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ABSTRACT
Tool support for program understanding becomes increasingly important in the
software evolution cycle, and it has become an integral part of managing systems
evolution and maintenance. Using interactive visual tools for getting insight into large
evolving legacy information systems has gained popularity. Although several such
tools exist, few of them have the flexibility and retargetability needed for easy
deployment outside the contexts they were initially built for. The lack of flexibility and
limitations for customizability is a management as well as a technical problem in
software evolution and maintenance. This chapter discusses the requirements of an
open architecture for software visualization tools, implementation details of such an
architecture, and examples using some specific software system analysis cases. The
focus is primarily on reverse engineering, although the proposed tool architecture is
equally applicable to forward engineering activities. This material serves the software
architects and system managers as well as the tool designers.

INTRODUCTION
Businesses of many organizations heavily depend on effective maintenance of

increasingly aging software. As software ages, the task of managing to maintain it
becomes more complex and more expensive. Poor design, unstructured programming
methods, and crisis-driven maintenance can contribute to poor code quality, which in
turn affects understanding of the system properties. Program understanding (Tilley,
1998; Muller et al., 1993; Tilley et al., 1998) is a relatively young and evolving field
concerned with identifying artifacts and their relationships and understanding their
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structure and semantics. The essence of this process is essentially pattern matching at
different abstraction levels. These levels induce in turn different representations of the
candidate system. Overall, the aim is to aggregate these artifacts in a hierarchical
representation in order to achieve a more refined and abstract understanding of the
original system. Low-level representations, such as call or module dependency graphs,
help the developers to grasp the system properties. More abstract and higher-level
representations, such as simplified functional, task, or architectural diagrams may be
used by the management to succinctly overview the status and evolution of a given
software project.

Program understanding uses several information sources, such as direct source
code examination, leveraging corporate knowledge, and computer-assisted methods. In
this chapter, we focus on reverse engineering (RE) methods that address the process of
understanding existing (large) software systems. However, note that the analysis and
results presented in this work are also useful for the forward engineering activity.

Furthermore, we shall focus on computer-assisted RE methods, which have a
number of important advantages. Firstly, they represent a deterministic representation
of a software system, as compared to subjective interpretations. Secondly, they are used
to analyze large systems, whereas direct source code examination fails for systems larger
than approximately 50000 lines of code (Stasko et al., 1998). Thirdly, they require, in
virtually all cases, less time to learn and apply. Finally, automated methods are the only
ones applicable in the vast majority of the cases, given the size of the systems at hand.
Managing the evolution of large software systems thus requires automated support for
their understanding, which implies, at some point, the need for flexible RE tools.

Reverse engineering provides a conceptual framework for describing the process
of software understanding and conceptual abstraction. This framework is supported by
several RE tools. In the recent past, an impressive number of such RE tools has emerged.
However, finding the “right” tool for a given application domain remains a challenging
problem. This is mainly due to the fact that application systems vary from systems to
systems, and thus may spawn different, often divergent requirements.

Given the above, practitioners in the RE field are left with two main choices: either
pick one of the available RE tools and adapt it to one’s specific data and requirements
or create a new RE tool from scratch. In most cases, the solution of choice falls somewhere
between the above two scenarios. If tool adaptation or design is required, it is thus of
great importance for the RE practitioner to:

• understand the often subtle trade-offs the existing tools make in their implemen-
tation

• be able to predict the limitations before adopting a given tool
• avail a framework for designing a customized RE tool, in case adapting an existing

one is too difficult for a particular application.

Overall, these often require a detailed analysis of the architecture of the RE tools.
Based on such an analysis, the RE practitioner can compare different tools to a set of
requirements, estimate the customizability of a tool of choice, or estimate the effort and
way to design a custom RE tool. In absence of this analysis, tool evaluation is a time-
consuming trial-and-error procedure that is not often feasible in most situations due to
various constraints.
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We continue our analysis by first noting that most RE tools provide two main
features:

• construction of a layered program representation by automatic and user-driven
(interactive) operations

• visualization of this representation in various ways, such as navigable graphical
views at different levels of detail.

As mentioned, most RE tools differ in the way and extent they address the above
two requirements. Some tools focus on program analysis and domain modelling, and thus
on the program representation construction, but provide little for the visual examination
and editing of the constructed representation. Other tools focus on data visualization
but do not perform program analysis and are hard to integrate with tools that support this
task. Overall, one may conclude that most existing RE tools are based on internal
architectures that seriously limit the options for customization of several RE tasks such

Several attempts have been made to design generic RE tools in the form of software
frameworks allowing users to define and customize operations for their specific tasks.
Ideally, such frameworks would minimize the time needed by the software engineer to
adapt them to specific application requirements. However, the RE framework tools we are
aware of are still too rigid to be easily reusable out of the context for which they were
initially designed.

We propose here a software architecture for reverse engineering tools that tries to
capture most of the concepts presented in the abstract RE framework. We next propose
in detail how such an architecture can be implemented. Special attention is paid to the
visual aspect of the reverse engineering process. Our first objective is to build a simple
prototype of the RE data exploration scenarios by combining and customizing existing
software components. We compare various aspects of our proposed architecture with
existing RE tools and outline the differences. Finally, we present a number of RE
applications in which we used the proposed architecture.

BACKGROUND
Several studies (Tilley, 1998; Telea et al., 2002; Riva et al., 2002) in the past have

identified five major tasks that an RE tool should support. These tasks are defined at
various abstraction levels of the hierarchy: program analysis, plan recognition,
concept assignment, redocumentation, and architecture recovery. Program analysis
is the basic task that any RE tool should support and consists of two services:
construction of a layered program model and presentation of this model to the user, that
is, via graphical navigable views at different levels (Eick & Wills, 1999; Stasko et al., 1998).
Plan recognition aims at finding certain design patterns in the software (Gamma et al.,
1995; Mendelzon & Sametinger, 1997). These design patterns form the so-called domain
model, that is, the concept group describing a particular application field. A first attempt
for plan recognition would be an editor for manual assignment of design patterns to
elements obtained from program analysis and the visualization thereof, for example, UML
diagrams. Concept assignment (Biggerstaff et al., 1994) is the task of discovering
concepts and assigning them to their implementation counterparts. RE tools might
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support concept assignment by annotating the software artifacts with concepts retrieved
from a domain-specific concept database and visualising this annotation.
Redocumentation (Tilley et al., 1998) is the task of retroactively providing documenta-
tion for existing software systems. Since redocumentation spans three tasks discussed
so far, an RE tool could support it by the mechanisms outlined so far. Architecture
recovery (Wong et al., 1995) focuses on the recovery of architectural aspects of large
systems.

The five mentioned RE tasks concur, and not compete, to the overall RE goal, that
is, extracting low-level code information and enriching it with information from other
sources. Since we are interested in RE tool support, we shall refine the above RE tasks
into the following generic steps that an RE tool should implement (see Figure 1a) (Wong
et al., 1995; Young, 1997; Wong, 1999):

1. extract the low-level artifacts from the source code.
2. aggregate the extracted artifacts into  a hierarchical model.
3. measure the model’s quality using computed norms; if needed, re-execute the

aggregation differently.
4. select a sub-hierarchy to examine, if the whole is too large, complex, or unclear to

display.
5. visualize the data, for example by producing a graph layout, followed by drawing

the selected data (Telea et al., 2002).

In other words, for an RE tool to address the tasks mentioned previously, it has to
implement the above five operations. Steps 2 to 5 can occur in any order – one may, for
example, first visualize the whole model produced by Step 1, then apply some user- or
system-driven aggregation (Step 2), measure the result’s quality (Step 3), select a feature
to look at (Step 4), and then repeat from Step 2. This matches the program understanding
cognitive model (Young, 1997) that consists of alternate top-down and bottom-up

Figure 1: Reverse Engineering Pipeline (a). Toolkit Architecture Overview (b).
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passes. Step 5 may provide different visualizations besides graph drawing. However, in
most cases we are aware of, RE users desire to focus on the specific relations between
(groups of) software components, and so graph visualization is their first choice.

THE NEED FOR
INTEGRATION AND GENERICITY

Numerous papers address the conceptual problems of reverse engineering sketched
in the previous sections. Ample material has been written over various RE tool implemen-
tations. However, it seems in practice that every attempt to reverse engineer a large
system reaches some functional limitation of the existing RE tools. Concretely, such tools
may fail at providing, or allowing customization of one (or several) of the RE pipeline steps
described in the section “Background”. For example, many tools emerging from the
program analysis and formal method community fail at providing interactive means for
visual program inspection. At the other extreme, there exist many tools providing
extensive, sometimes exotic visualization metaphors for program data, but little in
program analysis (Stasko et al., 1998). One reason for this situation is that building a good
RE tool spans two traditionally different fields: software engineering and information
visualization. Another reason is that information visualization, the discipline that
analyzes how detail program information could be conveyed in abstract relational data
via images, is a relatively new field. We believe that a successful RE tool should provide
a flexible architecture encompassing all the five pipeline steps discussed previously, as
well as a generic way to customize and extend these for particular domain models.

ARCHITECTURE PROPOSAL
We propose here a novel architecture for an RE tool that is consistent with the

genericity and flexibility requirements detailed in the previous section. This architecture
borrows some ideas from the scientific visualization systems community (Upson et al.,
1989; Schroeder et al., 1995). In this sense, the proposed architecture consists of a number
of operations performed on a number of datasets. To this model, we add specific
operations and structure of the RE pipeline as outlined in the section “Background”.
Given the increasing importance of providing effective RE tools and the lack of detailed
RE tool architecture presentation in the literature, we believe that this will help practitio-
ners in the field needing to assess, develop, adapt, or extend RE tools.

     The proposed architecture comes as a layered system consisting of a compiled
core and an interpreted based user interface (UI) and scripting front-end,  as shown in
Figure 1b.   Our implementation used C++ for the core and Tcl/Tk (Harrison & McLennan,
1997) for the UI and scripting. However, as detailed later, other implementations of the
same architecture could be easily achieved. The core is responsible for the RE data and
operation implementation, whereas the front-end provides customization and interaction
mechanisms. Virtually all RE tools we are aware of follow this pattern. We describe the
data and operation model implemented by the core in the next section.
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Data Model
Our data model consists of two main elements: a layered graph and selections, as

depicted in Figure 1b. The layered graph consists of structure and attributes.

Structure
Although many work on RE tools use different terminologies (Wong, 1999; Card et

al., 1999; Stasko et al., 1998), virtually all models represent the basic RE data as a
hierarchical (layered) attributed graph. In the graph’s nodes model, software artifacts
are created from program analysis, for example, source code parsing. In the graph’s layers
model, node aggregations (clusterings) are done during plan assignment throughout
architecture recovery. In the edges model, both relational and containment information
is used. In contrast to research work reported by others, we do not impose any restrictions
on the graph topology, but rather it is determined by the user-driven RE aggregation
process. In other words, we model all data as a graph whose nodes represent software
artifacts (e.g., classes, files, methods, packages, tasks) and edges represent relation-
ships (e.g., containment, calls, dependencies).

Attributes
Both nodes and edges may have key-value pair attributes. These represent both the

acquired data, for example, number of lines of code of a module or number of bugs, or data
derived during the RE process itself, for example, via software metrics. The keys are used
as data identifiers. We implement keys as string literals and values as primitive types
(integer, floating-point, pointer, or string). In particular, each node and edge has a set
of attributes with distinct keys, managed in a hash-table-like fashion. Attributes auto-
matically change type if written with a value of another type. Several attribute plans can
thus coexist in the graph. An attribute plan is defined implicitly as all attributes of a given
set of nodes/edges for a given key, for example, all values of the “number of bugs” key.
Our attribute model differs from the one used by most RE applications (Eick & Wills, 1999;
Wong, 1999; Kazman & Carriere, 1996) which choose a fixed set of attributes of fixed types
for all nodes/edges. Our choice is more flexible, since: a) certain attributes may not be
defined for all nodes; and b) attribute plans are frequently added and removed in a typical
RE session. See section “Attribute Editing” for more details. Moreover, both memory and
access time for attributes are kept low in this way, which is essential for coping with the
graphs of tens of thousands of elements. In this sense, our model resembles the one used
by the GVF (Marshall et al., 2001) and Visage (Kolojechich & Roth, 1997) tools.

Selections
Selections, defined as sets of nodes and edges, allow executing toolkit operations

on a specific subset of the whole graph. To make the toolkit flexible, we decouple the
subset

specification (which are the nodes and edges to work on) from the operations’
definitions (what to do with the selected data), similarly to the dataset-algorithm
decoupling in scientific visualization. Selections are named, and play the role of variables
in a usual program. Our graphs are structurally equivalent to the node-and-cell dataset
model in scientific visualization (SciViz) frameworks, whereas our selections do not have
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a direct structural equivalent. Selections are functionally equivalent to SciViz datasets,
since they are the operations’ inputs and outputs. This is one of the main differences
between SciViz and software visualization tools, which leads to different architectures
for the two. In other words, our architecture is more data-centric than classical SciViz
frameworks, as data elements are explicitly addressable via selections. However, our
architecture is also operation-centric. More is available from Kolojechich and Roth (1997)
for a comparison of the data and operation-centric models, since operations can be
explicitly specified, as described in the following texts.

     Selections have functional equivalents in some software visualization tools. In
GVF (Marshall et al., 2001), they are represented by group nodes. In Rigi (Wong, 1999),
they are implicitly represented by the slicing or filtering of operation output. See the
section “Selection Operations” for more details. However, neither GVF nor Rigi has an
explicit structure similar to selections. Visage’s collections (Kolojechich & Roth, 1997)
come closest to our selection concept, both structurally and functionally.

OPERATION MODEL
Operations have three types of inputs and outputs: selections that specify on

which nodes and edges to operate; attribute keys that specify on which attribute plan(s)
of the selection to work; and operation-specific parameters, such as thresholds or
factors. We distinguish four operation types, based on their read/write data access:

• Selection operations create selection objects.
• Structure editing modifies the graph topology.
• Attribute editing modifies the graph attributes.
• Mapping maps the graph data to visual objects.

The above data-operation interface allows the core to automatically update all
components that depend on the modified data after an operation’s execution, using a
simple Observer design pattern (Gamma et al., 1995). For example, the selections are
automatically updated after a structure editing operation that deletes selected nodes or
edges. Similarly, the data viewers (see the section “Visualization”) are updated when the
monitored selections change. This operation model based on observers monitoring a
fixed number of operation types is a simplification of the more general idea of dataflow
pipelines widely used by SciViz tools (Upson et al., 1989; Schroeder et al., 1995). The
dataflow pipeline advantage is that it allows automatic update of more complex data
dependencies. However, the practical experience suggests that constructing and main-
taining an explicit dataflow pipeline is not a simple task for average non-programmer
users. The simple structure of the RE pipeline as depicted in Figure 1a suggests our
operation model serves the purpose.

Selection Operations
Selection operations add nodes and edges to selection objects. Several such

operations can be implemented as follows. Level selections (called “horizontal slices”
in the RE literature (Wong, 1999)) gather all nodes and association edges on a certain
aggregation level in the layered graph, and are useful for visualizing the software at a
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given level of detail. Tree selections (called “vertical slices” in Wong 1999) gather all
nodes and containment edges reachable from nodes in an input selection, and are useful
in for example, visualizing sub-system structures or change propagation (Marshall et al.,
2001). Conditional selections (called “filters” in most RE papers) gather all elements in
an input selection that obey some attribute-based condition, and are useful in queries
such as “show all nodes where the cost attribute is higher than some threshold”. Finally,
boolean selections allow combining existing selections via intersection, union, and so
forth, and are useful as part of more complex activities. As compared to many software
visualization tools (e.g., Wong, 1999; Marshall et al., 2001), performing a horizontal or
vertical slice or a filtering, in our case, does not alter the graph data – it just creates some
new selection objects.

Structure Editing
Structure editing operations construct and modify the graph. Such operations

include the standard node and edge addition and removal, as well as reading several
graph formats such as file formats like RSF (Wong, 1999), GraphEd, DOT (Koutsoufios
& North, 1996), and GXL (Marshall et al., 2001). Aggregation operations usually take the
nodes in an input selection and produce a unique parent node. The input selection can
either be programmatically constructed, such as automatic clustering methods, or can be
the output of user interaction (section “Visualization”).

Attribute Editing
Attribute editing operations take a selection as input and compute one or several

attributes on the selection’s nodes and/or edges (see the section “Attributes”). We
found this system much more flexible than, for example, strong-typed designs, which
associate a fixed set of typed attributes with a node or edge. Attribute editing operations
can be further classified on their function, from a user perspective. In most software
analysis scenarios, we have encountered two types of attribute editing: metric compu-
tation and layout computation. These are discussed later. However, note that this

Figure 2: Custom Layouts: 3D Stacked Layout (a) and 2D Nested Layout (b).

a b
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classification is one of the many possibilities - other attribute editing operation classes
may be created, depending on the specific application domain at hand.

Metrics computation
We treat RE metrics as attribute editing operations. Examples of RE metrics are

component coupling strength, the number of provisions, requirements, and internaliza-
tions (Wong, 1999; Tilley, 1998). Metrics may produce new attribute-plans, as the above
metrics do, or single values, for example, a sub-graph’s cyclomatic number or size.
Decoupling the metric’s selection input from the selection operation allows applying any
metric on any sub-graph, which is not the case in other RE tools (Wong, 1999; Kazman
& Carriere, 1996). Moreover, explicitly specifying the input and output attribute-plan
names allows easy run-time prototyping of various combinations of metrics, similarly to
the way one works with function or matrix objects in systems such as Matlab of
Mathematica. Finally, the above decoupling allows the metrics, attributes, and selections
to be coded independently in our architecture.

Layouts computation
In contrast to most RE systems (e.g., Wong, 1999; Kazman & Carriere, 1996;

Marshall et al., 2001), we treat graph layouts simply as attribute editing operations and
thus decouple them completely from mapping and visualization (see the section “Visu-
alization”). This has several benefits. Firstly, we can layout different sub-graphs
separately; for example, using spring embedders for call graphs and tree layouts for
containment hierarchies (see Figure 2). Secondly, we can precompute several layouts,
for example, to quickly switch between them. Finally, we can cascade different layouts
on the same position attributes, for example, to apply a fish-eye distortion or refine an
existing layout. We have implemented several custom layouts by cascading simpler
ones, as follows. Stacked layouts (see Figure 2a) provide a selection spanning several
layers of a graph by applying a given 2D layout (e.g., spring embedder) per layer and then
stacking the layers in 3D. The layers are computed as horizontal slices (see the section
“Selection Operations”). Stacked layouts visualize effectively both containment (verti-
cal) and association (horizontal) relations in a software system. Nested layouts (see
Figure 2b) provide a similar selection as above, by recursively laying out the contents
of every node separately and then laying out the bounding boxes of the containing
nodes. Nested layouts produce images similar to package UML diagrams and have
proven to be very helpful in RE applications, as they are quite familiar to software
engineers. Users can easily combine any 2D layouts as the building bricks for the stacked
and nested layouts. In the example cited in Figure 2a, we use a tree layout, whereas in
Figure 2b we use a spring embedder as basic layout. Adding new layouts to the toolkit
is reasonably simple. The implementation of the generic spring embedder and tree layout
we added to the framework of Koutsoufios and North (1996) exceeds 50,000 lines in C
programming language. Adding them in a black-box fashion required less than 100 C++
lines each, whereas our custom layouts have each under 200 C++ lines. In this respect,
our layout composition is very similar to the “power tool” design in Visage (Kolojechich
& Roth, 1997).
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VISUALIZATION
Mapping and visualization operations enable users to see and interact with the RE

data. These operations have four sub-components: mappers, viewers, glyph factories,
and glyphs (see Figure 3).

These operations are implemented using the Open Inventor C++ toolkit (Wernecke,
1993), which offers sophisticated mechanisms for object direct manipulation, picking,
and rendering. If deemed necessary, the architecture allows using other similar toolkits,
for example, Java 3D.

The central visualization component is the mapper, which creates 2D and 3D
drawable representations out of the core graph data. We have implemented several
mappers, as follows. The glyph mapper creates a glyph, that is, an iconic symbol, for each
node and edge in the input selection, and positions these glyphs at the 2D or 3D
coordinates provided by a node/edge attribute plane, computed by a layout operation
(see the section “Layout Operations”).

The splat mapper produces a height map, coloured by mapping the height attribute
via a red-to-blue colormap. The height map shows the variation of node density per unit
area, weighted by a given attribute, but does not draw the edges explicitly. This
effectively visualizes large software structures exhibiting local node agglomerations, for
example, corresponding to highly coupled clusters (see van Liere & de Leeuw, 2003 for
details). For example, Figure 4c shows a height field weighted by the package provision
metric. The String and ListIter implementation classes show up clearly, as they are used
by most other system components. In the previous example, one sees that the system
heavily depends on String and ListIter, so changes to these two components potentially
have a strong impact on the system stability.

 A glyph is a 2D or 3D graphical object that visualizes a node or edge. The glyph
mapper calls, for every node and edge it maps, a Tcl script, called a glyph factory, which
builds the desired glyph as an Inventor node. The script sets the glyph’s graphical
properties (color, shape, size, annotation, and so on) from the attributes of the input node
or edge. Users may edit these scripts at run-time, so it is very easy to customize the
visualization. Figure 4 shows a glyph-based visualization of the software of a program
analysis system developed at Nokia. Figure 4a shows all 1200 software artifacts (meth-
ods, classes, packages, and files) extracted from the code. Figure 4b shows a simplified
view of the system’s core, after several graph-editing operations have been applied to
filter the less important artifacts and cluster the remaining ones into higher-level units.
Different glyphs have been used to show the different unit types, whereas the sub-

Figure 3: Software Components of the Mapping Operation.
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system coupling strength (Tilley, 1998) is visualized by edge glyphs of different
thicknesses. The separation of the glyph placement done in the layout phase, and the
glyph construction done in the mapping phase, is a simple but powerful way of specifying
the visualization. New glyph factories can be developed without being concerned by the
layout, whereas new layout tools can be added to operate on existing glyphs.

We show next a second example that illustrates the comparison of related software
product families shown in Figure 5. For a detailed treatment on this, see Telea et al. (2003).
Here, we show the RDF schema instances describing the UAProf notation (WAP Forum,
2000), a language for modeling device capabilities and user preferences for mobile
phones. We used the glyph shapes to indicate various types of the UAProf language
elements: Triangles are named resources, literals are circles, and rectangles are anony-
mous resources. The coloring scheme allows comparing different software products:
nodes specific to a single instance are green; nodes shared by the two Ericsson products

Figure 4: Visualization of Program Analysis Tool (a). Glyphs Showing Clustered Core
Detail (b). Splat Mapper Visualizing Class Provisions (c).
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are green; and nodes common to all instances are red. This simple visualization already
allows one to see that all four products have roughly the same structure and identify the
potentially important components shared by two, all, or just one product.

 In a final example, we show a component-based architecture of a Nokia mobile
phone software system, as shown in Figure 6. The top image shows the system
containment tree, in which the user has selected two sub-system sub-trees, denoted by
Sub-system 1 and Sub-system 2 (drawn in red). The bottom image shows, using a nested
layout (see the section “Layout Operations”), the function call relations between the
components contained in the two selected sub-systems. By interactively selecting
different sub-system tree via clicking the tree root icons in the first view, architects get,
in the second view, insight into the sub-system call interdependencies on each architec-
tural layer. In the previous example, we immediately see which are the “interface”
components, that is, the components through which Sub-systems 1 and 2 communicate.
Secondly, we see that lower level components (the small, light colored boxes on the

Figure 5: Visual Comparison of Four Mobile phone Specifications (RDF Schema
Instances).
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lowest containment level) do not make cross-system calls, a desired property of many
architectures.

     Concluding this section on operations, the properties of the selection, structure
and attribute editing, and mapping operations discussed here make our operation
concept quite similar to Visage’s “primitive tools” (Kolojechich & Roth, 1997). The main
difference between the two concepts is the way of classifying operations. We group
operations structurally, depending on what data are read and/or written. Visage (and
several other tools) groups operations functionally into primitive tools, power tools, and
appliances. Both classification models have their own merits. Our proposed framework
helps the tool designer implement related operations easily by sharing code and
behavior. Visage’s model helps the user find related operations in the same class.

EVALUATION
We have used the RE tool presented so far for reverse engineering and exploring

several software systems. In all cases, parsing the data (source code or RDF schemas)
to produce the attributed graph input data has been done by external parser tools that

Figure 6: Mobile phone Layered Architecture (top). Sub-system Call Dependencies for
User-Selected Components (bottom).
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the users already had. The input source code ranged between a few hundred lines up to
600,000 lines of code. Depending on the concrete application, RDF, C, C++, or Java code
was parsed. Specific user interfaces (GUIs) were constructed in Tcl and added to the RE
tool core described in this chapter in order to provide application-specific functionality
atop the generic core. Such functionality included specific queries and filtering; for
example, “show all system components programmed after a given date”, or “eliminate all
system components having less than 200 lines of code”. Custom user interaction, such
as constructing a nested layout of an interactively selected sub-graph shown in Figure
6, is also programmed via small Tcl scripts.

     An important question is what the costs associated with adding visual reverse
engineering support to an existing software workflow are. The above cost has three
components:

1. learning to use the visual RE tool
2. adapting the tool by writing custom Tcl scripts
3. abstracting the domain-specific questions into RE operations

All three cost components are essentially determined by the abstraction level
required by the end users. Low-level visual RE, for example, getting insight into the call
or structure relationships of a software system, is the easiest to add. The main reason
is that the end users, software developers in this case, are quite familiar with call graphs
and thus they can easily adapt to the visual metaphors we use. Secondly, writing small
Tcl scripts to customize the tool’s operation, usually done by adapting existing examples,
was quickly learned by end users different from the tool developers. So far, most Tcl-
based custom operations we have seen written range from 20 to 150 Tcl script lines.
Learning to use the tool took one to two hours. Adding custom operations, starting from
the existing examples, took another one to two hours for programmers familiar with Tcl
or similar scripting languages but not with our tool. All examples presented in this chapter
fall into this category. When users were not familiar with RE and/or tool scripting, we took
the path of first programming a “visualization scenario” (consisting of a custom Tcl
scripting of queries, filtering, visual mapping, and interaction), and then letting the users
use and/or modify this scenario. In all cases, users were able to reuse and modify these
scenarios after a number of hours. Once this one-time cost was paid, users reported being
able to apply a given visualization scenario to new datasets in a matter of minutes, more
or less as reusing document templates in word processors.

The last cost component, abstracting domain-specific questions into (tool sup-
ported) RE operations, is in our experience the largest and most unpredictable cost
component. Again, this heavily depends on the abstraction level of the application at
hand. Low-level (code level) RE tasks easily map to the often one-to-one operations
supported by our framework, as explained in the previous sections. Higher level
questions, such as, “what is the impact on the system of removing a certain component?”
or, “how do two architecture instances of the same system at different time instants or
of two (similar) systems compare?”, are much more difficult to support by an automatic
tool. However, these were the typical questions we encountered when advocating the
use of our tool to different end users from both academia and industry. Two statements
should be made here. First, these questions can be supported by our (or a similar) RE
visual framework, if one invests the effort to translate the questions into a number of:
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a) familiar visual representations, and b) queries and filters that analyze the data at hand
to produce a quantitative to answer the qualitative questions. As stated already, the
visual representations we advocate here are easily learnt and understood even by people
unexposed to information visualization metaphors. Designing appropriate queries and
filters for domain-specific questions is, in our view, by far the costliest component of
adopting (visual) reverse engineering. However, this is a generic, and so far unanswered,
problem of automated program analysis.

Overall, the resulting end-user applications are functionally very similar to other RE
tools such as Rigi (Wong, 1999), VANISH (Kazman & Carriere, 1996), Visage (Kolojechich
& Roth, 1997) or relational data exploration tools such as Royere (Marshall et al., 2001).
However, several differences must be mentioned. The main difference is our toolkit’s core
architecture, which is based on a few loosely coupled, orthogonal concepts: graph and
selection data objects, operations, mappers, glyphs, and viewers. The data-operation
with loose coupling via selections encourages developers to write small, independent
operations. As stated, all our operations range from 20 to 150 C++ or Tcl lines. In contrast,
Rigi (Wong, 1999) uses a monolithic core architecture. Although somewhat adaptable via
Tcl scripts, this architecture offers no sub-classing or composition mechanisms for the
core itself. It is not possible, for example, to change the graphic glyphs, the interactive
selection policy, or to add a new mapper without recoding the core. Similarly, adding a
new layout, selection operation, or metric involves a low level API to access nodes and
edges, as Rigi has no notion of manipulating these as selections. VANISH (Kazman &
Carriere, 1996) provides a way to build custom glyphs very similar to our glyph factories.
However, VANISH uses node and edge attributes based on compiled C++ classes, which
prove inflexible for our targeted RE scenarios. Visage (Kolojechich & Roth, 1997), used
in a larger context than software visualization, is the system that shares the most
architectural traits with our framework. The main limitation we could name for Visage is
its limited customizability of the rendering (layouts and glyphs) it offers.

Finally, we briefly discuss the large class of library-level toolkits, such as GVF
(Marshall et al., 2001), GTL, or Graphlet (Himsolt, 2000). These toolkits provide basic
graph data manipulation and usually do not address visualization, interaction, and RE-
specific operations together. From these, our toolkit resembles GVF the most. However,
we found GVF’s Java-based API rather complex to understand and use, especially for non
object-oriented expert end users, which led us to our choice for a light Tcl customization
layer to a C++ core.

CONCLUSIONS
The work reported in this chapter suggests that getting insight into large relational

datasets is an intrinsic part of managing the evolution of complex software systems.
Interactive, user-driven visualization tools come here as an indispensable aid. In this
chapter, we have provided a top-down view of the path leading from the software
comprehension goal and its requirements to the design of an open, flexible architecture
for a software visualization tool and its applications. Reverse engineering was our main
and most challenging application area, due to the size of the involved software systems,
although we show examples from different fields engineering (RE) activity. Analyzing the
tasks that RE provides, we distilled them into a set of operations and requirements that
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any RE tool should provide, from program analysis to the final data visualization phase.
Since an essential problem in applying RE to industrial software systems is the lack of
flexible, generic RE tools, we have presented the architecture of such a tool implemented
by ourselves and outlined the various aspects in which it performs better than other
similar RE tools. We did not focus on the concrete implementation of an RE visual tool
here for two main reasons. First, several such tools are already available. Second, what
is obviously less treated in the literature is the description of what such tools are built
upon and how to build or adapt them to the new, changing requirements imposed by
system evolution.

     The RE tool architecture presented here can be used in various ways. Firstly, it
conveys insight into the various features and flexibility such tools should offer. This
should help practitioners in the field judge whether existing tools present potential
inflexibilities for a given task. Secondly, it discusses the mechanisms needed to obtain
a certain degree of flexibility of a software visualization tool. This should help one judge
whether an existing tool can be easily adapted to new requirements. Finally, given the
novelty of the software visualization field, this can serve as a blueprint or starting point
for implementing new tools that help in examining, understanding, and maintaining
concrete software systems.
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