this work, we adopted a seed-recomputation strategy proposed by Vargas-
Muñoz et al. [42], as detailed next. At each iteration, we promote the centroids
from the obtained supervoxels — i.e., their geometric centers — to be the seeds
of the next iteration. If a given centroid ci is out of its supervoxel Li — due to
the non-convex shape of Li — we select the voxel of Li that is the closest to ci.
We refer to Vargas-Muñoz et al. [42] for more specific details.

A crucial step for the success of ISF consists of performing a robust initial
seed estimation. This step, however, is problem-dependent, so that simple and
general strategies — e.g., a grid sampling in the input image — can provide
unsatisfactory results (e.g., undersegmentating a lesion). Section 3.3 details our
strategy to select the initial seed for our problem.
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α=0.01, β=12 α=0.1, β=12 α=0.5, β=12 α=1.0, β=12

(a) Different values of α and β = 12.

α=0.5, β=1 α=0.5, β=5 α=0.5, β=8 α=0.5, β=12

(b) α = 0.5 and different values of β.

Fig. 2: The impact of the factors α and β for superpixel segmentation by ISF.
Each superpixel is represented by a different color. For all cases, we performed
ISF on the same 2D brain image with 10 iterations and identical 30 initial seeds
selected by grid sampling.

Algorithm 1: Iterative Spanning Forest

Input: Image Î = (DI , ~I), adjacency relation A, connectivity function f ,
initial seed set S ⊂ DI , and the maximum number of iterations N ≥ 1.

Output: Optimum-path forest P , root map R, path-cost map C, and
supervoxel label map L.

Aux: Seed set S ′, and the variable i.

1 S ′ ← S
2 for i← 0 to N − 1 do

3 (P,R,C, L)← IFT (Î ,A, f,S ′) /* see Alg. 2 */

4 S ′ ← SeedRecomputation(Î ,S ′, P,R,C)

5 return (P,R,C, L)

3 Description of BADRESC

Fig. 4 presents the pipeline of BADRESC which consists of five steps: 3D im-
age preprocessing, image registration, registration error computation, super-
voxel segmentation, and classification. We next describe all these steps to detect
anomalies in the brain hemispheres, cerebellum, and brainstem.
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(a) Iteration 0. (b) Iteration 3.

(c) Iteration 6. (d) Iteration 9.

Fig. 3: Example of the ISF execution (10 iterations with α = 0.5 and β = 12) on
a 2D brain image. (a)–(d) Four iterations of ISF. For each iteration, we show
its input seeds (red points) and the resulting obtained superpixels (each color
represents a different superpixel). Iteration 0 shows the initial seed set obtained
by grid sampling; the other seed sets are obtained by seed recomputation. As
the insets show, most seeds do not change positions over iterations.

3.1 3D Image Preprocessing and Registration

MR images are affected by image acquisition issues such as noise and intensity
heterogeneity. This makes their automated analysis very challenging since in-
tensities of the same tissues vary across the image. To alleviate these and make
images more similar to each other, we use typical preprocessing steps known in
the literature [16, 21, 24], as shown in Fig. 5.

For each 3D image (Fig. 5a), we start performing noise reduction by median
filtering, followed by MSP alignment, and bias field correction by N4 [41]. As
voxels from irrelevant tissues/organs for the addressed problem (e.g., neck and
bones) can negatively impact the image registration and intensity normalization,
we use AdaPro [22] to segment the regions of interest: right and left hemispheres,
cerebellum, and brainstem (Fig. 5b).

To attenuate differences in brightness and contrast among images, we apply
a histogram matching between the segmented images and the template. This
operation only considers the voxels inside the regions of interest (Fig. 5d). We
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steps 1, 2, 3, 5, 6, 7, 8

Template

Train. Control
Images

RegistrationPre-
Processing

Compute
Reg. Errors

Average
Reg. Errors

RegistrationPre-
Processing

1 2 3

5 6

Compute
Reg. Errors

7

4

Supervoxel
Segmentation

8

Feature
Extraction

9

Classification

10

X AX AX

LI AI

Test Image
Datasets

Supervoxel 1

::

Supervoxel N

Supervoxel 2

7

T

Fig. 4: Pipeline of BADRESC [23]. The upper blue part is computed offline. The
bottom orange part is computed for each test image. The template (reference
image) is used in both parts (Steps 1, 2, 3, 5, 6, 7, and 8).

(a) (b) (c) (d) (e)

Fig. 5: 3D image preprocessing and registration steps. (a) Axial slice of a raw
test 3D image. The dashed line shows its mid-sagittal plane (MSP) and the arrow
indicates a stroke lesion. (b) Test image after noise filtering, MSP alignment,
bias field correction, and brain segmentation. (c) Axial slice of the symmetric
brain template (reference image). (d) Histogram matching between (b) and the
template (intensity normalization). (e) Final preprocessed image after non-rigid
registration and histogram matching with the template.

then perform deformable registration to place all images in the coordinate space
of the ICBM 2009c Nonlinear Symmetric template [12]. Since the image regis-
tration technique has a critical impact on the analysis, we use Elastix [18], a
popular and accurate image registration method.5 Finally, we perform another
histogram matching between the registered images and the template (Fig. 5e).

3.2 Registration Error Computation

When registering images to a standard template with only healthy tissues, we
expect that registration errors (REs) — i.e., voxel-wise absolute differences be-

5We used the par0000 files available at http://elastix.bigr.nl/wiki/index.php
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(a)

1.0

0.0

(b) (c)

(d) (e) (f) (g)

Fig. 6: Registration error computation. (a) Axial slice of the brain template. (b)
Euclidean Distance Transform (EDT) normalized within [0, 1] computed for the
brain segmentation mask defined for the template. Brain borders are shown only
for illustration purposes. (c) Common registration errors for control images. (d)
Axial slice of a test stroke image after preprocessing and registration in (a). The
arrow indicates the stroke lesion. (e) Registration errors. (f) Attenuation of
(e) for the cortex based on the EDT. (g) Final registration errors for the test
image: positive values of the subtraction between (f) and (c). Figure referenced
from [23].

tween the registered image and the template — are lower and present a different
pattern compared to anomalies (Fig. 6e). However, some healthy structures in
the cortex, such as gyri and sulci, present high REs due to their complex shapes
and very large variability between subjects — observe the cortex of the template
and the registered image in Figs. 6a and 6d; note its resulting REs in Fig. 6e.
As such, we need to apply some attenuation-process to avoid detecting false
positives in this region.

Let T be the template (Fig. 6a) and MT its predefined brain segmenta-
tion mask for the right hemisphere, left hemisphere, cerebellum, and brainstem
(background voxels have label 0 and each object has a different label). Let
X = {X1, · · · , Xk} be the set of k registered training images (output of Step 2
in Fig. 4) and I the test image after preprocessing and registration (output of
Step 6 in Fig. 4; see also Fig. 6d).

Firstly, we compute the Euclidean Distance Transform (EDT) for each object
of MT and normalize the distances within [0, 1] to build the map E (Fig. 6b).
Next, we obtain the set of registration errors RX for all X by computing the
voxel-wise absolute differences between X and T (Fig. 4, Step 3; see also Fig. 6e).
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For each training image Xi ∈ X, we attenuate REs in its cortex such that for
each voxel v ∈ Xi,

f(v) = 1− (E(v)− 1)λ

AXi
(v) = RXi

(v) · f(v),
(2)

where E(v) is the euclidean distance for the voxel v, f(v) is its attenuation
factor within [0, 1], λ is the exponential factor of the function, and AXi is the
map with the attenuated REs for Xi. In this work, we considered λ = 4. Thus,
REs of voxels close to the brain borders are extremely attenuated, whereas those
from voxels far from the borders are slightly impacted (Fig. 6f). A downside of
this approach is that subtle lesions in the cortex tend to be missed due to the
lack of REs.

In order to even ignore REs caused by noises or small intensity differences in
regions/tissues far from the cortex, we create a common registration error map
AX by averaging the attenuated REs from AX (output of Step 4 in Fig. 4; see
also Fig. 6c). Finally, we repeat the same steps to compute the attenuated REs
for the test image I and then subtract AX from them. Resulting positive values
form a final attenuated registration error map AI for I (output of Step 7 in
Fig. 4; see also Fig. 6g).

3.3 Supervoxel Segmentation

The direct comparison between the registered image and its template, or even
between large 3D regular patches, is not useful as it will not tell us where small-
scale REs occur — a similar parallel is done for asymmetries in [25]. Conversely,
a voxel-wise comparison is risky, since individual voxels contain too little infor-
mation to capture REs. These difficulties motivate the use of supervoxels as the
unit of comparison (Step 8 in Fig. 4).

Inspired by the SymmISF method [24] used in SAAD for symmetrical su-
pervoxel segmentation, we propose a new technique that extracts supervoxels
in the brain guided by registration errors, as shown in Fig. 7. Our supervoxel
segmentation is also based on the recent Iterative Spanning Forest (ISF) frame-
work [42] for superpixel segmentation (Section 2) and has three steps: (i) seed
estimation; (ii) connected supervoxel delineation (multiple iterations); and (iii)
seed recomputation to improve delineation, as follows.

Recall a template T , its predefined brain segmentation mask MT (objects
of interest), a preprocessed 3D test image I registered on T , and its attenuated
registration error map AI . Equivalently to SymmISF, we find initial seeds by
selecting one seed per local maximum in AI (see the seeds in Fig. 7). We compute
the local maxima of the foreground of a binarized AI at γ× τ , where τ is Otsu’s
threshold [28]. The higher the factor γ is, the lower is the number of components
in the binarized AI . We extend the seed set with a fixed number of seeds (e.g.,
100) by uniform grid sampling the regions with low REs of the binarized image,
resulting in the final seed set S.
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seed
estimation

ISF
concatenate
volumes

template
(reference image)

registration errors seeds

supervoxels

preprocessed
test volume
(3D image)

2 -band
stacked volume

Fig. 7: Pipeline of the proposed supervoxel segmentation. The method stacks
the input preprocessed test 3D image (segmented objects are colored) with the
template to build a 2-band volume. An initial seed set is obtained from the
registration errors of the test image. For each object of the segmentation brain
mask, the ISF framework [42] estimates supervoxels inside the object from the
initial seeds. Resulting supervoxels are combined and relabeled to form the final
label map.

By stacking I and T as the input 2-band volume (Fig. 7), we perform ISF in-
side each object of interest in MT , separately, from the initial seeds. The results
are label maps wherein each supervoxel is assigned to a distinct number/color.
We then combine and relabel the resulting supervoxels to build the final super-
voxel map L (output of Step 8 in Fig. 4).

3.4 Feature Extraction and Classification

Our feature extraction and classification steps are very similar to those of SAAD [24],
as detailed next. BADRESC relies on an outlier detection approach that designs
a set of specialized one-class classifiers (OCCs) specific for each test 3D image,
as shown in Fig. 8. For each 3D test image, each supervoxel in L is used to
create a specialized one-class classifier (OCC) using as feature vector the nor-
malized histogram of the attenuated registration errors (REs) in AI (Step 9 in
Fig. 4). Classifiers are trained from control images only, thus locally modeling
normal REs for the hemispheres, cerebellum, and brainstem. BADRESC uses
the one-class linear Support Vector Machine (oc-SVM) for this task [20]. Finally,
BADRESC uses the trained OCCs to find supervoxels with abnormal REs in I
(Step 10 in Fig. 4). Fig. 9 illustrates the supervoxel classification.

When dynamically designing specialized one-class per-supervoxel classifiers
for each test image, BADRESC implicitly considers the position of the super-
voxels when deciding upon their registration errors. The central premise for this
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Fig. 8: One-class classifier (OCC) training to detect abnormal registration errors.
For each supervoxel from a given test 3D image, BADRESC trains an OCC from
the training normal registration errors previously computed.

Classification

detected anomalies

for each test supervoxels

OCC for pair #1
pair #1 over

test reg. errors

Feature
Extraction Classification

… … …

test reg. errors

test supervoxels

Fig. 9: Detection of abnormal registration errors of a test 3D image by supervoxel
classification. For each supervoxel, BADRESC uses the corresponding OCC to
classify the registration errors inside it.

is that a single global classifier cannot to separate normal and anomalous tissues
by only using texture features.

4 Experiments

To assess the performance of BADRESC, we conducted a set of experiments.
This section describes the MR-T1 image datasets, baselines, and the evaluation
protocol considered for the experiments. All computations were performed on
the same Intel Core i7-7700 CPU 3.60GHz with 64GB of RAM.
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4.1 Datasets

To evaluate BADRESC, we need datasets with volumetric MR-T1 brain images
(i) from healthy subjects for training, and (ii) with lesions of different appearance
(especially small ones) and their segmentation masks. First, we considered the
CamCan dataset [39], which has 653 MR-T1 images of 3T from healthy men and
women between 18 and 88 years. As far as we know, CamCan is the largest public
dataset with 3D images of healthy subjects acquired from different scanners. To
avoid noisy data in the training set, we removed some images with artifacts
or bad acquisition after a visual inspection in all MR-T1 images, yielding 524
images.6

For testing, we chose the Anatomical Tracings of Lesions After Stroke (AT-
LAS) public dataset release 1.2 [19] in our experiments. ATLAS is a challenging
dataset with a large variety of manually annotated lesions and images of 1.5T
and 3T acquired from different scanners. It contains heterogeneous lesions that
differ in size, shape, and location (see Fig. 1). All images only have a mask with
the stroke region, ignoring other possible anomalies caused by those lesions.
Current state-of-the-art segmentation results [31] for ATLAS from a supervised
method based on U-Net are inaccurate yet (Dice score of 0.4867).

Since the considered training images have a 3T field strength, we selected
all 3T images from ATLAS for analysis (total of 269 images). All images were
registered into the coordinate space of ICBM 2009c Nonlinear Symmetric tem-
plate [12] and preprocessed as outlined in Section 3.1.

4.2 Baselines

We compared BADRESC against two baselines: (i) the SAAD method proposed
in [24], which in turn was also evaluated with the ATLAS dataset as reported
in [24], and (ii) the convolutional-autoencoder-based approach (CAE) from Chen
et al. [8], which is, as far as we know, the current state-of-the-art unsupervised
method for the ATLAS dataset.

We considered the 2D axial slices of all preprocessed training images to train
CAE, which has the following architecture: three 2D convolutional layers with
16, 8, and 8 filters of patch size 3× 3, respectively, followed by ReLU activation
and 2D max-pooling in the encoder, and the corresponding operations in the
decoder. The Nadam gradient optimizer [38] minimized the mean squared error
between reconstructed and expected 2D axial slices during training. The method
detects anomalies by thresholding the residual image of the input image vs its
reconstruction to obtain a binary segmentation, similarly to Baur et al. [4] and
Chen et al. [8]. We followed Baur et al. [4] by selecting two thresholds as the
90th and 95th percentile from the histogram of reconstruction errors on the
considered training set, resulting in the brightness of 194 and 282, respectively.
For simplicity, we call CAE-90 and CAE-95 for the versions with the 90th and
95th percentile, respectively.

6A link to all these images will be added in the camera-ready paper.
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For a fair comparison, we evaluated SAAD for all 3T images that only contain
lesions in the hemispheres. Additionally, we evaluated BADRESC and CAE
for all considered testing images, including the ones with stroke lesions in the
cerebellum and brainstem. We used the following parameters for BADRESC,
empirically obtained from the observation on a few training control images:
α = 0.06, β = 5.0, γ = 3, histograms of 128 bins, and ν = 0.01 for the linear
oc-SVM.

4.3 Quality Metrics

Although BADRESC detects anomalies regardless of their types or diseases, we
can compute quantitative scores only over those lesions that are labeled in AT-
LAS, which are a subset of what BADRESC can detect. Thus, we propose a set
of metrics to evaluate detection quality, as follows. We start computing the de-
tection rate based on at least 15% overlap between supervoxels detected by the
methods and lesions labeled in ATLAS (Tables 1 and 2, row 1). We then com-
puted the true positive rate (recall) that measures the percentage of lesion voxels
correctly classified as abnormal (Tables 1 and 2, row 2). Although our focus is
on detecting abnormal asymmetries, we also measured the Dice score between
lesions and the detected supervoxels to check BADRESC’s potential as a seg-
mentation method (Tables 1 and 2, row 3). However, observe that true anomalies
detected by our method that are not annotated as lesions in the ground-truth
masks will be incorrectly considered as false-positive and, thus, underestimat-
ing the Dice score. We could then consider only supervoxels overlapped with
the annotated lesions to compute Dice scores, but this would be unfair to the
considered baselines.

We provided false-positive (FP) scores in terms of both voxels and supervox-
els regarding the ground-truth stroke lesions of ATLAS. Hence, some anomalies
with no labeled masks in ATLAS are considered FP. This is the best we can do
in the absence of labeled masks for all kinds of abnormalities in this dataset.
We computed the mean number of FP voxels, i.e., incorrectly classified as ab-
normal (Tables 1 and 2, row 4). We normalized this count with respect to all
classified voxels (Tables 1 and 2, row 5), i.e., the total number of voxels inside
the right hemisphere for SAAD and all voxels from the hemispheres, cerebellum,
and brainstem for BADRESC and CAE.

At the next level, we estimated FP supervoxels as those whose voxels overlap
less than 15% with ground-truth lesion voxels. We computed the mean number
of FP supervoxels and their proportions to the total number of supervoxels
(Tables 1 and 2, rows 6 and 7). The first metric gives us an estimation of the
visual-inspection user effort. The second metric checks how imprecise detection
is regarding the total number of regions that the user has to analyze visually.

When visually analyzing FP supervoxels, it is harder to check many discon-
nected supervoxels spread across the brain than a few connected ones. Hence, we
gauge visual analysis user-effort by evaluating the two metrics outlined above
on the level of connected FP supervoxel components (Tables 1 and 2, rows 8
and 9). Finally, we also computed the mean processing times of each method
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(Tables 1 and 2, row 10) for preprocessed images, thus excluding the mean time
of the preprocessing step (Section 3.1), which is 90 seconds on average.

5 Evaluation Results

Table 1 summarizes quantitative results of the baselines for stroke lesions in the
hemispheres, while Fig. 10 presents some corresponding visual results. CAE-90
presents considerably higher detection scores (0.953) than SAAD (0.845) and
BADRESC (0.82). However, these impressive results are misleading as CAE re-
ports considerably more false-positive voxels than SAAD (about 6.75x), being
drastically worse than BADRESC (about 48x) — compare rows 4 and 5 in Ta-
ble 1. For instance, CAE-90 misclassifies 23.7% of the hemispheres as abnormal,
which is far from being reasonable and hinders the visual analysis (we expect
just a small portion of the brain, e.g., 1%). These high FP rates explain the
poor Dice scores for CAE in Table 1, which in turn are compatible with the ones
reported in [8].

Additionally, CAE is speedy (running time about 2s per image) and yields
very noisy disconnected regions, especially in regions with transitions between
white and gray matter (e.g., the cortex), that hinder the subsequent visual in-
spection (see the results in Fig. 10). Even though the number of FP voxels
decrease for a higher threshold, the detection score can be hugely impacted;
for example, the threshold at the 95th percentile approximately halves both the
detection score and FP voxels rates compared with the results for the 90th per-
centile in Table 1. CAE might present better results by using a considerable large
training set and/or some additional post-processing, but this is not considered
in [4, 8]. CAE presents better results for other medical imaging modalities, such
as CT and T2 [4, 8].

SAAD reports a better detection rate and mean recall for hemispheric le-
sions than BADRESC, although the difference between such scores is not accen-
tuate — e.g., SAAD has a detection rate of 0.845 while BADRESC has 0.82.
BADRESC, in turn, reports a better Dice score (0.17) than SAAD (0.12). How-
ever, as outlined in Section 4.3, this score is underestimated since real unlabeled
anomalies detected by the methods are considered false-positive. If we consid-
ered only supervoxels overlapped with the annotated lesions, such a Dice score
leverages to 0.42. While still low, this score is not far from state-of-the-art results
(Dice score 0.4867) on the ATLAS dataset from a supervised method based on
U-Net [31]. Interestingly, our method is noticeably superior to CAE, which is an
unsupervised method (like ours), reporting Dice scores of 0.015.

When analyzing supervoxels, both SAAD and BADRESC output more mean-
ingful regions for visual analysis than CAE — compare the detected regions in
Fig. 10. They can accurately detect small asymmetric lesions in the hemispheres
(Fig. 10, Image 1) since asymmetries and registration errors successfully empha-
size such lesions (see these for Image 1 in Fig. 10). SAAD cannot detect lesions
with low asymmetries, while BADRESC does not have this limitation — compare
the results, asymmetries, and registration errors for Image 2 in Fig. 10. However,
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Table 1: Quantitative comparison between the baselines for images from the
ATLAS dataset with stroke lesions in the hemispheres. Top part: higher values
mean better accuracies. Bottom part: lower values mean better accuracies.
The abbreviation k denotes thousands.

CAE-90 CAE-95 SAAD BADRESC
1 Detection rate 0.953 0.567 0.845 0.82

2 True positive rate
(mean recall) 0.34 ± 0.15 0.21 ± 0.13 0.44 ± 0.25 0.39 ± 0.26

3 Dice 0.015 ± 0.023 0.015 ± 0.024 0.12 ± 0.15 0.17 ± 0.15
4 # FP voxels 432k ± 186k 207k ± 45k 64k ± 37k 9k ± 11k
5 FP voxel rate 0.237 ± 0.102 0.113 ± 0.025 0.08 ± 0.05 0.005 ± 0.01
6 # FP supervoxels 58.87 ± 22.45 21.46 ± 13.86
7 FP supervoxel rate 0.2 ± 0.06 0.1 ± 0.07

8 # FP connected  
supervoxels 53 ± 17.31 16.61 ± 9.21

9 FP connected 
supervoxel rate 0.18 ± 0.05 0.08 ± 0.042

10 Mean processing time 
(in secs) 2.09 ± 0.08 2.04 ± 0.16 63.03 ± 6.73 54.17 ± 1.3

method does not use 
supervoxels

both methods are ineffective in detecting tiny anomalies (Fig. 10, image 3) since
asymmetries and registration errors cannot highlight such anomalies.

BADRESC is a bit faster and reports seven times fewer false-positive (FP)
voxels than SAAD (Table 1, rows 4, 5, and 10): an average of 9000 FP vox-
els against approximately 64000, respectively. Concerning FP supervoxel scores,
BADRESC is consistently better than SAAD (scores roughly three times higher)
— compare rows 6–9 in Table 1. For instance, SAAD incorrectly classifies 58.87
supervoxels on average, which consists of 20% of all analyzed supervoxels and
8% of the analyzed voxels in the hemisphere respectively. BADRESC, in turn,
reports an average of 21.46 FP supervoxels, which corresponds to 10% of ana-
lyzed supervoxels and only 0.5% of voxels in the whole brain. When grouping
connected detected supervoxels, BADRESC reports only 16 FP supervoxels.
Hence, a user will need far less effort and time to visually analyze results from
BADRESC than from SAAD.

BADRESC is less accurate when detecting lesions in the cerebellum and
brainstem (detection rate of 0.683) than in the hemispheres, as shown in Ta-
ble 2 and Fig. 11. Some of these lesions are indeed challenging, especially in the
cerebellum, whose appearances are similar to their surrounding tissues (Fig. 11,
Image 6). BADRESC reports similar FP scores to those of hemispheric lesions,
which confirms the stability of the method (compare rows 4-9 for BADRESC in
Tables 10 and 11). The considered registration-error attenuation (Eq. 2 with
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image 1
ground-truth
segmentation

SAAD
result asymmetries

BADRESC
result reg. errors

CAE
(95th percentile)

CAE
(90th percentile)

image 2
ground-truth
segmentation

SAAD
result asymmetries

BADRESC
result reg. errors

CAE
(95th percentile)

CAE
(90th percentile)

image 3
ground-truth
segmentation

SAAD
result asymmetries

BADRESC
result reg. errors

CAE
(95th percentile)

CAE
(90th percentile)

Fig. 10: Comparative results between the baselines for stroke lesions in the hemi-
spheres. For each image (axial slice), we present an inset surrounding the lesion
whose border color indicates if the lesion was detected (green) or missed (red).

α = 4) seems to be very strong for the cerebellum and brainstem, which impairs
the representation of the lesions. However, as SAAD cannot detect lesions in
the cerebellum and brainstem, BADRESC is a more interesting solution to be
further investigated and improved, especially in such macro-objects of interest.

6 Conclusion

We presented a new unsupervised method for brain anomaly detection that
combines registration errors and supervoxel classification. Our approach, named
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Table 2: Quantitative comparison between CAE and BADRESC for images from
the ATLAS dataset with stroke lesions in the cerebellum and brainstem. Top
part: higher values mean better accuracies. Bottom part: lower values mean
better accuracies. The abbreviation k denotes thousands.

CAE-90 CAE-95 BADRESC
1 Detection rate 0.878 0.365 0.683

2 True positive rate
(mean recall) 0.3 ± 0.145 0.17 ± 0.14 0.26 ± 0.26

3 Dice 0.01 ± 0.02 0.01 ± 0.01 0.1 ± 0.15
4 # FP voxels 434k ± 68k 225k ± 67k 8.7k ± 7.9k
5 FP voxel rate 0.238 ± 0.038 0.124 ± 0.037 0.005 ± 0.004
6 # FP supervoxels 23.43 ± 15.25
7 FP supervoxel rate 0.09 ± 0.05

8 # FP connected  
supervoxels 18.41 ± 10.19

9 FP connected 
supervoxel rate 0.08 ± 0.03

10 Mean processing time 
(in secs) 2.09 ± 0.08 2.04 ± 0.16 54.17 ± 1.3

method does not use 
supervoxels

BADRESC, adapts a recent supervoxel-based approach (SAAD) to detect out-
liers as anomalies from registration errors in the hemispheres, cerebellum, and
brainstem. This work is an extension of a previous one, which originally intro-
duces BADRESC. Its main contributions include a more detailed explanation
of the method, especially concerning supervoxel segmentation, and an extended
evaluation (more baselines and evaluation metrics).

BADRESC was validated on 3T MR-T1 images of stroke patients with anno-
tated lesions, outperforming a convolutional-autoencoder-based approach, and
attaining similar detection accuracy to SAAD for lesions in the hemispheres
and substantially fewer false positives. BADRESC also detects lesions in the
cerebellum and brainstem with promising results.

For future work, we intend to improve BADRESC by optimizing its param-
eters and using additional visual analytics techniques to improve seeding and
further investigate other anomaly features and classifiers to yield better detec-
tion rates, especially for the cerebellum and brainstem.
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A Image Foresting Transform

The Image Foresting Transform (IFT) is a methodology for the design of image
operators based on optimum connectivity [11]. For a given connectivity function
and a graph derived from an image, the IFT algorithm minimizes (maximizes) a
connectivity map to partition the graph into an optimum-path forest rooted at
the minima (maxima) of the resulting connectivity map. The image operation
resumes to a post-processing of the forest attributes, such as the root labels,
optimum paths, and connectivity values. IFT has been successfully applied in
different domains, such as image filtering [10], segmentation [6, 22, 36], superpixel
segmentation [5, 24, 42], pattern classification [2, 29], and data clustering [27, 32].
This appendix presents preliminary concepts and introduces the IFT algorithm.

A.1 Preliminary Concepts

Image Graphs: A d-dimensional multi-band image is defined as the pair Î =
(DI , ~I), where DI ⊂ Zd is the image domain — i.e., a set of elements (pix-

els/voxels) in Zd — and ~I : DI → Rc is a mapping function that assigns a

vector of c intensities ~I(p) — one value for each band (channel) of the image
— to each element p ∈ DI . For example, for 2D RGB-color images: d = 2,
c = 3; for 3D grayscale images (e.g., MR images): d = 3, c = 1. We repre-
sent a segmentation of Î by a label image L̂ = (DI , L), wherein the function
L : DI → {0, 1, · · · ,M} maps every voxel of Î to either the background (label
0) or one of the M objects of interest.

Most images, like the ones used in this paper, typically represent their in-
tensity values by natural numbers instead of real numbers. More specifically,
~I : DI → [0, 2b − 1], where b is the number of bits (pixel/voxel depth) used to
encode an intensity value.

An image can be interpreted as a graph GI = (DI ,A), whose nodes are the
voxels and the arcs are defined by an adjacency relation A ⊂ DI × DI , with
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A(p) being the adjacent set of a voxel p. A spherical adjacency relation of radius
γ ≥ 1 is given by

Aγ : {(p, q) ∈ DI ×DI , ‖q − p‖ ≤ γ}. (3)

The image operators considered in this paper use two types of adjacency rela-
tions: A1 (6-neighborhood) and A√3 (26-neighborhood), as illustrated in Fig. 12.

p

(a)
A1: 6-neighborhood.

p

(b)
A√3: 26-neighborhood.

Fig. 12: Examples of adjacency relation for a given voxel p (red).

Paths: For a given image graph GI = (DI ,A), a path πq with terminus q is a
sequence of distinct nodes 〈p1, p2, · · · pk〉 with 〈pi, pi+1〉 ∈ A, 1 ≤ i ≤ k − 1, and
pk = q. The path πq = 〈q〉 is called trivial path. The concatenation of a path πp
and an arc 〈p, q〉 is denoted by πp · 〈p, q〉.

Connectivity Function: A connectivity function (path-cost function) assigns
a value f(πq) to any path πq in the image graph GI = (DI ,A). A path π∗q ending
at q is optimum if f(π∗q ) ≤ f(τq) for every other path τq. In other words, a path
ending at q is optimum if no other path ending at q has lower cost.

Connectivity functions may be defined in different ways. In some cases, they
do not guarantee the optimum cost mapping conditions [9], but, in turn, can pro-
duce effective object delineation [26]. A common example of connectivity function
is fmax, defined by

fmax(〈q〉) =

{
0 if q ∈ S,
+∞ otherwise.

fmax(πp · 〈p, q〉) = max{fmax(πp), w(p, q)},
(4)

where w(p, q) is the arc weight of 〈p, q〉, usually estimated from Î, and S is the
labeled seed set.
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A.2 The General IFT Algorithm

For multi-object image segmentation, IFT requires a labeled seed set S = S0 ∪
S1 ∪ · · · SM with seeds for object i in each set Si and background seeds in S0, as
illustrated in Fig. 13. The algorithm then promotes an optimum seed competition
so that each seed in S conquers its most closely connected voxels in the image
domain. This competition considers a connectivity function f applied to any
path πq.

!0

!1 !2R

(a)

!0

!1 !2

(b)

L

!0

!1 !2

(c)

Fig. 13: Multi-object image segmentation by IFT. (a) Axial slice of a brain image
with seeds S0 for the background (orange), S1 for the right ventricle (red), and
S2 for the left ventricle (green). (b) Gradient image for (a) that defines the arc
weights for seed competition. Arcs have high weights on object boundaries. (c)
Resulting segmentation mask for the given seeds and arc weights. Red and green
voxels represent object voxels, whereas the remaining ones are background.

Defining Πq as the set of all possible paths with terminus q in the image
graph, the IFT algorithm minimizes a path cost map

C(q) = min
∀πq∈Πq

{f(πq)}, (5)

by partitioning the graph into an optimum-path forest P rooted at S. That is,
the algorithm assigns to q the path π∗q of minimum cost, such that each object i
is defined by the union between the seed voxels of Si and the voxels of DI that
are rooted in Si, i.e., conquered by such object seeds.

Algorithm 2 presents the general IFT approach. Lines 1–7 initialize maps,
and insert seeds into the priority queue Q. The state map U indicates by U(q) =
White that the voxel q was never visited (never inserted into Q), by U(q) = Gray
that q has been visited and is still in Q, and by U(q) = Black that q has been
processed (removed from Q).

The main loop (Lines 8–20) performs the propagation process. First, it re-
moves the voxel p that has minimum path cost in Q (Line 9). Ties are broken in
Q using the first-in-first-out (FIFO) policy. The loop in Lines 11–20 then eval-
uates if a path with terminus p extended to its adjacent q is cheaper than the
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Algorithm 2: The General IFT Algorithm

Input: Image Î = (DI , I), adjacency relation A connectivity function f , and
seed set S ⊂ DI labeled by λ.

Output: Optimum-path forest P , root map R, path-cost map C, and label
map L.

Aux: Priority queue Q, state map U , and variable tmp.

1 foreach q ∈ DI do
2 P (q)← ∅, R(q)← q
3 C(q)← f(〈q〉), L(q)← 0
4 U(q)←White
5 if q ∈ S then
6 insert q into Q
7 L(q)← λ(q), U(q)← Gray

8 while Q 6= ∅ do
9 Remove p from Q such that C(p) is minimum

10 U(p)← Black
11 foreach q ∈ A(p) such that U(q) 6= Black do
12 tmp← f(π∗p · 〈p, q〉)
13 if tmp < C(q) then
14 P (q)← p, R(q)← R(p)
15 C(q)← tmp, L(q)← L(p)
16 if U(q) = Gray then
17 update position of q in Q

18 else
19 insert q into Q
20 U(q)← Gray

21 return (P,R,C, L)

current path with terminus q and cost C(q) (Line 13). If that is the case, p is
assigned as the predecessor of q, and the root of p is assigned to the root of q
(Line 14), whereas the path cost and the label of q are updated (Line 15). If q
is in Q, its position is updated; otherwise, q is inserted into Q. The algorithm
returns the optimum-path forest (predecessor map), root map, path-cost map,
and the label map (object delineation mask).


