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ABSTRACT

Tool support for program understanding becomes increasingly important in the
software evolution cycle, and it has become an integral part of managing systems
evolution and maintenance. Using interactive visual toolsfor getting insight into large
evolving legacy information systems has gained popularity. Although several such
tools exist, few of them have the flexibility and retargetability needed for easy
deployment outside the contexts they were initially built for. The lack of flexibility and
limitations for customizability is a management as well as a technical problem in
software evolution and maintenance. This chapter discusses the requirements of an
open architecture for software visualization tools, implementation details of such an
architecture, and examples using some specific software system analysis cases. The
focusis primarily on reverse engineering, although the proposed tool architectureis
equally applicableto forward engineering activities. Thismaterial servesthe software
architects and system managers as well as the tool designers.

INTRODUCTION

Businesses of many organizations heavily depend on effective maintenance of
increasingly aging software. As software ages, the task of managing to maintain it
becomes more complex and more expensive. Poor design, unstructured programming
methods, and crisis-driven maintenance can contribute to poor code quality, which in
turn affects understanding of the system properties. Program understanding (Tilley,
1998; Muller et al., 1993; Tilley et al., 1998) is arelatively young and evolving field
concerned with identifying artifacts and their relationships and understanding their
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structure and semantics. The essence of this processis essentially pattern matching at
different abstraction levels. Theselevelsinducein turn different representations of the
candidate system. Overall, the aim is to aggregate these artifacts in a hierarchical
representation in order to achieve a more refined and abstract understanding of the
original system. L ow-level representations, such as call or modul e dependency graphs,
help the developers to grasp the system properties. More abstract and higher-level
representations, such as simplified functional, task, or architectural diagrams may be
used by the management to succinctly overview the status and evolution of a given
software project.

Program understanding uses several information sources, such as direct source
codeexamination, leveraging corporate knowledge, and computer-assi sted methods. In
this chapter, we focus on reverse engineering (RE) methods that address the process of
understanding existing (large) software systems. However, note that the analysis and
results presented in this work are also useful for the forward engineering activity.

Furthermore, we shall focus on computer-assisted RE methods, which have a
number of important advantages. Firstly, they represent a deterministic representation
of asoftware system, ascompared to subjectiveinterpretations. Secondly, they areused
toanalyzelarge systems, whereasdirect source code examinationfailsfor systemslarger
than approximately 50000 lines of code (Stasko et al., 1998). Thirdly, they require, in
virtually all cases, lesstimeto learn and apply. Finally, automated methods arethe only
ones applicablein the vast majority of the cases, given the size of the systems at hand.
Managing the evolution of large software systems thus requires automated support for
their understanding, which implies, at some point, the need for flexible RE tools.

Reverse engineering provides a conceptual framework for describing the process
of software understanding and conceptual abstraction. Thisframework is supported by
several REtools. Intherecent past, animpressive number of such RE toolshasemerged.
However, finding the“right” tool for agiven application domain remains achallenging
problem. Thisis mainly due to the fact that application systems vary from systems to
systems, and thus may spawn different, often divergent requirements.

Giventheabove, practitionersinthe RE field areleft with two main choices:; either
pick one of the available RE tools and adapt it to one’ s specific data and requirements
or createanew REtool from scratch. In most cases, the sol ution of choicefallssomewhere
between the above two scenarios. If tool adaptation or design isrequired, it is thus of
great importance for the RE practitioner to:

. understand the often subtle trade-offs the existing tools make in their implemen-
tation

. be able to predict the limitations before adopting a given tool

. avail aframework for designing acustomized RE tool, in case adapting an existing
oneistoo difficult for aparticular application.

Overall, these often require adetailed analysis of the architecture of the RE tools.
Based on such an analysis, the RE practitioner can compare different tools to a set of
requirements, estimate the customi zability of atool of choice, or estimatethe effort and
way to design a custom RE tool. In absence of this analysis, tool evaluation is atime-
consuming trial-and-error procedure that is not often feasible in most situations due to
various constraints.
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We continue our analysis by first noting that most RE tools provide two main
features:

. construction of alayered program representation by automatic and user-driven
(interactive) operations

. visualization of this representation in various ways, such as navigable graphical
views at different levels of detail.

As mentioned, most RE tools differ in the way and extent they address the above
two requirements. Sometool sfocuson program analysisand domain modelling, and thus
ontheprogram representation construction, but providelittlefor thevisual examination
and editing of the constructed representation. Other tools focus on data visualization
but do not perform program analysisand are hard to integrate with tool sthat support this
task. Overall, one may conclude that most existing RE tools are based on internal
architecturesthat seriously limit the optionsfor customization of several RE taskssuch

Several attemptshave been madeto design generic RE tool sintheform of software
frameworks allowing users to define and customize operations for their specific tasks.
Ideally, such frameworks would minimize the time needed by the software engineer to
adapt themto specific applicationrequirements. However, the RE framework toolsweare
aware of are still too rigid to be easily reusable out of the context for which they were
initially designed.

We propose here asoftware architecture for reverse engineering toolsthat triesto
capture most of the concepts presented in the abstract RE framework. We next propose
in detail how such an architecture can be implemented. Special attention is paid to the
visual aspect of the reverse engineering process. Our first objectiveisto build asimple
prototype of the RE data exploration scenarios by combining and customizing existing
software components. We compare various aspects of our proposed architecture with
existing RE tools and outline the differences. Finally, we present a number of RE
applications in which we used the proposed architecture.

BACKGROUND

Several studies(Tilley, 1998; Teleaet al., 2002; Rivaet al., 2002) in the past have
identified five magjor tasks that an RE tool should support. These tasks are defined at
various abstraction levels of the hierarchy: program analysis, plan recognition,
concept assignment, redocumentation, and architecture recovery. Program analysis
is the basic task that any RE tool should support and consists of two services:
construction of alayered program model and presentation of thismodel to the user, that
is, viagraphical navigableviewsat differentlevels(Eick & Wills, 1999; Staskoet al., 1998).
Plan recognition aims at finding certain design patternsin the software (Gammaet al .,
1995; Mendelzon & Sametinger, 1997). Thesedesign patternsformthe so-called domain
model, that i's, the concept group describing aparticul ar applicationfield. A first attempt
for plan recognition would be an editor for manual assignment of design patterns to
elementsobtai ned from program analysisand the visuali zation thereof, for example, UML
diagrams. Concept assignment (Biggerstaff et al., 1994) is the task of discovering
concepts and assigning them to their implementation counterparts. RE tools might
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Figure 1: Reverse Engineering Pipeline (a). Toolkit Architecture Overview (b).
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support concept assignment by annotating the software artifactswith conceptsretrieved
from a domain-specific concept database and visualising this annotation.
Redocumentation (Tilley et al., 1998) isthetask of retroactively providing documenta-
tion for existing software systems. Since redocumentation spans three tasks discussed
so far, an RE tool could support it by the mechanisms outlined so far. Architecture
recovery (Wong et al., 1995) focuses on the recovery of architectural aspects of large
systems.

The five mentioned RE tasks concur, and not compete, to the overall RE goal, that
is, extracting low-level code information and enriching it with information from other
sources. Sincewe are interested in RE tool support, we shall refine the above RE tasks
intothefollowing generic stepsthat an RE tool should implement (see Figure 1a) (Wong
etal.,1995; Y oung, 1997; Wong, 1999):

1. extract thelow-level artifacts from the source code.

2. aggregatethe extracted artifactsinto ahierarchical model.

3. measure the model’s quality using computed norms; if needed, re-execute the
aggregationdifferently.

4.  selectasub-hierarchy to examine, if thewholeistoo large, complex, or unclear to
display.

5. visualizethe data, for example by producing agraph layout, followed by drawing
the selected data (Teleaet al., 2002).

In other words, for an RE tool to address the tasks mentioned previously, it hasto
implement the above five operations. Steps 2 to 5 can occur in any order —one may, for
example, first visualize the whole model produced by Step 1, then apply some user- or
system-driven aggregation (Step 2), measuretheresult’ squality (Step 3), select afeature
tolook at (Step 4), and then repeat from Step 2. Thismatchesthe program understanding
cognitive model (Young, 1997) that consists of alternate top-down and bottom-up
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passes. Step 5 may providedifferent visualizations besides graph drawing. However, in
most cases we are aware of, RE users desire to focus on the specific relations between
(groups of) software components, and so graph visualization is their first choice.

THE NEED FOR
INTEGRATION AND GENERICITY

Numerous papersaddressthe conceptual problemsof reverseengineering sketched
intheprevioussections. Amplematerial hasbeenwritten over various RE tool implemen-
tations. However, it seems in practice that every attempt to reverse engineer a large
systemreachessomefunctional limitation of theexisting RE tools. Concretely, suchtools
may fail at providing, or allowing customi zation of one (or several) of the RE pipelinesteps
described in the section “Background”. For example, many tools emerging from the
program analysisand formal method community fail at providing interactive meansfor
visual program inspection. At the other extreme, there exist many tools providing
extensive, sometimes exotic visualization metaphors for program data, but little in
programanalysis(Staskoetal., 1998). Onereason for thissituationisthat buildingagood
RE tool spanstwo traditionally different fields: software engineering and information
visualization. Another reason is that information visualization, the discipline that
analyzes how detail program information could be conveyed in abstract relational data
viaimages, isarelatively new field. Webelievethat asuccessful RE tool should provide
aflexiblearchitecture encompassing all the five pipeline steps discussed previously, as
well as ageneric way to customize and extend these for particular domain models.

ARCHITECTURE PROPOSAL

We propose here a novel architecture for an RE tool that is consistent with the
genericity andflexibility requirementsdetailed inthe previoussection. Thisarchitecture
borrows someideas from the scientific visualization systems community (Upson et al .,
1989; Schroeder et al ., 1995). Inthissense, the proposed architecture consistsof anumber
of operations performed on a number of datasets. To this model, we add specific
operations and structure of the RE pipeline as outlined in the section “Background”.
Giventheincreasing importance of providing effective RE toolsand thelack of detailed
RE tool architecture presentationintheliterature, webelievethat thiswill help practitio-
nersin the field needing to assess, develop, adapt, or extend RE tools.

The proposed architecture comes as alayered system consisting of a compiled
core and an interpreted based user interface (Ul) and scripting front-end, asshownin
Figurelb. Ourimplementationused C++forthecoreand Tcl/Tk (Harrison & McLennan,
1997) for the Ul and scripting. However, asdetailed later, other implementations of the
same architecture could be easily achieved. The coreisresponsible for the RE dataand
operationimplementation, whereasthefront-end provides customi zation andinteraction
mechanisms. Virtually all RE toolswe are aware of follow this pattern. We describethe
data and operation model implemented by the core in the next section.
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Data Model

Our datamodel consists of two main elements: a layered graph and selections, as
depicted in Figure 1b. The layered graph consists of structure and attributes.

Structure

Although many work on RE tool suse different terminol ogies (Wong, 1999; Card et
al., 1999; Stasko et al., 1998), virtually all models represent the basic RE data as a
hierarchical (layered) attributed graph. In the graph’s nodes model, software artifacts
arecreated from program analysis, for exampl e, sourcecode parsing. Inthegraph’ slayers
model, node aggregations (clusterings) are done during plan assignment throughout
architecturerecovery. Inthe edges model, both relational and containment information
isused. Incontrast to research work reported by others, we do not impose any restrictions
on the graph topology, but rather it is determined by the user-driven RE aggregation
process. In other words, we model all data as a graph whose nodes represent software
artifacts (e.g., classes, files, methods, packages, tasks) and edges represent relation-
ships (e.g., containment, calls, dependencies).

Attributes

Both nodesand edges may have key-value pair attributes. These represent both the
acquired data, for example, number of linesof code of amodul e or number of bugs, or data
derived duringthe RE processitself, for example, viasoftware metrics. Thekeysare used
as data identifiers. We implement keys as string literals and values as primitive types
(integer, floating-point, pointer, or string). In particular, each node and edge has a set
of attributes with distinct keys, managed in a hash-table-like fashion. Attributes auto-
matically changetypeif written with avalue of another type. Several attribute planscan
thuscoexistinthegraph. Anattributeplanisdefinedimplicitly asall attributesof agiven
set of nodes/edgesfor agiven key, for example, all values of the “ number of bugs” key.
Our attributemodel differsfromtheoneused by most RE applications(Eick & Wills, 1999;
Wong, 1999; Kazman & Carriere, 1996) which chooseafixed set of attributesof fixedtypes
for all nodes/edges. Our choiceismoreflexible, since: @) certain attributes may not be
definedfor all nodes; and b) attribute plansarefrequently added and removedinatypical
RE session. Seesection“ Attribute Editing” for moredetails. Moreover, both memory and
accesstimefor attributesare kept low inthisway, which isessential for coping with the
graphsof tens of thousands of elements. In this sense, our model resemblesthe one used
by the GVF (Marshall et al., 2001) and Visage (Kolojechich & Roth, 1997) tools.

Selections

Selections, defined as sets of nodes and edges, allow executing toolkit operations
on a specific subset of the whole graph. To make the toolkit flexible, we decouple the
subset

specification (which are the nodes and edges to work on) from the operations’
definitions (what to do with the selected data), similarly to the dataset-algorithm
decouplinginscientificvisualization. Selectionsarenamed, and play therole of variables
in ausual program. Our graphs are structurally equivalent to the node-and-cell dataset
model inscientificvisualization (SciViz) frameworks, whereasour sel ectionsdo not have
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adirect structural equivalent. Selectionsarefunctionally equivalent to SciViz datasets,
since they are the operations’ inputs and outputs. This is one of the main differences
between SciViz and software visualization tools, which leadsto different architectures
for the two. In other words, our architecture is more data-centric than classical SciViz
frameworks, as data elements are explicitly addressable via selections. However, our
architectureisal so operation-centric. Moreisavailablefrom K ol ojechich and Roth (1997)
for a comparison of the data and operation-centric models, since operations can be
explicitly specified, as described in the following texts.

Selections have functional equivalentsin some software visualization tools. In
GVF(Marshall etal., 2001), they arerepresented by group nodes. InRigi (Wong, 1999),
they are implicitly represented by the slicing or filtering of operation output. See the
section “ Selection Operations” for more details. However, neither GVF nor Rigi hasan
explicit structuresimilar to selections. Visage' scollections(K ol ojechich & Roth, 1997)
come closest to our selection concept, both structurally and functionally.

OPERATION MODEL

Operations have three types of inputs and outputs: selections that specify on
which nodes and edgesto operate; attribute keys that specify on which attribute plan(s)
of the selection to work; and operation-specific parameters, such as thresholds or
factors. We distinguish four operation types, based on their read/write data access:

. Selection operations create selection objects.

. Structure editing modifies the graph topology.

. Attribute editing modifies the graph attributes.
. Mapping maps the graph data to visual objects.

The above data-operation interface allows the core to automatically update all
components that depend on the modified data after an operation’s execution, using a
simple Observer design pattern (Gamma et al., 1995). For example, the selections are
automatically updated after a structure editing operation that del etes sel ected nodes or
edges. Similarly, thedataviewers(seethesection“ Visualization”) are updated when the
monitored selections change. This operation model based on observers monitoring a
fixed number of operation typesisasimplification of the more general ideaof dataflow
pipelines widely used by SciViz tools (Upson et al., 1989; Schroeder et al., 1995). The
dataflow pipeline advantage is that it allows automatic update of more complex data
dependencies. However, the practical experience suggests that constructing and main-
taining an explicit dataflow pipeline is not a simple task for average non-programmer
users. The simple structure of the RE pipeline as depicted in Figure 1a suggests our
operation model serves the purpose.

Selection Operations

Selection operations add nodes and edges to selection objects. Several such
operations can be implemented as follows. Level selections (called “ horizontal slices’
in the RE literature (Wong, 1999)) gather all nodes and association edges on a certain
aggregation level in the layered graph, and are useful for visualizing the software at a
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given level of detail. Tree selections (called “vertical slices” in Wong 1999) gather all
nodes and contai nment edges reachabl e from nodesin an input sel ection, and are useful
infor example, visualizing sub-system structuresor change propagation (Marshall etal .,
2001). Conditional selections(called “filters” in most RE papers) gather all elementsin
an input selection that obey some attribute-based condition, and are useful in queries
such as*show all nodeswherethe cost attributeishigher than somethreshold” . Finally,
boolean sel ections allow combining existing selections viaintersection, union, and so
forth, and are useful as part of more complex activities. Ascompared to many software
visualizationtools(e.g., Wong, 1999; Marshall et al., 2001), performing ahorizontal or
vertical sliceor afiltering, in our case, doesnot alter the graph data—it just creates some
new selection objects.

Structure Editing

Structure editing operations construct and modify the graph. Such operations
include the standard node and edge addition and removal, as well as reading several
graphformatssuch asfileformatslike RSF (Wong, 1999), GraphEd, DOT (K outsoufios
& North, 1996), and GXL (Marshall etal., 2001). Aggregation operationsusually takethe
nodes in an input selection and produce a unique parent node. The input selection can
either be programmatically constructed, such asautomatic clustering methods, or canbe
the output of user interaction (section “Visualization™).

Attribute Editing

Attribute editing operations take a selection as input and compute one or several
attributes on the selection’s nodes and/or edges (see the section “Attributes”). We
found this system much more flexible than, for example, strong-typed designs, which
associate afixed set of typed attributeswith anode or edge. Attribute editing operations
can be further classified on their function, from a user perspective. In most software
analysis scenarios, we have encountered two types of attribute editing: metric compu-
tation and layout computation. These are discussed later. However, note that this

Figure 2: Custom Layouts: 3D Stacked Layout (a) and 2D Nested Layout (b).
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classification is one of the many possibilities - other attribute editing operation classes
may be created, depending on the specific application domain at hand.

Metrics computation

We treat RE metrics as attribute editing operations. Examples of RE metrics are
component coupling strength, the number of provisions, requirements, and internaliza-
tions(Wong, 1999; Tilley, 1998). M etricsmay produce new attribute-plans, asthe above
metrics do, or single values, for example, a sub-graph’s cyclomatic number or size.
Decoupling themetric’ sselectioninput from the sel ection operation allowsapplying any
metric on any sub-graph, which isnot the case in other RE tools (Wong, 1999; Kazman
& Carriere, 1996). Moreover, explicitly specifying the input and output attribute-plan
namesall owseasy run-time prototyping of various combinationsof metrics, similarly to
the way one works with function or matrix objects in systems such as Matlab of
Mathematica. Finally, theabove decoupling allowsthe metrics, attributes, and selections
to be coded independently in our architecture.

L ayouts computation

In contrast to most RE systems (e.g., Wong, 1999; Kazman & Carriere, 1996;
Marshall et al., 2001), wetreat graph layouts simply as attribute editing operations and
thus decouple them compl etely from mapping and visualization (see the section “ Visu-
alization”). This has several benefits. Firstly, we can layout different sub-graphs
separately; for example, using spring embedders for call graphs and tree layouts for
containment hierarchies (see Figure 2). Secondly, we can precompute several layouts,
for example, to quickly switch between them. Finally, we can cascade different layouts
on the same position attributes, for example, to apply afish-eye distortion or refine an
existing layout. We have implemented several custom layouts by cascading simpler
ones, as follows. Stacked layouts (see Figure 2a) provide a selection spanning several
layersof agraph by applyingagiven 2D layout (e.g., spring embedder) per layer andthen
stacking thelayersin 3D. Thelayers are computed as horizontal slices (see the section
“Selection Operations”). Stacked layoutsvisualize effectively both containment (verti-
cal) and association (horizontal) relations in a software system. Nested layouts (see
Figure 2b) provide asimilar selection as above, by recursively laying out the contents
of every node separately and then laying out the bounding boxes of the containing
nodes. Nested layouts produce images similar to package UML diagrams and have
proven to be very helpful in RE applications, as they are quite familiar to software
engineers. Userscan easily combineany 2D layoutsasthebuilding bricksfor the stacked
and nested layouts. In the example cited in Figure 2a, we use atree layout, whereasin
Figure 2b we use a spring embedder as basic layout. Adding new layouts to the tool kit
isreasonably simple. Theimplementation of thegeneric springembedder and treelayout
we added to the framework of Koutsoufios and North (1996) exceeds 50,000 linesin C
programming language. Adding themin ablack-box fashion required lessthan 100 C++
lines each, whereas our custom layouts have each under 200 C++ lines. In thisrespect,
our layout compositionisvery similar tothe“ power tool” designinVisage (Kolojechich
& Roth, 1997).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



220 Telea

Figure 3: Software Components of the Mapping Operation.
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VISUALIZATION

Mapping and visualization operations enabl e usersto see and interact with the RE
data. These operations have four sub-components: mappers, viewers, glyph factories,
and glyphs (see Figure 3).

These operationsareimplemented using the Open Inventor C++ tool kit (Wernecke,
1993), which offers sophisticated mechanismsfor object direct manipulation, picking,
and rendering. If deemed necessary, the architectureallowsusing other similar toolKits,
for example, Java3D.

The central visualization component is the mapper, which creates 2D and 3D
drawable representations out of the core graph data. We have implemented several
mappers, asfollows. Theglyph mapper createsaglyph, thatis, aniconic symbol, for each
node and edge in the input selection, and positions these glyphs at the 2D or 3D
coordinates provided by a node/edge attribute plane, computed by a layout operation
(see the section “Layout Operations”).

The splat mapper produces aheight map, coloured by mapping the height attribute
viaared-to-blue colormap. The height map showsthe variation of node density per unit
area, weighted by a given attribute, but does not draw the edges explicitly. This
effectively visualizeslarge software structuresexhibiting local node agglomerations, for
example, corresponding to highly coupled clusters(seevan Liere& de L eeuw, 2003 for
details). For example, Figure 4c showsaheight field weighted by the package provision
metric. The String and Listlter implementation classes show up clearly, asthey are used
by most other system components. In the previous example, one sees that the system
heavily depends on String and Listlter, so changesto these two components potentially
have a strong impact on the system stability.

A glyphisa?2D or 3D graphical object that visualizes a node or edge. The glyph
mapper calls, for every nodeand edgeit maps, aTcl script, called aglyphfactory, which
builds the desired glyph as an Inventor node. The script sets the glyph’s graphical
properties(color, shape, size, annotation, and so on) fromtheattributes of theinput node
or edge. Users may edit these scripts at run-time, so it is very easy to customize the
visualization. Figure 4 shows a glyph-based visualization of the software of aprogram
analysissystem developed at Nokia. Figure 4ashowsall 1200 software artifacts (meth-
ods, classes, packages, and files) extracted from the code. Figure 4b showsasimplified
view of the system’s core, after several graph-editing operations have been applied to
filter the lessimportant artifacts and cluster the remaining onesinto higher-level units.
Different glyphs have been used to show the different unit types, whereas the sub-
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Figure4: Visualization of Program AnalysisTool (a). Glyphs Showing Clustered Core
Detail (b). Splat Mapper Visualizing Class Provisions (c).

system coupling strength (Tilley, 1998) is visualized by edge glyphs of different
thicknesses. The separation of the glyph placement done in the layout phase, and the
glyph construction doneinthe mapping phase, isasimplebut powerful way of specifying
thevisualization. New glyph factoriescan be devel oped without being concerned by the
layout, whereas new layout tools can be added to operate on existing glyphs.

We show next asecond examplethat illustratesthe comparison of related software
product familiesshownin Figure5. For adetailedtreatment onthis, see Teleaet al. (2003).
Here, we show the RDF schemainstancesdescribing the UAProf notation (WAP Forum,
2000), a language for modeling device capabilities and user preferences for mobile
phones. We used the glyph shapes to indicate various types of the UAProf language
elements: Triangles are named resources, literals are circles, and rectangles are anony-
mous resources. The coloring scheme allows comparing different software products:
nodes specific to asingleinstance are green; nodes shared by the two Ericsson products
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Figure 5: Visual Comparison of Four Mobile phone Specifications (RDF Schema
I nstances).
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are green; and nodes common to all instancesarered. Thissimplevisualization already
allowsoneto seethat all four products haveroughly the same structure and identify the
potentially important components shared by two, all, or just one product.

In afinal example, we show a component-based architecture of a Nokia mobile
phone software system, as shown in Figure 6. The top image shows the system
containment tree, in which the user has selected two sub-system sub-trees, denoted by
Sub-system 1 and Sub-system 2 (drawn inred). The bottom image shows, using anested
layout (see the section “Layout Operations”), the function call relations between the
components contained in the two selected sub-systems. By interactively selecting
different sub-system treeviaclicking thetreeroot iconsinthefirst view, architects get,
in the second view, insight into the sub-system call i nterdependencies on each architec-
tural layer. In the previous example, we immediately see which are the “interface”
components, that is, the components through which Sub-systems 1 and 2 communicate.
Secondly, we see that lower level components (the small, light colored boxes on the
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Figure6: MobilephoneL ayered Architecture(top). Sub-system Call Dependenciesfor
User-Selected Components (bottom).
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lowest containment level) do not make cross-system calls, a desired property of many
architectures.

Concluding this section on operations, the properties of the selection, structure
and attribute editing, and mapping operations discussed here make our operation
concept quitesimilartoVisage's“ primitivetools’ (Kolojechich & Roth, 1997). Themain
difference between the two concepts is the way of classifying operations. We group
operations structurally, depending on what data are read and/or written. Visage (and
several other tools) groupsoperationsfunctionallyinto primitivetools, power tools, and
appliances. Both classification modelshavetheir own merits. Our proposed framework
helps the tool designer implement related operations easily by sharing code and
behavior. Visage's model helps the user find related operations in the same class.

EVALUATION

We have used the RE tool presented so far for reverse engineering and exploring
several software systems. In all cases, parsing the data (source code or RDF schemas)
to produce the attributed graph input data has been done by external parser tools that
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the users already had. The input source code ranged between afew hundred lines up to
600,000 linesof code. Depending ontheconcrete application, RDF, C, C++, or Javacode
was parsed. Specific user interfaces (GUIs) wereconstructed in Tcl and added to the RE
tool coredescribed inthischapter in order to provide application-specific functionality
atop the generic core. Such functionality included specific queries and filtering; for
example, “show all system components programmed after agivendate”, or “eliminateall
system components having less than 200 lines of code”. Custom user interaction, such
as constructing a nested layout of an interactively selected sub-graph shown in Figure
6, isalso programmed viasmall Tcl scripts.

An important question is what the costs associated with adding visual reverse
engineering support to an existing software workflow are. The above cost has three
components:

1 learning to use the visual RE tool
2 adapting the tool by writing custom Tcl scripts
3 abstracting the domain-specific questions into RE operations

All three cost components are essentially determined by the abstraction level
required by theend users. Low-level visual RE, for example, getting insight into thecall
or structure relationships of a software system, is the easiest to add. The main reason
isthat the end users, software developersinthiscase, are quitefamiliar with call graphs
and thus they can easily adapt to the visual metaphors we use. Secondly, writing small
Tcl scriptsto customizethetool’ soperation, usually done by adapting existing examples,
was quickly learned by end users different from the tool devel opers. So far, most Tcl-
based custom operations we have seen written range from 20 to 150 Tcl script lines.
L earning to usethetool took oneto two hours. Adding custom operations, starting from
the exi sting exampl es, took another oneto two hoursfor programmersfamiliar with Tcl
or similar scripting languagesbut not with our tool. All examplespresented inthischapter
fall intothiscategory. When userswerenot familiar with RE and/or tool scripting, wetook
the path of first programming a “visualization scenario” (consisting of a custom Tcl
scripting of queries, filtering, visual mapping, and interaction), and thenletting theusers
use and/or modify thisscenario. In all cases, users were able to reuse and modify these
scenariosafter anumber of hours. Oncethisone-timecost waspaid, usersreported being
ableto apply agiven visualization scenario to new datasetsin amatter of minutes, more
or less as reusing document templates in word processors.

The last cost component, abstracting domain-specific questions into (tool sup-
ported) RE operations, is in our experience the largest and most unpredictable cost
component. Again, this heavily depends on the abstraction level of the application at
hand. Low-level (code level) RE tasks easily map to the often one-to-one operations
supported by our framework, as explained in the previous sections. Higher level
questions, such as, “what istheimpact on the system of removing acertain component?’
or, “how do two architecture instances of the same system at different time instants or
of two (similar) systemscompare?’, are much more difficult to support by an automatic
tool. However, these were the typical questions we encountered when advocating the
use of our tool to different end users from both academia and industry. Two statements
should be made here. First, these questions can be supported by our (or asimilar) RE
visual framework, if oneinvests the effort to translate the questions into a number of:
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a) familiar visual representations, and b) queriesand filtersthat analyze the dataat hand
to produce a quantitative to answer the qualitative questions. As stated already, the
visual representationsweadvocate hereare easily learnt and understood even by people
unexposed to information visualization metaphors. Designing appropriate queriesand
filters for domain-specific questionsis, in our view, by far the costliest component of
adopting (visual) reverseengineering. However, thisisageneric, and so far unanswered,
problem of automated program analysis.

Overall, theresulting end-user applicationsarefunctionally very similar to other RE
toolssuchasRigi (Wong, 1999), VANISH (Kazman & Carriere, 1996), Visage(Kolojechich
& Roth, 1997) or relational dataexplorationtoolssuchasRoyere(Marshall etal., 2001).
However, several differencesmust bementioned. Themaindifferenceisourtoolkit’ score
architecture, which is based on afew loosely coupled, orthogonal concepts: graph and
selection data objects, operations, mappers, glyphs, and viewers. The data-operation
with loose coupling via selections encourages developers to write small, independent
operations. Asstated, all our operationsrangefrom 20to 150 C++or Tcl lines. In contrast,
Rigi (Wong, 1999) usesamonolithic corearchitecture. Although somewhat adaptablevia
Tcl scripts, this architecture offers no sub-classing or composition mechanismsfor the
coreitself. It isnot possible, for example, to change the graphic glyphs, theinteractive
selection policy, or to add anew mapper without recoding the core. Similarly, adding a
new layout, selection operation, or metric involvesalow level API to access nodes and
edges, as Rigi has no notion of manipulating these as selections. VANISH (Kazman &
Carriere, 1996) providesaway to build custom glyphsvery similar to our glyphfactories.
However, VANISH usesnode and edge attributesbased on compiled C++ classes, which
proveinflexiblefor our targeted RE scenarios. Visage (K ol ojechich & Roth, 1997), used
in a larger context than software visualization, is the system that shares the most
architectural traitswith our framework. Themain limitationwe could namefor Visageis
itslimited customizability of the rendering (layouts and glyphs) it offers.

Finally, we briefly discuss the large class of library-level toolkits, such as GVF
(Marshall et al., 2001), GTL, or Graphlet (Himsolt, 2000). Thesetoolkits provide basic
graph data manipulation and usually do not address visualization, interaction, and RE-
specific operationstogether. Fromthese, our toolkit resembles GV F themost. However,
wefound GV F' sJava-based API rather complex to understand and use, especially for non
object-oriented expert end users, which led usto our choicefor alight Tcl customization
layer to aC++ core.

CONCLUSIONS

Thework reported in this chapter suggeststhat getting insight into largerelational
datasets is an intrinsic part of managing the evolution of complex software systems.
Interactive, user-driven visualization tools come here as an indispensable aid. In this
chapter, we have provided a top-down view of the path leading from the software
comprehension goal and itsrequirementsto the design of an open, flexible architecture
for asoftwarevisualization tool and itsapplications. Reverse engineering was our main
and most challenging application area, dueto the size of theinvolved software systems,
althoughwe show examplesfrom different fieldsengineering (RE) activity. Analyzingthe
tasksthat RE provides, we distilled them into a set of operations and requirements that
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any RE tool should provide, from program analysisto thefinal datavisualization phase.
Since an essential problem in applying RE to industrial software systemsisthe lack of
flexible, generic RE tools, we have presented the architecture of suchatool implemented
by ourselves and outlined the various aspects in which it performs better than other
similar RE tools. We did not focus on the concrete implementation of an RE visual tool
herefor two main reasons. First, several such toolsare already available. Second, what
isobviously lesstreated in the literature is the description of what such tools are built
upon and how to build or adapt them to the new, changing requirements imposed by
system evolution.

The RE tool architecture presented here can be used in variousways. Firstly, it
conveys insight into the various features and flexibility such tools should offer. This
should help practitioners in the field judge whether existing tools present potential
inflexibilitiesfor agiven task. Secondly, it discusses the mechanisms needed to obtain
acertaindegree of flexibility of asoftwarevisualizationtool. Thisshould help onejudge
whether an existing tool can be easily adapted to new requirements. Finally, given the
novelty of the software visualization field, this can serve asablueprint or starting point
for implementing new tools that help in examining, understanding, and maintaining
concrete software systems.
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