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Abstract

——————————————————————————————————————————-
Data representations of pictures, texts or sensor observations can range from hundreds to

thousands of so-called dimensions or attributes. This makes it hard for end-users to understand
these data, as humans are mainly acquainted with understanding 2D or 3D datasets.

Multidimensional Projections (MPs) are a family of techniques aimed to help in this context. MPs
reduce the data dimensionality, typically to 2 dimensions, while keeping its similarity structure,
and visualize the resulting 2D dataset as a scatterplot. This enables users to easily locate related
data points, groups of points sharing some common characteristics, and outliers. Displaying a
simple scatterplot tells us which data points are similar but not why. Previous methods have

focused on a visual approach to describe which dimensions contribute mostly to similarity
relationships over the projection. This was achieved by ranking dimensions by variance and

distance contributions over each point-neighborhood, and using a visual encoding to show which
dimensions best explain the similarity in a neighborhood. This bachelor thesis will seek to expand
upon this work, by proposing new metrics and visual encodings that allow us to describe the data

in a different, robust and informative way. Using principal component analysis, we analyze
point-neighborhoods to deduce and encode dimensionality, according to a fixed parameter which

allows us to threshold eigenvalues, which leads us to generate a heatmap of dimensionality in the
projection. Using Pearson Correlation Coefficients, we scan point-neighborhoods for linear

relationships between attributes, and visually encode the projection according to the strength of
different relationships in the data. Both techniques are tested and validated using both synthetic

and real-world data.
————————————————————————————————————————
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Chapter 1

Introduction

1.1 Analysis of Multidimensional data

In research and business endeavors, making the right judgment or decision depends on having a keen
understanding of the facts of the topic at hand. If we are presented with a problem or unknown, the
examination of related data can have us reassess our position and adjust our viewpoint. Whether
we occupy ourselves in the fields of business, statistics or science, the collection and analysis of
data persists as a function to increase our understanding. Data, or datasets, represent information
about phenomena as sets of measurements, samples, observations or records. What data represent
is expressed through their attributes or dimensions. As our understanding and study of phenomena
become more complex, a necessity emerges to increase the scope and complexity of the data in tan-
dem with our increasing knowledge. Such datasets quickly grow to take on forms on large sets of
multidimensional data, with hundreds of attributes and thousands of samples. And as information
becomes more complex, so too does the task of understanding become more difficult. Many different
techniques have emerged to deal with this problem, the forms of which can take on many different
shapes across different fields. Examples include using data mining to identify Key Performance
Indicators [1], or using machine learning to explore facial beauty analysis [2] . While there are
many examples of techniques that allow for configuring complex systems for understanding data,
what they lack is an intuitive, visual-impression based method of representing complex data which
resolves one of the main problems with multidimensional datasets; that they can grow so large that
representing with conventional methods can become impractical. The key analysis tools that try
to resolve this problem can collectively fall under the topic of data visualization.

The goal of multidimensional data visualization is to transform complex multidimensional data
into a more simplified and intuitive format that allows us to more easily identify patterns and
structure in the data. Yet data analysis is a generalized process for studying information about
many different kinds of phenomena, which leads to many different forms of representation and
forms of pattern identification. And as such, many different forms of data visualizations have
emerged. These include a family of dimensionality reduction techniques referred to as a multidi-
mensional projections. Their aim is to express large multidimensional data on a more limited basis,
seeking a transformative compression of the data so it can be represented more compactly while
maintaining the similarity structure. Usually, multidimensional projections seek to reduce the di-
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mensionality of high-dimensionality data to the point it can be represented in a two-dimensional
or three-dimensional format, allowing for it to be visualized in formats most familiar to humans.
The “projection” of the data can for example be shown to the user in the form of a simple scat-
terplot, allowing us to easily identify which points are similar to each other by their proximity to
one another. Yet, while multidimensional projections are useful for getting an impression of which
points are similar to each other and also lend themselves to estimating the shape of the data, they
lack any default means to show why the points are similar to each other. This next step in the
visualization of projection forms the main subject of this thesis, where we will seek to expand upon
the groundwork established on the subject by da Silva et al.[3][4].

In the following paragraph, we will discuss a few of the main findings, work and observations
made by da Silva et al. [4], from which they developed techniques to enhance the visualization
of multidimensional projections. The focus is on trying to add explanatory forms of color-coding,
by indicating which attributes are the most important in describing the similarity of points within
different regions of the projection. These techniques were developed to address the shortcomings
in typical techniques used to analyze multidimensional data, such as machine learning. More im-
portantly, the techniques seek to address the lack of information in a multidimensional projection.
The projection tends to lack direct meaning to the user and it is difficult to relate the informa-
tion projected to the data. This creates a gap between knowing that there is some structure in
the data, and being able to tell what those structure are. To deal with this issue, da Silva et.
al described a method of visually encoding projection that allows end-users to easily see which
dimensions are responsible for what patterns in the data. The emphasis on explaining points in
terms of their similarity comes from a recognition that a key element in understanding projections
is to understand how observations relate to each other to create patterns in the data. Compared
to other multidimensional visualization techniques, this method provides a more intuitive method
for the user to explore the data. In Fig. 1.1, a intuitive example is provided of a visualization of a
projection using the techniques from da Silva et al. The dataset represents three faces of a 3D cube.
In the projection, each of the three faces is colored and labeled by the dimension which is the most
dominant in the region of that face. In Fig. 1.2, we apply the explanatory visualization technique

Figure 1.1: A projected set of faces of a 3D-cube classified by variance

to a real-world dataset containing measurements of chemical properties of different wines. If we
examine Fig. 1.2(a), we can get a good impression of the shape of the distribution of the data and
which points are similar (closer) to each other. However, it is not possible to know why points are
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similar without examining the data in detail. Fig. 1.2(b) provides more context to the positions of
the points in Fig. 1.2(a). The color-coded regions are a way to visualize which attributes are the
most important factor in describing the similarity of points within that region. For example the
red region is explained by the residual sugar attribute of the wine samples. This tells us that not
only is residual sugar an important attribute, it also informs us where it is important. Similarly,
we that the purple alcohol and yellow chloride regions are also important.

(a) Plain MP (b) MP with color-coding

Figure 1.2: Comparison between plain multidimensional projection of a wine quality dataset and
the same projection enhanced with color coding by dominant attribute.

Silva et al. [3][4] combined data visualization with user interactivity, allowing the user to freely
set parameters and explore the visualization as he sees fit. While their approach presents a large step
forward for enhancing the explanatory capabilities of multidimensional projections, it is limited by
design. Similarity is one of many options for a metric we can use to label regions in the projection
and find patterns in the data. As any research that seeks to expand upon the groundwork laid
by da Silva et al. [3][4] should, this thesis will primarily explore and investigate options for such
alternative metrics that can expand the range of what information can be identified and visualized
in projections.

1.2 Research Question

As explained in the introduction in the previous section on methods on creating explanatory vi-
sualizations to explain multidimensional projection, the aim of this project will be to expand on
these methods; to build on and utilize established techniques that can be used to visualize data in
a projection to label and explore it. Here, the emphasis is on finding metrics that can add to the
current methods by creating visualizations which reveal new information in the projection which
under the current constraints, cannot be revealed. As such, we can state our research question for
this thesis:

Can we find new metrics and techniques, that allow users to explore datasets by visualizing
multidimensional projection in a way which both complements and differentiates itself from

established visualization methods?
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Over the course of the thesis, we deal with two subquestions related to the main question:

1. Is it possible to explore and explain multidimensional projections by visualizing the data by
labeling and color-coding points by strengths of different local correlations?

2. Is it possible to explore and explain multidimensional projections by visualizing the data in
a way that allows us to indicate different regions of dimensionality?

1.3 Structure and overview

• Chapter 2: Background and Related work
This chapter is dedicated to formally specifying all the techniques, research, projects and
software that lay the foundation of the work in this thesis. We will formally define many of
the core concepts important to the implementation of the metrics, and summarize the work
that forms the basis of this project. Topics include data generation, dimensionality reduction,
principal component analysis, correlation coefficients and an overview of the work by da Silva
et al.

• Chapter 3: Implementation
This chapter directly follows from chapter. We formally propose our new local explanatory
metrics, providing their motivation, formal definitions for computations, and the implemen-
tation of the visualization including examples of additional features and applications.

• Chapter 4: Testing and Results
With the necessary background knowledge provided in chapter, and our newly proposed met-
rics specified in Chapter 3, we can move on to validating and testing our newly proposed
metrics by using them to generate explanatory visualizations of datasets. For each metric,
we will validate their correctness by applying them to synthetic data, and afterwards test
their explanatory capabilities by testing them on real-world data–cross-referencing results
from related studies and explanatory visualizations generated from the local distance/vari-
ance contribution metrics so that we can draw conclusions about our newly proposed metrics.

• Chapter 5: Closing
This final chapter discusses the limitations of the progress made over the course of this project,
what future work should focus on to remedy those limitations, but also reflects on what was
achieved and to what degree the aims of the project were attained.



Chapter 2

Background and Related work

This chapter includes a summary of the theoretical work that formed the basis of this thesis, and
an overview of all techniques used to achieve the implementation of the newly proposed metrics.
In section 2.1, we will specify our formal definitions for data and the tools we used to generate and
acquire data for this thesis. Section 2.2 focuses on dimensionality reduction, its formal definition,
use, motivation and provides an overview of methods that can be used to achieve dimensionality
reduction. With Section 2.3, we begin introducing a core concept of a global explanatory statistical
technique used to implement our local dimensionality metric; principal component analysis. Sec-
tion 2.4 continues along this line, providing an overview of statistical techniques called correlation
coefficients which we will utilize in the implementation of the correlation metric. With section
2.5, we introduce the concept of rankings expressing local explanations based on local variance and
distance metrics; core concepts introduced by da Silva et al. which forms the basis of this thesis.
This section is closely followed by 2.6, which formally summarizes the way da Silva et al. achieved
their local explanatory visualizations.

2.1 Data Generation

Analyzing datasets is a core task in gaining a better understanding of the underlying phenomenon
which the data is supposed to represent. To reduce the workload involved in processing complex
data frequently, many techniques have been devloped to simplify the process of analyzing data. In
this thesis, including statistical software packages and mathematical models. we seek to explore
datasets using automatically generated explanatory visuals. Now for any data, we can formally de-
fine it as a multidimensional dataset D = {p1, .., pN} ∈ Rn of N nD elements pi = {p1i , .., pni } where

each of the n dimensions is a real-valued attribute such that pji ∈ R for 1 ≤ j ≤ n. Each of the
dimensions (also called attributes, features or variables) describe some kind of aspect of the data.
The descriptions of the attributes together describe what is quantified and measured. If the data
were to be visualized in a table, the attributes would form the columns of the table. Attributes can
come in many different forms, such as categorical, ordinal, integral and quantitative. This thesis will
only concern itself with data which only consists of quantitative attributes, and the dimensionality
metrics and correlation metrics only consider these types of data.

7
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An observation (also referred to as a sample, measurement or point) represents a set of n values for
each attribute. Observations would form the rows of the table of the data. What constitutes an
observation differs per dataset. Some datasets might contain observations of the same phenomena
but taken at different moments of time. Others might contain observations that are each samplings
of different instances of same physical phenomena. Here, one could think of for example comparing
differing instances of chemicals, documents, food or human and animal subjects. Each instances is
quantified by the measured observations of certain attributes. A very practical example would be
a collection of answers to a population survey, where the responses of each participant would form
the set of observations and the subject of the questions forming the attributes.

The datasets we will examine will come in form of both real-world data, measured from phys-
ical phenomena, and also synthetic data, created for the purpose of this thesis using software.
Examples of real-world data include a dataset measuring chemical content, such as alcohol, sugar
or chloride, of different wines [5]; a dataset containing of software quality, quantified by metrics
such as lack of cohesion, coupling and structural complexity, of software projects on sourceforge.net
[6]. Each of these datasets contain thousands of measurements with about a dozen attributes. This
makes them hard to analyze with conventional methods such as tables. By visualizing data, we
hope to simplify its representation and make it easier for humans to make sense of the contained
information and discover patterns more easily. The dimensionality and correlation metrics at the
center of this thesis will try to address this issue by automatically visualizing the data in such a
way that patterns and trends are identifiable from a simple visual impression of a user.

Before we can apply our metrics, we first need to validate and explore how they work. The com-
plexity of the wine quality and software quality datasets will lend itself well to explore of how
the metrics introduced in this thesis will function when applied to real-world research data, and
validate their usefulness to discover patterns in the data. With synthetic data, we can decide for
ourselves what shape the data takes. Unlike with real-world data, we would know beforehand what
the shape of the data is and therefore can also rationalize about what results we should expect if
use metrics to visualize the data. This will allow us to establish so-called “ground-truths” about
the correctness of our metrics; in the sense that we can validate that they are working correctly by
applying them to these synthetic datasets. There are many tools available for generating synthetic
data, and we will briefly cover the ones utilized over the course of this thesis project here.

• Scikit [7]
A Python library that provides several in-built functions to easily generate n-dimensional
datasets such as Gaussian clusters, circles or combinations of shapes. Several different Python
scripts were created incorporating this library to generate synthetic data.

• Distribution Painter [8]
A software tool that seeks to avoid the issue of having to create scripts to generate custom
multidimensional data, but instead implements a graphical-user-interface that allows the user
to “paint” correlations between dimensions and adjust parameters for noise levels.

• FeaturesProjection
A custom software tool in Java courtesy of Renato da Silva that implements several differ-
ent methods of projection mappings. This was the main tool used to perform the LAMP
projection on datasets.
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2.2 Dimensionality Reduction

Datasets can differ qualitatively in what they measure and describe, but can also differ on quantifi-
able terms in the value of their observations or the shape in which they are represented. Some data
may contain a very small amount of attributes, while other might contain very many. As the num-
ber of attributes in a dataset increases, so does the difficulty of gaining an intuitive understanding
of the shape or structure of the data, performing analysis and drawing robust conclusions about
the data. Projection techniques or dimensionality reduction techniques transform high-dimensional
nD datasets, creating a mD dataset with m < n which maintains relationships between points,
patterns and trends in the data. For the purpose of making sense of multidimensional data, there
are many benefits to using dimensionality reduction techniques. The lower-dimensionality allows us
to examine the data more easily, but also allows us better deal with constraints on visualization of
high-dimensional data. If we choose m to take on a value of either 2 or 3 then this will allow us to
visualize the data much more easily than were n to be of a significantly higher value. Furthermore,
dimensionality reduction can allow us to discard attributes which can be considered to be noise or
redundant. For the purpose of this thesis, dimensionality reduction techniques are a core feature
in generating visualizations.

A projection transformation aims to maintain the shape or structure of the data, ensuring for
example the same amount of outliers in both projected and unprojected data, and keeping patterns
and trends in the data present. Formally, this distance preservation of the projection must ensure
that the similarity structure of the data is maintained over the course of the transformation, en-
suring that the pair-wise distances between points scale roughly the same between the projected
and unprojected data.[4]. Neighborhood preservation is another important aspect. Informally, this
would mean that if we calculate an nD neighborhood of points vni for a point pi in nD, and also
a mD neighborhood of points vmi for a point qi in mD, the composition of neighborhoods would
nearly identical to each other for the observation i.[4].

Recall we can define a dataset D = {p1, .., pN} ∈ Rn of N nD elements pi = {p1i , .., pni }, with

each pji ∈ R for all 1 ≤ j ≤ n. By applying a dimensionality reduction (or projection) technique,
we apply a transformation P : Rn → Rm, such that the elements of D are projected onto a lower
m-dimensional space resulting in projected elements Dp = { qi = P (pi ∈ D) }. These projected
elements can then be shown in a mD scatterplot. Usually, the value of m is equal to 2 or 3, 2D
or 3D scatterplots being the most intuitive to humans. Now, there are many different kinds of
projection techniques available. But for this thesis, we restrict ourselves to applying three different
kinds of projection techniques on test datasets, each with its own advantages in terms of respect to
distance or neighborhood preservation, efficiency or wide application in the scientific community.
The projection techniques are described as follows:

• Principal Component Analysis (PCA)
As PCA can be used a method for re-expressing a dataset as a linear combination of its original
basis, it can be used to achieve dimensionality reduction of high-dimensional data.[9][10]
Many software tools that allow for PCA reduction allow the user to specify the number of
dimensions necessary to generate the linear combination or target dimensionality (in our case
always 2). PCA is a global dimensionality reduction technique, which seeks to find the set
of orthonormal principal components or directions which capture most of the variance for a
given dataset. Deriving these components allows us to re-express the data on a lower-basis;
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thus achieving dimensionality reduction. The general approach to PCA, further detailed in
Sec. 2.3, is to derive a covariance matrix and apply eigenvalue decomposition as to define a
set of eigenvectors and eigenvalues which can describe the shape of the variation in the data.
While PCA is popular, fast and efficient [11] it is has downsides for multidimensional dataset
that are not “intrinsically” of a very low-dimensionality. PCA is well-known, fast and easy to
implement, but can have problems maintaining the shape of the data over the course of the
transformation [10][12]. Because PCA will enforce compression of the nD points onto the 2D
plane, points that are very far in nD might become very close in 2D. This leads to inaccuracy,
when for example, we calculate the point-neighborhood. Unless we develop a technique to
account for this limitation, as we detail in Chapter 3, section 1, using PCA is not the preferred
method of projection.

• t-distributed stochastic neighbor embedding (t-sne) [13]
t-sne is a optimized variation on stochastic Neighbor Embedding. Aiming to retain both the
local and global structure of the dataset within a single map, t-sne hopes to take into account
high-dimensional datasets that lie or are comprised of several lower-dimensional manifolds.
The main aim is to solve a “crowding problem”; which is similar to the compression issue with
PCA, namely that the space offered by the plane onto which we want to project the nD dataset
to will not always offer enough space to accommodate or preserve the distances in nD. Given
a set of points/objects in the high-dimensional space, t-sne will build a probability function
based on the similarity of the objects that is used to determine which points are selected as
neighbors of each other. T-sne is a well-known method of dimensionality reduction, and is
also efficient at neighborhood preservation. [13].

• Local Affine Multidimensional Projection (LAMP) [14]
This is a relatively novel method of multidimensional projection, one that seeks to address the
shortcomings in older projection methods and also the preferred way to analyze real-world,
measured data for this project. The method relies on orthogonal mapping theory to address
shortcomings of global mapping algorithms, such as PCA, which fail to take into account local
changes; while also addressing shortcomings of local mapping algorithms, such as t-sne, which
have high computational costs and require a large number of samples. LAMP uses subsets of
samples in the data as control points to solve a minimization problem to compute an affine
mapping that ensures distances in nD are preserved as much as possible in the projection,
thus resolving the issue of compression of points as with PCA projection, while also being
more efficient than the computationally expensive t-sne method.

2.3 Data analysis: PCA

As data becomes more complex, with many different dimensions influencing the variation and pat-
terns between the attributes, the need emerges for techniques that allow us to gain an impression
of the underlying dimensionality or structure of the data. An understanding of this property would
allow us to make an assessment of the real, inherent complexity of the data, from which can gain
a better understanding of how to approach and compare different kinds of datasets. Principal
Component Analysis (PCA) is a statistical procedure that can be used to investigate, for a given
dataset, whether or not there exists another basis, which is a linear combination of the original
basis of the dataset, that best re-expresses the data.[9][10] In multidimensional, complex data with
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a large amount of samples and a high probability for a large amount of noise, PCA can be utilized
to express the underlying dynamics of the data and reveal its “principal components” or most im-
portant dimensions that best characterize the variance in the data. In this thesis, PCA will be used
to implement the dimensionality metric, where the idea will be to locally explain regions in the pro-
jection by determining the number of relevant principal components within point-neighborhoods.
PCA is widely used and popular [11], as it is simple, fast, good for data points which are spread
more or less like a Gaussian hyper-ellipsoid [15]. However, because PCA as a method tries to fit
a Gaussian hyper-ellipsoid, it tends to have issues for datasets which are not normally distributed,
and is also sensitive to small changes such as one vector being changed.[12]. Another limitation
of PCA is for when data points do not live on a hyperplane embedded in Rn, which can lead to
projection errors being very large. For some datasets, this can lead to dissimilar points in nD falsely
appearing as being very similar in 2D.[11]. PCA as a method of projection will therefore encounter
problems with key-issues such as neighborhood and distance preservation. Still, the purpose of this
thesis is to simply explore the viability of creating explanatory visualizations of multidimensional
datasets by locally explaining points by their dimensionality; the purpose is not to reach a definite
way to do so. As such, PCA with its simplicity and efficiency is considered an adequate choice for
the purpose of this thesis.

PCA can be achieved by a so-called “covariance method” [10] which utilizes a covariance matrix
of the dataset, which will be specified in this thesis. With the “covariance method” we calculate
a n × n covariance matrix from X, which is a N × n matrix that expresses the measurements for
the data. In the covariance matrix each index (i, j) the covariance, or joint variability, between
dimension i and dimension j is expressed. The covariance cov between two variables Q and U , each
with N samples, is defined as:

cov(Q,U) =

∑N
i=1(Qi − Q̄)(Ui − Ū)

N

In PCA, a preliminary step is to compute a covariance matrix CX that expresses the covariance
between each pair of dimensions (i, j) in X. This is achieved by “centering” the data first by
subtracting the mean µj of column j (the mean of samples for dimension j) from the j-th column
vector in X for each j. The covariance matrix of X can then be calculated as:

CX =
1

n
XTX

The index CX(i, j) represents a quantification of the covariance between dimension i and j in X.
A large value would imply high correlation while a smaller value would imply a small correlation.
If i == j, then CX(i, j) would express the variance of dimension i in X. Note that this must mean
that CX is a square symmetric matrix. As such, properties of eigenvalue decomposition can be
used to diagonalize CX by its eigenvectors to derive a diagonal n × n matrix A that returns the
eigenvalues for CX . The value of the eigenvalue λi at A(i, i) would express the contribution to
the total variance in the plane spanned by all eigenvectors by eigenvector i. The matrix A can be
calculated as:

A = ECXE
T

where E is the column-wise matrix of eigenvectors of CX . The computation of eigenvalues for the
software development of this bachelor’s project was achieved through the C + + library Eigen [16]
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which uses Schur decomposition [17] to compute the eigenvalues and eigenvectors of a given matrix.

If an eigenvalue is large compared to the other eigenvalues, then that would indicate that this
eigenvector forms an relatively important part of the basis of X. Accumulating a sum of the eigen-
values and normalizing them by the sum will define a new set of eigenvalues, where instead of an
absolute value each eigenvalue indicates the ratio of how much it contributes to the total amount
of variance in X.

One example of use of eigenvalue decomposition and PCA to understand the underlying struc-
ture of data can be found in medical research of diffusion tensor image analysis [18], which concerns
itself with quantifiable analysis of visualization of white matter of the human brain created using
diffusion tensor magnetic resonance imaging (DTI). The eigenvalues are derived from symmetric,
positive-definite diffusion tensor D, a 3× 3 symmetric positive matrix which is used to describe the
diffusion of water molecules. In this example, the largest eigenvector of the D points in the principal
diffusion direction. In other words, the process of eigenvalue decomposition in DTI analysis is part
of a process of PCA to derive the most important components which contribute the most to the
diffusion in D.

This example application of PCA [18] also provides for a method to characterize the structure
or shape of the variance distribution of the analyzed matrix.. Ratios of the eigenvalues, called ten-
sor anisotropy measures, are defined to quantify the shape of the diffusion. The ratios are defined
as the fraction between eigenvalues λi−λi+1 and the largest eigenvalue λ1 for 1 ≤ i < n to achieve
a measure of how much the diffusion/entropy resembles a particular shape. For example, a given
ratio D2 would indicate how well the diffusion fits a linear or 2D shape:

D2 =
λ1 − λ2
λ1

By computing and comparing the ratios for all different shapes, it’s possible to decide which shape
characterizes the diffusion the best. In this example the shape associated with the largest ratio
would be used to characterize the shape of the diffusion.

2.4 Data analysis: Dimension correlations

Multidimensional data are frequently the subject of analysis that tries to find relationships and
dependencies between attributes in the data. Researchers will try to find correlations between pairs
of attributes in the data, from which they can infer relationships and trends. A correlation is a
measure of the linear association between two continuous variables [19] The correlation value, or
correlation coefficient, gives the strength of the association or dependence. This coefficient value
takes on a value in the range -1 and 1. A coefficient value of zero indicates no association between
the two variables, while either a minimal (-1) or maximal (1) coefficient value indicates a strong
relationship. A large positive value indicates a linear relationship between the two variables, while
a negative value indicates an inverse linear relationship where one decreases where the other
increases. Provided a dataset X = {x1, .., xn} and another dataset Y = {y1, .., yn}, the Pearson
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sample correlation coefficient r between X and Y is calculated as [20]:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

Here x̄ and ȳ are defined as the means over X and Y respectively. More specifically: x̄ = 1
n

∑n
i=1 xi

A non-parametric variation on the Pearson correlation coefficient, less sensitive to outliers, is the
Spearman Rank correlation coefficient. The measurements of xi and yi are converted into ranked
integer variables xri and yri . The coefficient r is calculated as:

r =

∑n
i=1(xri − x̄r)(yri − ȳr)√∑n

i=1(xri − x̄r)2
√∑n

i=1(yri − ȳr)2
(a) or r = 1− 6

∑
d2i

n(n2 − 1)
(b)

Here d2i is the sum of the squared differences between xr and yr and (b) is only used if xr and yr
consist of unique values.

Globally, correlation coefficients can be used to generate explanations of the data by indicating
the strength of inter-attribute dependencies over the entire dataset. These global explanations
however lack the ability to show relationships between attributes in different regions in the data.
As we will see in section 3.2, We will use correlation coefficients to locally calculate the strongest
correlated pairs within projections, allowing us to visualize the data by color-coding regions by the
most frequently top-ranked strongest correlated pairs. For the purpose of this thesis, we will focus
exclusively on the application of the Pearson correlation coefficient to investigate the validity and
functionality of the correlation metric. Benefits of using the Pearson Correlation coefficients include
it being very well known and it providing precise insights over pairs of variables; it’s a very ’global’
metric i.e. it considers ALL observations when computing the correlation of 2 dimensions; and
also it does not tell you much about three or more dimensions. Weakness include its sensitivity to
outliers and its assumption of normal distribution in the data. As with PCA and the dimensionality
metric, the focus here is exploring the metrics as options for generating explanatory visualizations
of the data. Optimal implementations are not the goal of this thesis.

2.5 Local Variance, distance contribution and similarity

To develop and implement the metrics we propose in this thesis, we need a basis; paradigms which
can use as reliable examples to rationalize our approach. In this respect, this project serves as an
extension of research performed by da Silva et al. [3] from 2015. The aim of da Silva et al. was to
explain closely projected points in MPs by their similarity to each other by computing a color-and-
luminance map from a set of rankings for each attribute. In a MP, a dataset D = {p1, .., pN} ∈ Rn
of N nD elements pi = {p1i , .., pni } is projected onto a lower m-dimensional space using dimension-
ality reduction techniques resulting in projected elements Dp = {qi = P (pi ∈ D)} . For each point
pi, a ranking vector {j, µji}1≤j≤n is calculated for all n dimensions, here µji encodes the rank of
dimension j for point i. A lower ranking indicates a better ability for j to explain the similarity
between of the points in nD-neighborhood vi of pi. da Silva et al. specify two metrics to compute
rankings: Euclidean Rankings and Variance Rankings.

The Euclidean Rankings [3] are derived by first calculating the contribution of dimension j to
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the squared distance lcjp,r as the nD squared distance between points p and r

lcjp,r =
(pj − rj)2

||p− r||2

For each point pi, the local contribution of j is calculated as an average of the contributions between
pi and its neighbors r ∈ vi:

¯
lcji =

∑
r∈vi lc

j
pi,r

|vi|
The final ranking for dimension j with pi is then calculated by taking into account the global
contribution gcj of dimension j for the distance, calculated for the nD centoid point with all points
as its neighborhood.

µji =
¯
lcji/gc

j∑n
j=1

¯
lcji/gc

j

The variance rankings [3] are instead calculated by first calculating the global variance GV for all
dimensions over all points

GV = (var(p1), ..., var(pn))

For each point i, the local variance LVi is computed over its neighborhood vi. The final ranking
between a point i and dimension j is then calculated as:

µji =
LV ji /GV

j∑n
j=1 LV

j
i /GV

j

For determining [3] the neighborhood vi for a point i, a typical method would be to use the k-
nearest neighbors [21] algorithm. An issue with using this method is that for a point i which
is an outlier in the projection, the neighborhood would include points that have a large distance
between them and i. For da Silva et al. it was important that the vi consisted of points in close
proximity to i, as proximity in the projection is also a measure of similarity between the points.
Instead, a neighborhood calculation method based on radii is used. For all 2D projected points
qi the definition is given for a 2D neighborhood vpi = { q ∈ Dp || | ||q − qi|| ≤ ρ } given a
radius ρ. The nD neighborhood vi is then defined as vi = { p ∈ D | P (p) ∈ vPi }. Once the
point-neighborhoods are calculated and the metrics defined, the rankings and ranking vectors can
be calculated. Allowing us to move on to the next step: Visualization.

2.6 Visual Explanation

There are many different ways to generating explanatory visuals and analytics for multidimensional
projection, which could manifest as either global explanations or local explanations. Sections 2.3
and section 2.4 detailed PCA and correlation coefficients, which are typically used to generate
global explanations. For the entire global dataset, PCA would allow us to generate a set of eigen-
vectors/eigenvalues which together can describe the shape of the variance of the data and allow
us discard redundant attributes. Correlations compute and display a correlation factor, which is a
single number is used to globally explain which the strength of the dependencies between attributes.
When different parts of the data behave differently, the global explanations will prove insufficient.
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Different pairs might correlate more heavily in different regions of the data, and different neighbor-
hoods in the data might feature a different number of principal components. Imagine if for example
we are examining a dataset consisting of several clusters. We have reason to believe that some
clusters are in a different class compared to other clusters. The clusters each have a reasonable
distance from each other. Local explanations would allow us to indicate separate explanations for
each of these clusters, and examine each of them for their local patterns and trends. In compari-
son, global explanations can only provide us an overview for the entire set of clusters; something
which in this example is not very useful as know the clusters are qualitatively different. Generally,
the benefit of using local explanations is that they can allow us to indicate smaller, more subtle
differences between different regions of the data. In the case of our correlation and dimensionality
metric, we would locally investigate the strongest correlated pairs and locally determine the number
of relevant dimensions that characterize the shape of the region being examined. In the case of the
similarity metrics of distance and variance contribution proposed by da Silva et al. [3][4], we would
be looking at generating local explanations based on local contributions to variance and distance,
adjusted for the global contribution to distance/variance. The here aim is to generate explanatory
visuals which indicate which attributes locally contribute the most to the similarity of points in a
local neighborhood. With all of this in mind, how do we move on to generating visualizations?

Basis

Recall from section 2.5 we use the variance/distance metrics to compute, for each point pi, a
ranking vector {j, µji}1≤j≤n for all n dimensions. Each ranking vector is sorted in ascending order
(for distance and variance rankings) or in descending order (if we use a measure of dissimilarity).
For each rank, the frequency of that rank being the top rank for a point is calculated for the set
of ranking vectors. Using a colormap containing C colors, the C most frequent top-ranked ranks
are selected and assigned to one of C − 1 colors. If there are more ranks with have a top-ranked
frequency higher than zero, their are collectively assigned the same color with index C in the map.
For each point, we color that point with the assigned color of its top-ranked dimensions. This
ensures that is simple to distinguish between regions explained by the most significant top-ranked
attributes.

Confidence

Another part of the visualization [3][4] involves the encoding of the confidence of a top-ranked
dimension. With the confidence, we wish to encode the contributions of other attributes, other
than the top-rank attribute, in explaining the similarity of the neighborhood of a projected point
qi. While one attribute might be the top-rank attribute in this respect, it is rarely the only
attribute that contributes to the explanation of similarity in the neighborhood. The encoding of the
confidence is expressed in the visualization by the strength of the luminance of a point. Points where
many attributes have top-ranks similar in value, where the top-rank attribute does not contribute
significantly more to the explanation compared to other attributes, will be visualized with darker
colors compared to points where there is a single very strong top-ranked attribute. Recall we use
a radius ρ to calculate the neighborhood vp for a point pi. To calculate the confidence, we use a
smaller radius ρc such that ρc < ρ to define a 2D neighborhood vpc centered at qi. We identify t as
the rank ID or number of the top-ranked attribute for the point pi such that t = arg max1≤j≤n µ

j
i .



16

Figure 2.1: Visualization of US Counties data

The confidence cti is then defined as: [4]

cti =

∑
qj∈vpc∧argmaxk µk

j=t
µtj∑

qj∈vpc maxk µtj

...meaning the confidence is encoded as the sum of ranks utj over all points qj ∈ vpc having attribute
t as the top-rank, normalized by the sum of all top-ranks over all points in vpc . This definition
will ensure the confidence acts as a smoothing filter where homogeneous regions with many same
top-ranks are assigned high confidence, while more mixed regions are assigned a lower confidence.
The visualization of the confidence allows users to more easily distinguish between these regions.

Visualization

How does this theory work in practice? Fig. 2.1 includes a snapshot of this visualization method in
action. Using the distance contribution metric, we examine a multidimensional dataset describing
social, economic, and environmental data from 3138 USA counties.[22] For each point, we examine
the local neighborhood and calculate the top-ranked attribute which are found to locally contribute
the most to the distance in that neighborhood. The size C of our colormap is equal to 9. So we
compute the top 8 most frequently top-ranked dimensions over all points. The first color, purple-
like, in the colormap is assigned to the most frequent top-ranked dimension, in this example the
under18 attribute. The second color in the colormap, yellow-like, is assigned to the second most-
frequent top-ranked dimensions, in this case being the percentage of high-school graduates attribute,
and so on. The ninth color, blue, is assigned to all attributes which have a frequency higher than
zero but are not in the top 8 most frequently top-ranked dimensions. Once the colormap has been
assigned, we can generate the visualization. The top ranks and their confidences are displayed over
the projection using the dense map technique based on Voronoi interpolation.[23] In practice, this
will mean that we will generate a texture for the projection. For each pixel in the projection, we
look at which points are within the neighborhood of that pixel for within a certain radius. For each
of the points, we take the top-ranked dimension; and from the set of top-ranked dimensions within
the neighborhood we compute the influence of each dimension. Very basically, the dimension which
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influences the pixel the most is used to color the pixel, while we interpolate for confidence. The
texture is visualized. Meanwhile, we also generate a ranking histogram as displayed to the left Fig.
2.1. Each of the top most frequent top-ranked dimensions are given a histogram, colored by their
assigned color in the colormap, where the length of the histogram is based on the number of points
for which the dimension was the top-ranked dimension during the ranking phase. This number is
also shown to the right of the histogram. The histogram allows users an easy insight into which
dimensions where the most frequent over the entire projection.

The ranking method devised by da Silva et al. [3] can be demonstrated to be an effective and
intuitive way to label points by a dimension that is most similar in their proximate neighborhood.
A shortcoming in the metrics used by da Silva et al. [3] is that only the top-ranked dimensions
values for each point are used for labeling, thus the presence of any dimensions k that have a rank
uki weighted very closely to the rank uji of top ranked dimension j is potentially obscured. Further-
more, information about relationships between dimensions within vi is also something that is not
provided by these metrics.

The theory drafted by da Silva et al. [3] was implemented in a C + + program called “Projec-
tion Explainer”. The program utilizes OpenGL and the NVidia CUDA library for visualization
and several open source libraries such as ANN [24] and Eigen [16] to improve computational per-
formance. For this project, nearly all software development served as an extension to the original
“Projection Explainer” code maintained by R. da Silva and was dependent on the theory discussed
within this section and its implementation in the project.

We see that there are global/local metrics; none of them is by itself sufficient to fully explain
a complex dataset; moreover, we see that some metrics only come in the global version. Our work
next is to show how we can create local metrics based on these global ones (correlation, PCA), and
embed them in the local visual explanation proposed by da Silva et al.[4]



Chapter 3

Implementation

The aim of this chapter is to aim to enrich the local explanations provided by da Silva et al [4] by
creating additional ones based on the global PCA and correlation metrics. For this, we globally
proceed very much like da Silva:

• We define a way to compute a neighborhood of our dataset and/or projection, which defines
the unit of computation of our local metrics (Sec. 3.1)

• We next adapt the global metrics PCA and correlation (Sec 2.3, 2.4) to work locally, and
also to deliver simple-to-understand characterizations of the data (Sec. 3.2, 3.3). In the same
time, we also extend/refine the visual presentation used for these metrics.

3.1 Neighborhood calculation

Dimensionality reduction techniques seek to identify the principal attributes in high-dimensional
data which allow for expressing the data on a more limited basis. When we project high-dimensional
points to a lower 2D plane, the transformation is a form of compression of the points in the nD
space into the 2D space. As the nD space is much larger than the 2D space, the ability to maintain
the similarity between points in nD to the converted points in 2D presents a challenge that some
projection techniques are better capable of handling than others. Essentially, we want points which
are close to each other in nD to be as close to each other in 2D, but some projection techniques
such as principal component analysis tend to be limited in their ability to maintain the similarity
structure of high-dimensional data which is not fundamentally low-dimensional. This issue presents
a problem for the method of neighborhood calculation based on radii as introduced in section 2.5,
which exactly does assume that distance similarities are preserved during the projection. If we use
this method to explain projections generated using PCA, we run the risk of generating wrong or
confusing explanations. To deal with this limitation, we propose an alternative way to calculate
the point neighborhood that combines the radius-based method with a variation of the k-nearest
neighbors algorithm.

As before, we define a dataset D = {p1, .., pN} ∈ Rn of N nD elements pi = {p1i , .., pni }. We
project D onto a lower m-dimensional space using dimensionality reduction techniques resulting
in projected elements Dp = {qi = P (pi ∈ D)}. For each point qi, we define a 2D neighborhood
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vpi = { q ∈ Dp | || ||q− qi|| ≤ ρ } given a radius ρ. The nD neighborhood vi is then defined
as vi = { p ∈ D | P (p) ∈ vPi }. Next, the size of the neighborhood is calculated as |vi|. The
size of |vi| is set as the size of k. We then compute the set of Euclidean distances between pi and
all other points in the dataset D. The k-nearest points, based on Euclidean distances, are then
defined as the point-neighborhood of pi. The squared Euclidean distance ep,r between a point p
and a point r is defined as:

ep,r =

n∑
j=1

(pj − rj)2

The set of pairs of points and squared distances vepi for a point within vi can be defined as:

vepi = { (r, ep,r) | r ∈ D }

We then sort vepi in ascending order, based on the value of ep,r, such that

vepi = { (ri, ep,ri) | ep,ri <= ep,rj | 1 ≤ i ≤ N | i < j ≤ N }

the point-neighborhood vki can be selected as the first k or |vi| points r in vepi .

vki = { ri | 1 ≤ i ≤ k | (ri, ep,ri) ∈ vepi }

Unlike for the calculation of vi, the calculation of vki will always involve the calculation of the
nearest neighbors of pi in nD space, thus effectively serving as a precautionary measure to deal
with the issue of point-space compression. The calculation of k serves as a way to tell how large
the area we want to encode should be. By making it dependent on the size of the 2D neighborhood
we are directly relating it to what is displayed in the projection.

This new method, in contrast with the conventional one, is not necessarily better. The advantage
gained depends on the quality of the projection, and the degree to which compression has taken
place. In Chapter 2, section 4, we detailed several different projection methods that can be used
to achieve dimensionality reduction of data. Some methods, like PCA, do not deal too well with
the issue of point-compression, especially for datasets that are not inherently low-dimensional. The
new method minimizes the inaccuracy produced by compression as much as possible, by directly
taking the neighborhood from the points close in the unprojected plane. As such, when we analyze
datasets that were projected using PCA, the new method will have our preference over the con-
ventional approach. For projection methods such as LAMP however, which reduce the problems of
other projection methods as much as possible, using the conventional method will be the standard,
mainly because it will be more efficient. Furthermore, we will cross-reference our newly proposed
explanatory visualizations with results and analysis performed by da Silva [4]; which relied on us-
ing the conventional radii based method. Varying the parameters could potentially lead to faulty
comparisons and conclusions.

3.2 Correlation metric

3.2.1 Motivation

Multidimensional data is frequently the subject of a process of regression analysis, researchers will
for example try to examine chemical properties of wine [5] to find a relationship between these chem-
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ical properties and the quality of the wine, or try to find an association between the evaluation of
software using software metrics and the quality of that software. In both examples, researches try
to find relationships between independent variables, those that can predict, and dependent vari-
ables, those that are predicted. Any dataset might contain hidden relationships that allow us to
differently interpret the data. So intuitively, as the main subject of this thesis concerns analyzing
multidimensional projections, and therefore multidimensional data, it makes sense to attempt to
implement a metric that allows for some kind visualization of these relationships in the projection.
Specifically, what we want to do is pinpoint the strongest relationships in each point-neighborhood
of the projection. If the projections shows the existence of different kinds of relationships within
different areas of the projection, that might tell us that the way those attributes of the data relate to
each other is fundamentally different per region. It might give us an indication which attributes are
dependent and which are independent. Moreover, if we know that a certain region of points mostly
belongs to a certain category, and we can visualize a strong correlation within that region, that
might tell us something about the behavior of sets of measurements that belong to that category.
Think of for example of regions of points that can be divided as belonging to “good” software and
“bad” software, or points associated with “high quality” wine and “low quality” wine. If we find
different kinds of correlations in the “high quality” and “bad quality” regions, then we might get
an indication which attributes can together predict low or high quality wine/software.

The established metrics [3][4] of analyzing contributions to distance and variance are of course,
less capable or not entirely capable of all of detecting those relationships. As such the benefit is
clear. Still, the benefit of the metric is not just that it is able to show different information than the
established ones, the visualizations it provides can also serve as a complement to the explanatory
capabilities of those established metrics. If regions where a particular attribute contributes the
most also uniformly feature a particular correlation, then that could allow us to infer a pattern
between the attributes in the relationship and the attribute that dominates the region. The in-
verse is of course, also true, if a relationship is present in regions specifically where an attribute
does not dominate, then it might tell us something about the ability of that attribute to affect the
relationship.

3.2.2 Specification

Local correlations

As discussed in section 2.4, correlation coefficients can be used to measure the association between
two variables. Given an MP for a N × n dataset D, consisting of N samples and n attributes, the
purpose of the correlation metric will be to explain a point-neighborhood by correlation of a pair of
dimensions, instead of just a single dimension, by examining which pair of dimensions is calculated
to have the highest correlation coefficient within the point-neighborhood. Phrased differently, we
seek to color-code points by which pair of dimensions is most heavily correlated within their point-
neighborhood.

For a dataset consisting of n attributes, the total count of unique pair combinations will equal
n(n−1)

2 . We can define the set S of pairs of attributes as:

S = { (k, l) | 1 ≤ k < n | k < l ≤ n}
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For each nD point pi = {p1i , ..., pni }, we calculate a ranking vector {s, µsi}∀s∈S for each pair of
attributes in S. the value of each rank is calculated using a correlation coefficient algorithm, with
this thesis focusing primarily on the application of the Pearson correlation measure and secondarily
considering the Spearman rank correlation measure, both detailed in section 2.4.

Given a neighborhood v of size g, we can define the set of observations Xi for attribute i as:

Xi = { rit | 1 ≤ t ≤ g }

Given a neighborhood, attribute i and j, we can define the Pearson correlation coefficient pearson(v, i, j)
as:

pearson(v, i, j) =
cov(Xi, Xj)

σXiσXj

or pearson(v, i, j) =

∑g
t=1(rit − r̄i)(r

j
t − r̄j)√∑g

t=1(rit − r̄i)2
√∑g

t=1(rjt − r̄j)2

Given a neighborhood vi for a point pi, the rank µsi is calculated as

µsi =
abs(pearson(vi, sk, sl))∑
∀s∈S abs(pearson(vi, sk, sl)

If we use the Spearman method to calculate the correlation coefficient, we have:

µsi =
abs(spearman(vi, sk, sl))∑
∀s∈S abs(spearman(vi, sk, sl)

with

spearman(v, i, j) =
cov(Xi

ranked, X
j
ranked)

σXi
ranked

σXj
ranked

or spearman(v, i, j) = 1− 6
∑
d2i

g(g2 − 1)

The abs function returns the absolute value of its input. With correlation coefficients, the value
can range from -1 to 1. By taking the absolute value, both negative and positive correlations can be
compared and quantified with each other. This allow us to differentiate between strong correlations,
negative correlations or no correlations for pairs within different regions of the data, as opposed to
simply analyzing for strong correlation or no correlation at all. The benefit of our method is that
we are able to assign more colors to different pairs of attributes, thereby enhancing the information
gain for the visualization and the user.

Visualization and inverse relationships

For the basic visual encoding of the projection, we use the same basis used for the variance and
distance contribution metric as discussed in section 2.6. We use the correlation metrics to compute,

for each point pi, a ranking vector {j, µji}1≤j≤n(n−1)
2

for all n(n−1)
2 pairs. Each ranking vector is

sorted in ascending order. For each rank, the frequency of that rank being the top rank for a point
is calculated for the set of ranking vectors. Using a colormap containing C colors, the C most
frequent top-ranked ranks are selected and assigned to one of C− 1 colors. Pairs that are relatively
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infrequently top ranked are collectively assigned the same color as they are not deemed relevant
enough to enhance the visualization.

For the correlation metric, we will add another part to the visualization that uses saturation to dif-
ferentiate between regions where there are many inverse correlations versus regions that are mixed
in terms of normal and inverse correlations. In Section 2.6, recall we defined the terms for encoding
the confidence of a rank by adjusting the strength of the luminance of that point’s color. We will
encode the inverse confidence ∇ in a similar way, but instead of visualizing this confidence by a
point’s luminance, we will adjust the the saturation. Regions which are homogeneous, with many
strong inverse correlations, will show stronger saturation compared to mixed regions where there
are both many strong inverse and normal correlations. We again recall we use a radius ρ to calculate
the neighborhood vp for a point pi. To calculate the inverse confidence, we use a smaller radius ρi
such that ρinv < ρ to define a 2D neighborhood vp∇ centered at qi. For each rank uji , we add an
attribute inv which is set to 1 if that rank encodes an inverse relationship, and 0 if it encodes a
normal linear relation. Again, we identify t as the rank ID or number of the top-ranked attribute
for the point pi such that t = arg max1≤j≤n µ

j
i . The inverse confidence ∇i for point pi is then

defined as

∇i =

∑
qj∈vp∇∧argmaxk inv(µk

j )=1 µ
t
j∑

qj∈vp∇∧maxk
µtj

...meaning the inverse confidence is encoded as the sum of top-ranks utj over all points qj ∈ vpc which
encode the strength of an inverse relationship, normalized by the sum of all top-ranks over all points
in vp∇. Recall we calculate one rank for each pair of attributes. The most frequent top-ranked pairs
are assigned unique colors. The correlation value of a rank might be either strong as either a linear
or linear inverse relationship, and we would like to indicate this difference in the visualization. If
we did not use saturation, we would have to change our visualization scheme so that we calculate
twice as many ranks, where for each pair we would create a rank for the strength of the linear
inverse relationship, and the strength of the linear relationship. As always, we would then assign
colors to the top most frequent top-ranked pairs. But under this scheme, because the colors would
be unique, it would be harder to distinguish between ranks that have the same pairs but differ in
what kind of relationship they encode. Furthermore, the colormap is always of a limited size, so
ranks between the same pairs might take up more spots in the colormap, leaving less visualization
options for other pairs. The use of saturation solves this issue, as it allows us to indicate different
kinds of relationships between the same pair of attributes more easily, while also maintaining the
property of the colormap to assign unique colors to qualitatively different top-ranked ranks.

An additional tool implemented for the correlation metric is a GUI matrix “pair color picker”.
As with the contribution and variance metrics, the C most frequent top ranked correlated pairs are
encoded by assigning them to a colormap of size C. Ranked pairs that have a frequency higher than
zero but lower than the C top ranked pairs are assigned to a common color B. The n × n matrix
picker is organized as a set of squares, each associated with a pair of dimensions. The C most
frequent top ranked pairs will have their square in the matrix colored according to their assigned
color in the color map. The pairs assigned to color B will all have their squares colored using B.
The utility of the matrix comes from the ability to select a square with the color B, such that that
the pair associated with this square will replace the C-th most frequent top ranked pair, i.e. the
least frequent top ranked pair assigned a unique color, in the projection. Once the user selects
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a square with color B, the two pairs will switch colors in the colormap and the matrix and the
projection will be re visualized based on the re-assignment.

Figure 3.1: A example of a matrix color picker for the “concrete” ranked using the Pearson corre-
lation metric [25] dataset

The main benefit of the matrix picker is to let one analyze where, on the data, ANY dimension-
pairs are well correlated (even though these pairs are not the most frequent ones globally). In
Fig. 3.1 we can see an illustrative example of the matrix picker. On the left we see the state of
the original visualization and matrix, while on the right we see the state of the visualization with
the pair FlyAsh/Caggregrate replaced by the pair Water/Caggregrate. Note that the original C
most frequent top ranked pairs will have their squares outlined in white regardless whether or not
they’ve been switched; which is to make it easy for the user to return to the original visualization.
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3.3 Dimensionality metric

3.3.1 Motivation

What purpose does the dimensionality metric serve? What information can it help identify through
visualization and what kind of benefits are achieved through implementing it as a locally explana-
tory metric? The dimensionality metric should be able generate new information, to allow us to
visualize the projection in a different way so that we can interpret the data differently compare to
what we can achieve with established methods. Specifically, we want to be able to find, for each
point, an integer k that estimates the inherent dimensionality for the point-neighborhood. By “in-
herent dimensionality” we mean to express the inherent “structure” or “shape” of the neighborhood,
the count of dimensions that are considered relevant enough to adequately explain the neighbor-
hood according to a fixed parameter. In each neighborhood, all attributes will, to some degree,
contribute to the variance in that neighborhood. Some attributes will inevitably contribute more
to that variance than other attributes, as is demonstrated by the variance contribution [3][4] metric.

As is detailed in Sec. 2.3, Principal Component Analysis (PCA) is a technique that allows us
to derive a set of eigenvectors, or principal components, from a multidimensional dataset, that
allow us to re-express the data with a limited basis composed of those eigenvectors, revealing the
inherent structure of the data. By applying PCA to a point-neighborhood, we can derive eigen-
vectors for that neighborhood, which describe the structure of that neighborhood, and a set of
associated eigenvalues which signify the contribution of each eigenvector to describing the variance
in the neighborhood. If we know the eigenvalues of the point-neighborhood, then in their relation
to the fixed parameter, we should able to estimate the size of k. Once we know the value of k for
all points, we can generate a heatmap of dimensionality; where points with a higher value of k are
assigned a more intense color compared to points associated with a lower value of k. As a result,
we can differentiate between regions of the projection with different dimensionality.

But why is this useful? The dimensionality analysis tells us how many INDEPENDENT vari-
ables you really need to describe a phenomenon in some region of our data. Say we have a 100D
dataset and locally, we are able to derive an inherent 5D dimensionality. Then, if we were trying to
find a law which explains, say, how all the variables are linked by an equation, then we know that
we could write 95 equations each which has only five ’free’ variables, and each which explains one
of the ’dependent’ variables.

As a practical example of the usefulness of the metric, we consider the example of applying the
dimensionality metric to a projection of a nD dataset which is fundamentally “random” i.e. noise.
At each point, within each neighborhood, the inherent structure would be nD. If there is no pattern
to the data, then it should not be possible to find pockets of the data where one dimension varies
significantly more than the other. So already, we’ve found a use of our metric; allowing the user to
find areas of noise within the projection. In other words, the metric allows the user to distinguish
between areas with different structures, which vary and behave fundamentally differently compared
to other regions. If our nD dataset, instead of being purely noise, would consist of both noisy areas
and areas being fundamentally limited in their dimensionality, the user would be able to distinguish
between areas of interest and areas that are too random or complex to consider. If we would apply
the variance metric [3][4] to such a dataset, the amount of information we would be able to derive
would be much more limited. Specifically, while it might easily be able to distinguish between
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Figure 3.2: An example of a dimensionality “heatmap” of a MP of a dataset [5] used to analyze
quality of wine

regions dominated by a particular attribute, it does not specify what the shape of those regions is
inherently, and therefore omits information about how those regions are structured.

The dimensionality metric allow us to differentiate between regions of the projection with a different
shape, a different classification of dimensionality of their variance, thereby giving us the ability to
locate regions of interest in the projection that can be expressed and behave in a fundamentally
more limited way compared to other regions. This can be used to complement established metrics
[3][4], by giving us the ability to place those visualizations in perspective.
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3.3.2 Specification

To calculate the eigenvalues of a point-neighborhood, we follow the directions given for PCA in Sec.
2.3. Here, the dataset X for which we calculate the PCA statistic would consist of the set of nD
points in the neighborhood. In the matrix X, each point would be included as row vector of length
n, or the number of attributes in the dataset. We derive the covariance matrix from X, and then
derive the eigenvalues using eigenvalue decomposition. Once the eigenvalues have been calculated, it
is possible to define a metric for characterizing the dimensionality k of the neighborhood according
to a fixed parameter.

Cumulative Percentage of Total Variation

An intuitive way to define this parameter would be as a threshold value; which we can apply
and define in two main variations. Both methods will assume that the eigenvalues are sorted in
descending order, such that we have for the set of eigenvalues E:

E = { λi >= λj | 1 ≤ i < n | i < j ≤ n }

The first thresholding method can be characterized as form of “cumulative thresholding”. Namely,
for a set of (sorted) eigenvalues λ1 to λn, we can define the dimensionality k informally, as by the
count of the largest eigenvalues that cumulatively contribute to a certain percentage, defined by θ,
of the variance in the region.

λ1 + ...+ λk∑n
i λi

≥ θ

where θ is used as a thresholding value between 0 and 1. We can find examples of descriptions of
this method in I.T. Jolliffe’s [10](Chapter 6.1.1) literature on principal component analysis. For our
application, we also need a confidence value to encode luminance. We can encode the confidence
by the fraction at which much the sum deviates from the mean:

confθ = 1−
∑k
i=1 λi − λ̄∑n
j=1 λj

If we set θ to 0.8, then the k largest eigenvalues that contribute to at least 80% of the variance
are considered to define the structure of the variance in the neighborhood region. As an example,
assume we have a set of eigenvalues

Eα = {1.7, 1.2, 1, 0.1, 15.65e−4, 13.25e−4}

In this example, it would be intuitive to declare that the three largest values in Eα significantly
differ from the rest of the values. For any dataset however, the eigenvalues for the large number of
neighborhoods that need to be calculated will differ significantly in their composition. As such, the
use of θ allows for a fixed way to characterize the different regions which is also both simple and
intuitive.
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Size of Variances of Principal Components

While the composition of the eigenvalues of Eα allows for a very easy designation of dimensionality,
other possible compositions of the sets of eigenvalues are more arbitrary. We can consider for
example, an Eβ that consists of one large eigenvalue, but also many, smaller eigenvalues which
approximately have the same value:

Eβ = {0.2,≈ 0.05,≈ 0.05,≈ 0.05,≈ 0.05,≈ 0.05,≈ 0.05}

In this example, it is obvious that the first eigenvalue contributes significantly to the variance,
but it is not very clear where we should “cut-off” the rest of the eigenvalues to define k, provided
we use θ to set a threshold. Given that the eigenvalues are about as equally large as each other,
the value of θ could lead to arbitrarily and unfairly characterizing the neighborhood as a lower
dimensionality than would seem appropriate. To deal with this limitation, we could define an
alternative thresholding strategy which involves a minimum thresholding value η:

k = |{ λi∑n
j=1 λj

≥ η | 1 ≤ i ≤ n }|

Here we simply count the number of eigenvalues that contribute at least a certain percentage
to the variance. Examples of using similar kinds of thresholding method is can be found within
explanatory factory analysis following Kaiser’s criterion [26] and were also described in I.T. Jol-
liffe’s [10](Chapter 6.1.2) literature on principal component analysis. To define the confidence, we
calculate the normalized sum of all the eigenvalues that contribute to at least a fraction η of the
variance:

confη =

∑k
i=1 λi∑n
j=1 λj

It should be stressed that neither of these thresholding methods would be absolutely better than
one or the other. As we will show in Section 4.2, they can both be used to achieve the same result,
but also to generate visualizations unique to each other.

In the software, both methods have been implemented, and both will be tested and compared
to each other in Ch. 4. To make an appropriate choice between the two methods, it would be useful
if we could more closely inspect the eigenvalues in the point-neighborhoods for ourselves. As such,
the ability has been given to print the eigenvalues of a point-neighborhood. If the user clicks on a
point in the MP, then the eigenvalues of that point’s point-neighborhood will be printed.

Cumulative Differences in Similarity measured in distance ratios

A third alternative way to define k is through a calculation of ratios of differences. This technique is
used in areas of research such as diffusion tensor analysis [18]. This method was considered for this
project as it stands as an empirical, scientifically applied method for deriving the dimensionality of
a set of values. More details about this process can be found at the end of Section 2.3. In diffusion
tensor image analysis, the eigenvalues are limited to a set of three and are therefore more easy to
differentiate i.e. simply picking the largest ratio among the three would provide for a solid basis
to characterize the dimensionality. If the set of eigenvalues is potentially large, as it often will be
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for neighborhoods of multidimensional data, then the choice becomes more arbitrary. To solve this
issue, we could define a thresholding method to define the dimensionality k = h+ 1:

λ1−λ2

λ1
+ ...+ λh−λh+1

λ1∑n
i=1

λi−λi+1

λ1

≥ ν

Note that we define λn+1 is as zero. Furthermore, if the first eigenvalue is already larger than ν,
then the dimensionality of the set classified as 1. If the first eigenvalue is smaller than ν, the value
of k is set to zero. Otherwise, the value of k equals h + 1. Instead of thresholding by a raw cu-
mulative sum of eigenvalues, this method would represent a method thresholding cumulative ratios
of difference divided by the largest eigenvalue. In diffusion tensor image analysis, deciding which
ratio best characterizes the diffusion is done by examining which ratio is the largest i.e. looking
for a certain point where the difference between the eigenvalues become the largest. The point is
to find the place where two sorted eigenvalues most significantly differ and thus signify a “break”
between contributions to the variance, thus giving an indication for a structure of dimensionality.
The benefit of using a cumulative sum is the ability to capture several large “breaks” or difference
ratios by thresholding them to a single value. What this method would emphasize is using the
similarity of eigenvalues to determine the number of relevant principal components. In his review
of methods that can be used to distinguish between components that are relevant and which are
noise [10](Chapter 6.1.7) I.T. Jolliffe concludes that using similarity of components as a sensible
standard in this respect, citing work from Besse and de Falguerolles (1993) [27] and North et al
(1982)[28] which argue a similar position.

To imagine how this works in action, imagine if we applied this ratio thresholding metric to the
set of eigenvalues Eα. The differences between the first three eigenvalues would be very small, and
thus would contribute little to sum. However, the large difference between the third and the fourth
eigenvalue would contribute much more, which makes sense at the fourth eigenvalue is relatively
speaking less significant than the first three and could constitute a solid cut off point. The main
benefit of this method lies in its ability to methodically account for the differences between the
largest eigenvalues. To encode the confidence for the ratio metric, we can define:

confν = 1−
∑h
i=1

λh−λh+1

λ0
− 1

n

∑n
l=1

λl−λl+1

λ0∑n
j=1

λj−λj+1

λ0
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Additional features and visualization

Figure 3.3: PCA GUI snippet for selecting parameters

Choosing appropriate values for θ, η, ν can be somewhat arbitrary and depend on the impression
the user has with the dataset and what kind of information he wants to see in the visualization.
For cumulative thresholding values θ and ν, a relatively large value makes more sense while picking
small values is more sensible for η. As illustrated in Fig. 3.2, the option has been provided for
the user to choose his thresholding method in a GUI and also set the thresholding value for each
method. With the dimensionality metric, we no longer compute a ranking vector. Or rather, for
each point i, we calculate ranking vectors of size 1, containing a single ranking value µki . The value
of k indicates the dimensionality of the rank, while the weight of µki is encoded as either the value
of confθ when applying the sum threshold method, the value of confη when applying the minimum
thresholding method, or the value of confν when applying the ratio threshold method. The value
of µki is also automatically the top-ranked value.

As mentioned earlier in this section, we want to visualize the projection as a heatmap of dimen-
sionality. Formally, this “heatmap” is a ordinal colormap that gives us a way order the colors and
ranks of dimensionality used during the visualization. With the dimensionality metric, we do not
rank points by attributes any longer, but instead assign a number k as the point-neighborhood’s
rank. Therefor, it would not make sense to make use of a categorical colormap of a limited size.
With a categorical colormap, there will be a clear distinction between regions because of the distinc-
tive colors. When the ranks are qualitatively different i.e. describe different attributes, a colormap
which assigns unique colors to the top most frequently top-ranked attributes makes sense. With the
dimensionality metric however, the ranks are only quantifiable different from each other. Because
there is a quantitative relation between the different ranks, where ranks can be sorted against each
other in order, it makes sense to implement the colormap on a similar basis. In this sense, the config-
uration of the colormap should allow us to see the transitions between areas of lower dimensionality
to areas of higher dimensionality and vice versa. As such, it is more appropriate to generate the
colormap for ourselves as a heatmap, which assigns more intense colors, for example red, to ranks
with a higher dimensionality but assigns softer colors, for example blue, to ranks with a lower di-
mensionality. Specifically, we calculate the count C of ranks that have a frequency larger than zero.
These ranks are then sorted in ascending order, to generate a ranking vector F of size C. The rank
with the lowest dimensionality is assigned the color blue, with hsv(240, 100, 100). The color of the
f -th rank with a frequency larger than zero is then calculated as hsv(240− f ∗ (240/C), 100, 100).



Chapter 4

Testing and Results

This chapter features analysis, validation and exploration of the correlation and dimensionality
metrics through testing on datasets and examination of those datasets. We validate a metric by
testing the data on known, simple synthetic datasets where we are familiar with the shape and
composition of the data. By visualizing synthetic data using the metric, we can test the correctness
and behavior of the visualization in a controlled environment. We explore a metric by applying it on
real-world data, allowing for evaluation of the robustness of the metric on more complex, unknown
data and how it can be used for exploration of this data. Section 4.1 provides an overview of all
data used, including generation methods and sources. Section 4.2 evaluates the correlation metric,
while Section 4.3 evaluates the dimensionality metric. We perform testing of the software under
hardware parameters including a Intel Core 2 Duo CPU P8600 @ 2.40GHz CPU, with a GeForce
320M/integrated/SSE2 GPU running on 64-bit Ubuntu 14.04

4.1 Test data organization

This section is dedicated to itemizing the terminology and shortcuts used when discussing and
specifying figures in this section and will also specify the details behind each synthetic and real-
world, measured data.

4.1.1 Figure tags and parameters

These tags are used to specify information about the figure listed.

• data : The data that is being analyzed.

• metric: the metric used to label and classify the projection.

– variance = Variance contribution metric.

– contribution = Distance contribution metric.

– pearson = Pearson correlation coefficient metric

– spearman = Spearman rank correlation coefficient metric

30
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– pcaratio = Thresholding of eigenvalue difference ratios derived using principal component
analysis

The threshold value is specified by ν

– pcasum = Thresholding of cumulative sums of eigenvalues derived using principal com-
ponent analysis

The threshold value is specified by θ

– pcamin = Thresholding of eigenvalues derived using principal component analysis using
a min based threshold.

The threshold value is specified by η

• projection : The projection method used to reduce the multidimensional data to a two-
dimensional dataset, which then mapped as a multidimensional projection.

– pca = Principal Component Analysis [10]

– lamp = Local Affine Linear Projection [14]

– tsne = t-distributed stochastic neighbor embedding [13]

• neighborhood : The method used to calculate the neighborhood vi of a point

– vr : For all 2D projected points qi 2D neighborhood vpi = {q ∈ Dp || | ||q− qi|| ≤ ρ}
given a radius ρ. The nD neighborhood vri is then defined as vri = {p ∈ D|P (p) ∈ vPi }.

– vn Given a radius ρ, calculate vri for all points qi. Take k = |vri | and set vni as the
k-nearest n-D neighbors to pi

• ρ: The size of the radius used to calculate the neighborhood. Continuous variable. Has a
range 0 ≤ ρ ≤ 1. The value of the radius indicates the percentage of the diameter of the
projection.
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4.1.2 Data specification

We want to test our metrics on real-world data to get an impression of how well they can help
explore complex datasets in a scientific context. Examples of real-world data include a dataset
measuring chemical content, such as alcohol, sugar or chloride, of different wines; a dataset con-
taining of software quality, quantified by metrics such as lack of cohesion, coupling and structural
complexity, of software projects on sourceforge.net. Each of these datasets contain thousands of
measurements with about a dozen attributes. Their complexity will lend itself well to explore of
how the metrics introduced in this thesis will function when applied to real-world research data,
and validate their usefulness to discover patterns in the data. With synthetic data, we can decide
for ourselves what shape the data takes. Unlike with real-world data, we’d know beforehand what
the shape of the data is and therefore can also rationalize about what results we should expect if
use metrics to visualize the data. This will allow us to establish so-called “ground-truths” about
the correctness of our metrics; in the sense that we can validate that they are working correctly by
applying them to these synthetic datasets.

(A) Synthetic data

i linearnoise
3D, 2000 samples. The data features 2D linear correlation, embedded in 3D, between the first
and second dimension, with Gaussian distributed noise with µ = 0 and σ = 4 between all
dimensions. Generated using Distribution Painter

ii linear inverse
3D, 2000 samples. The data features 2D linear correlation, embedded in 3D, between the
first and second dimension, and also an inverse 2D correlation between the first and second
dimension. Generated using Distribution Painter

iii 3planes
10D, 3000 samples. The data is created by first creating a 3D dataset and then embedding in
10D. This was created as 3 sets of 1000 samples with each set sampling a 2D plane. The first
plane lies on the normal vector [0, 1, 1], the second plane lies on normal vector [1, 0, 1], and the
third plane lies on normal vector [1, 1, 0]. Randomly distributed noise is added to the set with
a range of -1 to 1.

iv gauss noise
10D, 2000 samples. Gaussian distributed noise dataset with a very small standard deviation
σ = 0.0001 with µ = 0. Generated using a Python script.

v cube 3d
3D, 3000 samples. Three faces of a 3D cube. The points consist of 3000 random samples of
each faces, 1000 for each face. Generated using a Python script.

vi halfsphere
3D, circa 2000 samples. The shape of the data represents a halfsphere defined by cosine and
sinus functions over the x, y and z axes. Generated using a Python script.

vii emb cube 3d
10D, 8000 samples. A uniformly sampled cube embedded in 10D space. Generated using a
Python script.
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viii nd clusters
7D, 5000 samples. Each 1000 samples is sampled from a Gaussian distributed cluster. There are
five clusters in total. The mean of the ith cluster is equal to µi = 5 ∗ i. The standard deviation
for all clusters is equal to 1. The i-th cluster has a normally distributed random sampling from
i + 2 dimensions. For each i-th cluster, we add small levels of noise with σ = 1e−6 for i + 7
dimensions. Generated using a Python script.

ix circles
2D, 400 samples. Two circles generated using Scikit’s make circles() function [29] with a scale
factor of 0.3 and noise factor of 0.05

x circles2k
2D, 2000 samples. Two circles generated using Scikit’s make circles() function [29] with a scale
factor of 0.3 and noise factor of 0.05

(B) Measured data

1. indian liver = A data set containing 416 liver patient records and 167 non liver patient
records. The data set was collected from north east of Andhra Pradesh, India. Selector is a
class label used to divide into groups(liver patient or not). This data set contains 441 male
patient records and 142 female patient records. Dataset retrieved and description cited from
the UCI Machine Learning Repository [30][31][32]

2. winequality = A dataset of 6497 samples of Portuguese vinho verde wine with 4898 samples
of red wine, and 1599 samples of white wine. Each sample contains measurements of 12
physico-chemical such as acidity, residual sugar, and alcohol rate. The dataset is often viewed
as a part of solving classification or regression tasks.[30][5]

3. software ln = dataset which describes 6773 software projects from sourceforge.net written
in C. Each project has 12 dimensions (11 software quality metrics and the projects total
download count). These metrics were extracted using static analysis tools. [6]

4. uscounties = A 12D dataset which describes social, economic, and environmental data from
3138 USA counties.[22]

5. concrete = A 8D dataset of 1030 samples measuring the way 8 ingredients influence concrete
strength.[30][25]
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4.2 Correlation metric

4.2.1 Synthetic datasets and ground-truths

Figures 4.1, 4.2 and 4.3 are meant to demonstrate the ability of the metric to detect basic linear
and inverse correlations while dealing with noise levels and curvatures. Figures 4.4, 4.5, 4.7 and
4.8 are meant to demonstrate the ability of the metric to detect and distinguish between different
kinds of correlations.

Figure 4.1: data=linearnoise, metric=pearson, projection=pca, neighborhood=vn, ρ = 0.1

Figure 4.2: data=linearinv, metric=pearson, projection=pca, neighborhood=vn, ρ = 0.1
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Figure 4.3: data=circles, metric=pearson, projection=pca, neighborhood=vn, ρ = 0.1

Fig. 4.2 shows a dataset consisting 3 dimensions, 2000 samples. The data features 2D linear
correlation, embedded in 3D, between the first and second dimension, with Gaussian distributed
noise with µ = 0 and σ = 4 between all dimensions.

Fig. 4.2 shows a dataset consisting 3 dimensions, 2000 samples. The data features 2D linear
correlation, embedded in 3D, between the first and second dimension, and also an inverse 2D cor-
relation between the first and second dimension.

Fig. 4.3 features a dataset that is 2D, 400 samples. Two circles generated using Scikit’smake circles()
function [29] with a scale factor of 0.3 and noise factor of 0.1

The main point of Fig. 4.1 is to demonstrate the ability of the metric to detect very linearly
correlated 2D data, embedded in a low-dimensional space, with additional noise added to test fault
detection. We can note some faulty correlation detections due to the noise. The first and third
dimensions and the second and the third dimension are shown to be correlated for about 100 points
each. This error is caused by the fact the metric must assign a ranking to each point and these can
thus be simply be indicated as random errors.

Fig. 4.2 is meant show the ability of the tool to detect both linear and inverse correlations. In
this dataset the 1st and 2nd dimension are very strongly correlated, both positively and negatively
although both with two distinguishable distributions. Fig. 4.3 to show the same ability, but this
time with circles created from signal functions that oscillate between negative and positive corre-
lations. While Fig. 4.2 just shows the ability of the metric to detect different kinds of the same
correlations, Fig. 4.3 also demonstrates its ability to changes in the kind of correlation within a
single band of data.

Fig. 4.4 sees the application of the Pearson metric on a 10D dataset of Gaussian distributed
noise with a mean of 0 and a standard deviation of 1. The result of the classification is a very noisy
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image, with most a large amount of correlations detected as indicated by the large count of the
“Other” category. For a continuous dataset, where local variation in attribute values is very small,
we expect to see a more or less continuous picture were we to apply a categorical explanatory visu-
alization. The idea being that the variation in the visualization is closely similar to the variation
in the data. In this sense, the results in Fig. 4.4 are to be expected, as we see a large amount of
variation in colors and variation.

(a) neighborhood=vn (b) neighborhood=vr

Figure 4.4: data=gaussnoise, metric=pearson, projection=tsne, ρ = 0.1

In Fig. 4.5, we see a LAMP projection of three 2D planes embedded in 10D space. One plane
lies on normal vector [0, 1, 1], another on normal vector [1, 0, 1] and a third one lies on a normal
vector [1, 1, 0]. This is a good testing example because if a plane lies orthogonal or parallel with
two axes (i.e. another plane) then we should expect those axes to be correlated with each other
and not with much else. The resulting projection results in three “bands” were we should expect
correlations to be detected. Individually, because we have one plane on normal vector [0, 1, 1] and
one plane on normal vector [1, 0, 1], we have one plane that lies parallel with the xz-plane and one
that lies parallel with the yz-plane, and therefore expect to see at least one band that is primarily
correlated with the first and third dimension and another that shows a correlation between the
second and third dimension. If we examine Fig. 4.5, we can indeed see this to be the case. Because
these planes are also orthogonal to each other, they intersect (both in nD and in 2D) and we see a
mixed correlation in the intersection area.

For the final plane band, lying on normal vector [1, 1, 0], we see a classification with oscillating
correlations between the xz-plane and the yz-plane. This is the result of the fact that this plane is
orthogonal to both the yz-plane and the xz-plane.

Figures 4.6, 4.7 and 4.8 show classifications of the cube3d dataset. In Fig. 4.6, we include the
classification of the dataset using the variance contribution metric from da Silva et al. [3] for the
sake of comparison. In Fig. 4.7, we see two classifications of the dataset using Pearson classification
using the vn neighborhood method (left) and the vr neighborhood method (right). In Fig. 4.8, we
see a Pearson classification of the dataset using the vn method but using a radius twice as large.



37

Figure 4.5: data=3planes, metric=pearson, projection=lamp, neighborhood=vr, ρ = 0.1

Fig. 4.7 serves to illustrate two points: The first about how well the metric is at catching
correlations between dimensions that are highly related to each other; and also to illustrate the
effect and benefit of the vn neighborhood calculation method. First, if we examine Fig. 4.6, we
can see that a face is always dominated by one particular attribute. In Fig. 4.7, we can see that
while both visualizations differ the classification that they return for the “edges” on the cube, the
point at which the faces intersect, are the same (note that the colors are mapped differently in
each visualization, which can be confusing). The only difference being that the illustration using
the vn method has a larger area classified with the correlations. If we now again compare Figures
4.6 and 4.7, we can see that the “edge”, in Figure 4.7, that is classified as a correlation between
x and z, is the intersection of the face labeled by x and the face labeled by z in Fig. 4.6. We
detect a correlation at the edges as these are transitional regions between faces; which means point
dimensions will start increasing/decreasing in value at approximately the same rate; causing the
detection of a correlation. The edge between the x designated face and the z-designated face in
Fig. 4.6 will have values that vary and increase/decrease most strongly along these dimensions. A
similar relationship exists between the other faces and edges of the cube. This illustrates the ability
of the metric to find intersections between different regions of MP by classifying them as (inverse)
correlations thus creating an indication of structure in the MP.

About the second point, namely the difference between vn neighborhoods and vr neighborhoods,
we can see that in the vr visualization the faces of the cube are labeled with only one correlation,
while in the vn visualization the correlations in the faces seem mostly random. Now because the
faces of the cube are randomly sampled, we should actually not expect to see a correlation in the
area of the faces of the cube, and for that reason should judge the vn visualization as the more
accurate version. The reason for the difference is related to the fact that the vn method takes the
neighbors from the nD space, where differences are preserved, while the vr is most likely the result
of the compression of the PCA projection onto the 2D plane. The visualization in Fig. 4.8 also uses
the vn neighborhood method, but with a much larger radius. We now see a much more uniform
classification, which is the result of the larger ρ value leading to more occurrences of sampled from
two faces being included in the neighborhood of a point.
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Figure 4.6: data=cube3d, metric=variance, projection=pca, neighborhood=vr, ρ = 0.1

(a) neighborhood=vn (b) neighborhood=vr

Figure 4.7: data=cube3d, metric=pearson, projection=pca, ρ = 0.1

Figure 4.8: data=cube3d, metric=pearson, projection=pca, neighborhood=vn, ρ = 0.2
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4.2.2 Real-world datasets

Wine quality, Software quality and United States Counties

To demonstrate the use of the correlation metrics, we first examine three sets of data:

• winequality = A dataset of 6497 samples of Portuguese vinho verde wine with 4898 samples
of red wine, and 1599 samples of white wine. Each sample contains measurements of 12
physico-chemical such as acidity, residual sugar, and alcohol rate. The dataset is often viewed
from the perspective of solving classification or regression tasks.[30][5]

• software ln = dataset which describes 6773 software projects from sourceforge.net written
in C. Each project has 12 dimensions (11 soft- ware quality metrics and the projects total
download count). These metrics were extracted using static analysis tools.[6]

• uscounties = A 12D dataset which describes social, economic, and environmental data from
3138 USA counties.[22]

Fig. 4.9 gives the visualization of each of the three sets using the contribution metric. Fig. 4.10
visualizes each of the three sets using the Pearson correlation metric. Each of the three sets has
previously been used as examples to illustrate the use of the similarity metrics as applications on
real-world by da Silva et al.[3][4].

(a) data=winequality (b) data=software ln (c) data=uscounties

Figure 4.9: metric=contribution, projection=lamp, neighborhood=vr, ρ = 0.1

(a) data=winequality (b) data=software ln (c) data=uscounties

Figure 4.10: metric=pearson, projection=lamp, neighborhood=vr, ρ = 0.1
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The first visualization that has our interest is the Pearson correlation for the uscounties dataset
in Fig. 4.10, which gives a correlation for the population density and under18 attributes over the
entire projection. In Fig. 4.9, we can see that the MP is partitioned into a number of regions, one
of which is the under18 attribute. Another smaller region on the left is assigned to the population
density attribute. In previous research performed by da Silva et al. [3][4] the population density
attribute was also found to have a significant contribution to the similarity of points in the area of
the under18 region. The Pearson correlation analysis implies that the rate at which their contri-
bution expands or decline throughout the projection is consistent with each other at a linear rate,
which is emphasized by the fact that their strongest contributions originate in a close general area.
Because these values are so heavily correlated, at least in comparison to the other pairs, there is
also an implication that if other attributes differ in comparison to the under18 attribute, then they
differ in the same way to the population density attribute.

Next we can examine the classifications of the software ln dataset. In Fig. 4.9(b), we can see
that the lines of code attribute defines two basic regions, which is separated by the number of
members attributed region. There is also a secondary yellow region defined by the lack of cohe-
sion attribute. In Fig. 4.10(b), we can see that the right lines of code region, the number of
members region and the lack of cohesion feature correlations between the function parameters and
number of modules summed attributes. Meanwhile, in the left lines of code there are two correla-
tions: one between structural complexity/average lack of cohesion on methods and attributes and
another between the source files/lack of cohesion attributes. In the original study [6](Table ii),
the authors analyzed the different variables with different correlation metrics, and the structural
complexity/average lack of cohesion on methods pair, were found to correlate at a value of 0.786,
which is notably the strongest correlation for these attributes in the table. From the table, we can
also see a strong correlation between the structural complexity and lines of code region at 0.666, the
third strongest for structural complexity, and also a correlation between average lack of cohesion
on methods/lines of code with coefficient 0.472, the second strongest for the lines of code attribute;
which rhymes with the observation that we find the structural complexity/average lack of cohesion
on methods correlation within a region strongly [4] dominated by the lines of code region. That we
find a correlation featuring the lack of cohesion attribute within this region also makes sense in the
same manner. Information about the function parameters attribute in the study [6] is lacking, but
the number of members attribute is also shown to correlate heavily with the lines of code attribute.
We can conclude that the correlation metric, in conjunction with the contribution/variance metrics,
can reveal layers of relationships between attributes.

The results for the winequality dataset are also notable. The residual sugar attribute is shown
to correlate over a broad region with the density in a region which in Fig. 4.9(a) where most of
the similarity is explained by the chloride and alcohol attributes. Within the region where residual
sugar explains most of the similarity between points, the fixed acidity attribute is shown to correlate
with three different attributes. In the original study [5](Fig. 4), the authors postulate that alcohol is
one of the most important factors in explaining a higher wine quality. If residual sugar and density
are correlated over the alcohol region, then that can imply that significant variations in alcohol, and
therefore wine quality, can also feature an added relationship of residual sugar and density. Indeed,
increasing alcohol content tends to lead towards increases in wine quality [5]. Residual Sugar is
also shown to significantly affect the quality of white wine in particular [5](Fig. 4), and as such the
presence of many correlations featuring fixed acidity imply a similar relationship i.e. increases in
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wine quality and residual sugar might coincide with correlations featuring fixed acidity.

Beh E J and Holdsworth C I [34] investigated this wine quality dataset from the perspectives
of correspondence analysis, multiple regression analysis, classification and visual evaluations. Using
the classification technique of P. Cortez et al. [5], they examine the mean quantity of each attribute
for the classification as scored by assessors [34](Table 3). This process leads the authors establish
a relationship between lower values of residual sugar, density, fixed acidity and volatile acidity and
higher quality white wine. On the other hand, stronger values of alcohol, pH and sulphates are
implied to lead to higher quality wine. For red wine, high levels alcohol, sulphates are also implied
to be a strong indicator of quality, while low levels of chloride might lead to higher quality red wine
and citric acid, residual sugar and density are considered to be statically irrelevant in predicting
red wine quality [34](Table 6). If we relate Fig. 4.10 with the findings of Beh E J and Holdsworth
C I [34], we can confirm an additional layer behind correlation between residual sugar and density,
specifically in regions where most of the similarity is explained by chloride and alcohol, as all of
these attributes add to predicting the quality of wine; and that we can further conclude that residual
sugar and density might express a property of multicollinearity in their inverse relationship with
higher quality wine.

Concrete

In this section we analyze the concrete dataset, which is a 8D dataset of 1030 samples measuring
the way 8 ingredients influence concrete strength.[30][25]. The ingredients are cement, blast furnace
slag, fly ash water, superplasticizer, coarse aggregate, fine aggregate, each measured in kg in a m3
mixture. There is also a additional age attribute measured in Days (1 365) . In Fig. 4.11 we
compare the visualizations produced from the contribution and pearson metrics.

(a) metric=contribution (b) metric=pearson

Figure 4.11: data=concrete, projection=tsne, neighborhood=vr, ρ = 0.1

This dataset was analyzed as part of validation of the similarity metrics by da Silva R [4](Fig.
5.10). The author concluded that the group of clusters encircled in Fig. 4.11 were associated with
high concrete strength. The author also concluded[4] that the BFSlag (blast furnace slag) attribute
had interesting correlations with this group of points, with the blast furnace slag also tending
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towards high values in this region. In Fig. 4.11, we see a correlation between the cement and blast
furnace slag attributes in this region. Now, if cement and blast furnace slag are correlated with each
other, and blast furnace slag is correlated with high concrete strength values, the it is also likely that
cement is in some form related to concrete strength as well. In Fig. 4.12, we decrease the radius ρ to
see if any additional subregions of correlations can be identified with the encircled group of clusters.
We find additional strong correlations finely separating the clusters in the encircled region. In Fig.
4.12(a), we can note a correlation, partially inverse and partially non-inverse, between blast furnace
slag and the Faggregate (fine aggregate) attributes in the pink upper cluster of the encircled region,
and in turn also a correlation between water and fine aggregate in the green lower cluster of the
encircled region. The cement/blast furnace slag (yellow) correlation remains strong in the middle
cluster. In Fig. 4.12, we see the cement/blast furnace slag and water/fine aggregate correlations
remain in the lower and middle clusters, and the upper cluster locating an additional correlation
between Caggregate (coarge aggregate) in the red upper cluster. Now because the blast furnace slag
was found to (inversely) correlate with the fine aggregate attribute in this region, the fine aggregate
might be inversely related to high concrete strength values (especially in combination with increasing
blast furnace slag values). And because the fine aggregate might be inversely related, and we located
an inverse water/fine aggregate correlation, and also a coarge aggregate-fine-aggregate correlation,
both the water and coarge aggregate attributes might help explain high concrete strength values, in
the sense that they inversely contribute to high concretes strength values. Taken together, the blast
furnace slag, cement, fine aggregate, water and coarse aggregate might all together help to shape
a regressive model that models concrete strength in the dataset. Wu S S et al. [33] conducted a
study of this dataset from the perspective of predictive modeling, for which the authors among other
metrics index a table of Pearson Correlation coefficients between the attributes in the data[33](Table
II). The study found a relatively strong positive correlation between cement/blast furnace slag of
0.29, negative correlations between blast furnace slag-coarse aggregate(= −0.31) and blast furnace
slag/fine-aggregate(= −0.31) and a inverse correlation between fine-aggregate/water=(−0.44). The
results seem to rhyme with our findings in the visualizations. However, the authors concluded there
was little chance for multicollinearity[33], a phenomenon where two or more attributes are highly
correlated in a regressive model. Hench, the visualized correlations in the encircled region might not
be very significant. This gives us an insight in the limitations of the correlation metric. If however,
we did not do an extensive analysis of the data using complicated models, the visualizations would
be useful in giving us an initial indication of the behavior of the data.

(a) ρ = 0.005 (b) ρ = 0.003

Figure 4.12: data=concrete, metric=pearson, projection=tsne, neighborhood=vr
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4.3 Dimensionality metric

4.3.1 Synthetic datasets and ground-truths

Figures 4.13, 4.14, 4.15 analyze the cube3d dataset using all three variations of thresholding met-
rics. For PCAmin and PCAsum metrics, the visualizations for a larger radius are also given in
Fig. 4.13(b) and 4.14(b). The visualization show that all three thresholding methods are capable
of indicating the same overall structure in the cube. Specifically, we can see that the faces of the
cube are classified with a dimensionality of 2 while at the edges of the cube, the intersections of the
faces, are given a dimensionality of 3. This should intuitively make sense. The faces are, if we recall
the description of the dataset, defined primarily by two dimensions each. When the faces intersect,
at the edges of the cube, all three dimensions vary much closer to each other. Increasing the radius
in 4.13(b) and 4.14(b), we see that the area designated as 3D becomes somewhat larger. This is
because more points have other points in their neighborhood taken from all three faces. Now if we
pay attention to the values of η and θ, we see their values are quite high and the thresholding is
therefore quite strict.

In Fig. 4.16 , the visualizations using the PCAsum metric using less strict θ values is given and
can be compared to Fig. 4.14. When using a smaller θ = 0.9 value, the PCAsum metric is only
capable of detecting the most intense areas of intersection as 3D. In Fig. 4.17, we can see the same
holds true for the PCAmin metric when using a less strict value for η = 0.1. When the thresholding
value has to be set so high, it betrays a certain weakness for these metrics, as small deviations
in thresholding values can apparently have them make inaccurate visualizations. In contrast if we
examine Fig. 4.15, the PCAratio method shows no such issues with being able to detect the edges
using looser thresholding values; albeit with arguably less accuracy when using the PCAsum and
PCAmin methods with a very strict thresholding value. Overall, this shows the PCAratio is the
most flexible of the three methods and the least sensitive to small differences in parameters of the
three.

Fig. 4.18 shows the visualization, using the PCAmin metric, for a collection of clusters where
each cluster is distributed along a different count of dimensions. The clusters all have slightly
shifted means, but have the same standard deviation. The purpose of the visualization is to show
the ability of the dimensionality metric to distinguish between different groups of dimensionality.
In Fig. 4.19, 10D Gaussian noise, centered at 0 with a very small σ = 0.0001, labeled using the
PCAratio metric is visualized using both vr and vn neighborhoods. Areas that are very noisy do
not have any clear relationship between the underlying attributes, and as such should always be
classified as very high-dimensional. As such, what we expect to see is a projection that is colored
with very “intense” colors within the heatmap. For Fig. 4.19, we can indeed see this is the case for
both neighborhood calculations. The vn neighborhood calculation method seems to have an edge
over the radius-based method, as we expect the noisy area to be classified as entirely 10D. Less
accuracy in the vr visualization is most likely again the result of PCA compression where points
that are part of a noisy area in nD get placed far away in 2D.
Fig. 4.20 shows the visualization, using the PCAratio metric, on a 3D cube uniformly sampled
between an interval of 1 and -1, which is embedded in 10D space with 10D Gaussian distributed
noise with µ = 0 and σ = 1 added. The point of the visualization is to test the ability of the di-
mensionality metric to detect “hidden” areas, which are fundamentally m-D, but which embedded
in a nD space with n > m.
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(a) ρ = 0.1 (b) ρ = 0.2

Figure 4.13: data=cube3d, metric = PCAmin, η = 0.05, projection=pca, neighborhood = vn

(a) ρ = 0.1 (b) ρ = 0.2

Figure 4.14: data=cube3d, metric = PCAsum, θ = 0.95, projection=pca, neighborhood = vn

Figure 4.15: data=cube3d, metric = PCAratio, ν = 0.90, projection=pca, neighborhood = vn
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(a) ρ = 0.1 (b) ρ = 0.2

Figure 4.16: data=cube3d, metric = PCAsum, θ = 0.9, projection=pca, neighborhood=vn

(a) ρ = 0.1 (b) ρ = 0.2

Figure 4.17: data=cube3d, metric = PCAmin, η = 0.1, projection=pca, neighborhood=vn

Figure 4.18: data=nd clusters, metric = PCAmin, η = 0.1, projection=pca, neighborhood = vn,
with ρ = 0.1
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(a) neighborhood=vn (b) neighborhood=vr

Figure 4.19: data=gauss noise, metric = PCAratio, ν = 0.9, projection=PCA, , ρ = 0.1

Figure 4.20: data=emb cube3d, metric = PCAratio, ν = 0.9, projection=PCA, neighborhood=vn,
radius = 0.1

Fig. 4.21 applies the PCAsum metric to a 2D dataset generated using Scikit’s make circles()
function [29] with a scale factor of 0.3 and noise factor of 0.05. As the circle is closed and therefore
not a disk, the variance on the edge is dominated primarily by one dimension. In Fig. 4.22 and
Fig. 4.23, the sum and ratio thresholding metrics are applied to a 3D halfsphere. Again, both vn

and vr neighborhoods are used to emphasize the benefit of the vn method. Specifically, the area
of the surface of a halfsphere is essentially 2D, and the projection of the halfsphere is visualized
as a plane, so we expect the entire projection to be labeled as 2D. Again, using PCA leads to
compression of the points near the border of the sphere. As a result, points which are close to the
border in nD are denser in the projection in 2D. If in the 2D projection we select 2D points which
are in a round neighborhoods of a border point, then in 3D, along the tangent-to-border direction,
the size is about the same in 2D and nD; along the radius direction, the size is much larger in nD
than in 2D. As a result, the circular region we take in 2D would not correspond to a circle-like
region in nD.
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Figure 4.21: data=circles2k, metric=PCAsum, θ = 0.8, projection=pca, neighborhood=vn, ρ = 0.1

(a) neighborhood=vn (b) neighborhood=vr

Figure 4.22: data=halfphere, metric=PCAsum, θ = 0.9, projection=pca, ρ = 0.1

(a) neighborhood=vn (b) neighborhood=vr

Figure 4.23: data=halfphere, metric=PCAratio, ν = 0.9, projection=pca, ρ = 0.1
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4.3.2 Real-world datasets

Indian Liver

One of the key limitations[3] of the original variance and contribution metric devised by da Silva
et. al was that while they could reliably attribute regions to dimension within MPs, they lacked
the ability to identify to which degree those dimensions explained the position of the points within
the region. Applying the dimensionality metrics to the real world indian liver dataset allows us
to demonstrate how the metrics complement the original metrics by resolving this limitation. The
dataset contains patient records from 416 liver patient records and 167 non liver patient records,
collected from north east of Andhra Pradesh, India. Such datasets can be useful for identifying
attributes that correlate with liver illnesses. Using a several different classification Algorithms
variance[32](Table 14), identified the sgpt (Sgpt Alamine Aminotransferase ), alkphos and sgot
(Sgot Aspartate Aminotransferase ) as a significant factors in diagnosis of liver disease. In Fig-
ure 4.24, we have applied the contribution and variance metrics to the dataset. In both Fig.
4.24(a) and Fig. 4.24(b), we see that the sgpt, alkphos and sgot attributes are listed as the top 3
most frequent top-ranked dimension ranks in the projection. The results of the visualization are
quite interesting, as they seem to rhyme with the results of the more complicated classification
algorithm[32] Noticeably, the sgot seems to dominate more in the projection than the other two
attributes. But what other information can we get from the visualizations?

In Fig. 4.25, we have applied the PCAsum metric with increasing values of θ. Of particular
interest is Fig. 4.25(a), where we can see that the region roughly attributed to sgpt in Fig. 4.24
also has 50% of its variance explained by a single dimension. This indicates that the inherent
structure of the region dominated by sgpt in the visualization in Fig. 4.24 is overall quite low.

(a) metric=contribution (b) metric=variance

Figure 4.24: data=indian liver, , projection=tsne, neighborhood=vn, ρ = 0.1

In Figs. 4.25(b) and 4.25(c) however, we see that the 1D region recedes with an increased
thresholding value. In Figures 4.26, we analyze the data using the PCAmin metric with a decreasing
η value. Here we see that the recession of the 1D region in Fig. 4.25 is caused by by mostly a single
dimension with variance contribution of 20%, which gradually “erodes” into the northwest from the
southeast. In Fig. 4.27 the results of applying the PCAratio metric are also given, which rhyme
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with the results in Fig. 4.25 and 4.26. However, we can also note the visualizations in Fig. 4.27 also
contain a more detailed transition between regions. Taken together, these results tell us that there
is a very deep “pocket” of the region in the north-west that is only explained by one significant
dimension and where the sgpt attribute might be more important than usual. In Fig. 4.24, we
see that in the purple region encoded the sgpt attribute, there are small spots of points which are
labeled by the sgot or alkphos attributes, which gradually seem to decrease in frequency as we
approach the firm 1D region identified in Fig. 4.25. In Fig. 4.28, the dataset is analyzed using two
very high threshold values with both the PCAratio and PCAsum metrics, the visualizations show
the low-dimensional pocket of the projection to be close to 3D in its dimensionality even when using
a very high threshold values. The fact that the region remains relatively low-dimensional would
indicate a high confidence for the inherently low-structure of the dimensionality of the region. If we
take all of the results together, given the fact that we know from other research[32] that the sgot,
sgpt and alkphos are related to each in predicting liver disease, and that we can guess that they
tend to contribute more to the variance for points closer to the low-dimensional pocket, we can say
that there is a possibility that this pocket is very strongly associated with points related to patients
with liver disease. While this conclusion is far from definite, the visualizations showcase the ability
of the metric to visualize the data in such a way that allows us to make conclusions or assumptions
that are more wider-reaching compared to what we could assume using the regular metrics.

(a) θ = 0.5 (b) θ = 0.6 (c) θ = 0.75

Figure 4.25: data=indian liver, metric=PCAsum, projection=tsne, neighborhood=vn, ρ = 0.1

(a) η = 0.3 (b) η = 0.2 (c) η = 0.1

Figure 4.26: data=indian liver, metric=PCAmin, projection=tsne, neighborhood=vn, ρ = 0.1
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(a) ν = 0.6 (b) ν = 0.75 (c) ν = 0.9

Figure 4.27: data=indian liver, metric=PCAratio, projection=tsne, neighborhood=vn, ρ = 0.1

(a) metric=PCAsum, θ = 0.95 (b) metric=PCAratio, ν = 0.9

Figure 4.28: data=indian liver, metric=PCAsum, projection=tsne, neighborhood=vn, ρ = 0.1
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(a) metric=contribution (b) metric=variance

Figure 4.29: data=winequality, projection=lamp, neighborhood=vr, ρ = 0.1

Wine quality

Next, we examine the winequality dataset. This is a dataset consisting of 6497 samples of Por-
tuguese vinho verde wine with 4898 samples of red wine, and 1599 samples of white wine. Each
sample contains measurements of 12 physico-chemical such as acidity, residual sugar, and alcohol
rate. The dataset is often viewed from the perspective of solving classification or regression tasks.[5].
This dataset was also analyzed in da Silva’s et al. paper on analyzing the variance and contribution
metrics[3] and was also part of analysis in da Silva’s PhD thesis [4]. Fig. 4.29 demonstrates ap-
plying the variance and contribution metrics to this dataset, where for both visualizations we can
see that the MP is clearly split into three significant regions dominated by alcohol, chlorides and
residual sugar. In Figures 4.30 4.31, 4.32 results are shown for applying all three dimensionality
metrics on the data using various thresholding values.

If we start by examining Fig. 4.30, particular 4.30(c) and 4.30(d), we can see that not only do
a few dimensions only account for a majority of the variance, but there is also a very clear and
smooth transition from lower dimensionality to higher dimensionality regions. In Fig. 4.30(d) we
can see that the area roughly attributed to the alcohol attribute in Fig. 4.29 is designated as 4-D
using a θ = 0.75, but from Fig. 4.31(a), we derive that only two dimensions contribute more than
20% to the variance while the other two contribute only 10%, the rest of the dimensions contribute
even less than this. Taken together, these reveal that while the alchol is the most powerful predictor
for similarity in terms of distance and variance contribution in this region, the dimensionality of
the region is quite high; indicating a complex structure for the data in this region. Meanwhile, the
region dominated by residual sugar is fundamentally of a lower dimensionality. This indicates a
fundamentally different structure between points which have most of their similarity explained by
alchol and those that have their similarity mostly explained by residual sugar. Moreover, relative
to alcohol, residual sugar might form a more powerful explanatory variable because of the lower
dimensionality in its region. In previous work [3] [4], this region was further analyzed by parti-
tioning it into several additional regions, revealing additional significance of the winequality and
volatileacidity within this region. Because of the significance of the winequality subregion, the
points in region attributed to alcohol in Fig. 4.29 might tend to be from samples of high quality
wine. In turn, samples not in this region are not sampled (or to a lesser degree sampled) from high
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quality wine. Because this region is very high-dimensional, it could be argued that qualifying or
predicting what ”high quality” wine constitutes based on the values of the attributes is very diffi-
cult. If the lower-dimensional area attributed to residual sugar in Fig. 4.29 is in turn associated
with less quality wine, then it might however be possible to predict more easily what qualifies as
“low quality” wine. In Fig. 4.33 we can investigate the effect of increasing θ even more to see if
the smooth transition of regions with decreasing dimensionality is maintained. Indeed this seems
to be the case. What this reveals is that for the majority of dimensions, their contribution to the
variance in the projection is tucked away in an eastern corner, but gradually decreases as we move
to the west of the projection.

(a) θ = 0.3 (b) θ = 0.4 (c) θ = 0.5 (d) θ = 0.75

Figure 4.30: data=winequality, metric=PCAsum, projection=lamp, neighborhood=vr, ρ = 0.1

(a) η = 0.05 (b) η = 0.075 (c) η = 0.1

Figure 4.31: data=winequality, metric=PCAmin, projection=lamp, neighborhood=vr, ρ = 0.1

Fig. 4.31 shows the results of visualizing the projection with relatively low values of η using the
PCAmin metric. The distribution of dimensionality in the three sets Fig. 4.31 roughly follows the
same pattern as those in Fig. 4.30. This is to be expected. If 10 dimensions contribute to 90% of
the variance, then the chance is high most of those values will be relatively small. With the results
of Fig. 4.31, we get a very good indication that there are only a few dimensions which contribute
to most of the variance in the lower-dimensional regions. We can conclude that both the PCAmin
metric and PCAsum metric are capable of detecting the same patterns in terms of dimensionality in
the data. However, the division between regions in Fig. 4.31 is much more chaotic compared to the
divisions between regions in Fig. 4.30 and Fig. 4.33. This is because the PCAmin metric’s method
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of thresholding is more sensitive differences in the value of the eigenvalues between different regions.
Some dimensions might contribute slightly more or less in different regions close to each other, but
according to the PCAsum metric, they all could contribute together to a certain percentage of
the variance regardless of small differences of their value. Those differences are more easily picked
up by the PCAmin metric however, as it tests individual values instead of agglomerating them.
This inherent sensitivity is not necessarily a bad thing, but it also does not necessarily mean
the PCAmin metric inherently produces more “accurate” assessments of dimensionality either.
Whether or not it performs adequately is entirely up to what the user considers as a good metric to
define dimensionality. However, overall the visualizations of the PCAsum metric, at least for this
dataset, show visualizations that provide for the best oversight and structure of the distribution of
dimensionality in the projection.

(a) ν = 0.7 (b) ν = 0.8 (c) ν = 0.9

Figure 4.32: data=winequality, metric=PCAratio, projection=lamp, neighborhood=vr, ρ = 0.1

(a) θ = 0.75 (b) θ = 0.85 (c) θ = 0.9

Figure 4.33: data=winequality, metric=PCAsum, projection=lamp, neighborhood=vr, ρ = 0.1

The results for Fig. 4.32, using the PCAratio metric, are also interesting. Just like with the
PCAsum metric, we see a general transition from low dimensionality regions to higher dimension-
ality regions. The difference is that with the PCAratio metric, the subdivision of regions is less
generalized, with a more chaotic partitioning of dimensionality, just like with the PCAmin metric.
And just like with the PCAmin metric, the PCAratio metric is more dependent on small differ-
ences between eigenvalues in different regions. Comparing the visualizations in Fig. 4.31 and Fig.
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4.32, the PCAratio indeed appears to be the most sensitive, and perhaps also the most accurate in
terms of finding small differences in eigenvalues and dimensionality contribution. So while using the
PCAsum metric can give us an overall impression of the data, the PCAratio metric might prove to
be very useful when we start identifying subregions in the projections and would like to investigate
their “sub” dimensionality more accurately.

Software Quality

Next, we examine the software quality [6] data set. This is a dataset which describes 6773 software
projects from sourceforge.net written in C. Each project has 12 dimensions (11 software quality
metrics and the projects total download count). These metrics were extracted using static analysis
tools.[6]. Fig. 4.34 gives the visualizations when using the variance and contribution metrics. Over-
all, the results are similar to each, with notably a distinction between a western region attributed to
lines of code and a eastern region attributed to lines of code. In Fig. 4.35, we see visualizations for
the projection of the data using all three different metrics. The results are interesting, because all
three visualizations show a small pocket, with very high dimensionality, that separates the western
region indicated by the lines of code attribute and the eastern region indicated by the lines of
code in Fig. 4.34 . In this region, attributes such as the average count of function parameters, the
number of members and the number of source files also become more important, as indicated in
Fig. 4.34. The consistency of the pocket is confirmed by using different thresholding values with
sum thresholding in Fig. 4.36.

(a) metric=contribution (b) metric=variance

Figure 4.34: data=software ln, projection=lamp, neighborhood=vr, ρ = 0.1

Now we know that the area of high dimensionality in Fig. 4.35, 4.36 roughly overlaps with the
region in Fig. 4.34 where attributes such as average count of function parameters, the number of
members and the number of source files become more important, and we can assume that the lines
of code attribute remains relatively important in this region, there is a causal relationship between
the increased contribution of the average count of function parameters, the number of members
and the number of source files attributes and the increased dimensionality. This in turns allows
us to make assumptions about the the extent of the influence of these attributes. The pocket of
high-dimensionality has a limit, and is relatively small in comparison to other regions. In turn,
because of the assumption of a causal relationship, there is an implication that the influence of
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the average count of function parameters, the number of members and the number of source files
attributes is also limited. Specifically we can say that the extent of their influence roughly overlaps
with the pocket of higher-dimensionality.

(a) metric=PCAsum, θ = 0.750.75 (b) metric=PCAmin, η = 0.05 (c) metric=PCAratio, ν = 0.75

Figure 4.35: data=software ln, projection=lamp, neighborhood=vr, ρ = 0.1

(a) metric=PCAsum, θ = 0.5 (b) metric=PCAsum, θ = 0.6 (c) metric=PCAsum, θ = 0.85

Figure 4.36: data=software ln, projection=lamp, neighborhood=vr, ρ = 0.1

Being able to easily analyze the extent of influence of attributes is an important task when work-
ing with multidimensional projections. Being able to distinguish areas where attributes influence or
not can impact our assessment of their characterization in the data. For example, if we assume that
leftmost region of the software quality projection would be mostly made up points projected from
measurements of smaller projects, while the larger rightmost region is made up points projected
from measurements of larger, monolithic projects, then the visualizations in Fig. 4.35 and Fig. 4.36
can also inform us about the extent of the influence of average count of function parameters, the
number of members and the number of source files attributes in both regions. Furthermore, a dis-
tinction between those regions also means that the analysis of the dimensionality in the projection
serves an additional method to note the differences between the inherent structure of those regions.



Chapter 5

Discussions and Conclusions

This final chapter discusses the limitations of the progress made over the course of this project, what
future work should focus on to remedy those limitations, but also reflects on what was achieved
and to what degree the aim of the project was attained.

5.1 Discussion

• Advantages & Way of Use
Both additional visualization methods allow for a detailed degree of control and customiza-
tion by the user using the large amount of parameter settings and computational options.
The freedom to vary the thresholding value in the dimensionality metric lends itself well to
detailed explorations of the data while the freedom to switch thresholding methods is suitable
for experimentation with visualizations of the data. The utilization of the heatmap for the
dimensionality metric allows for a more intuitive way to represent different levels of dimen-
sionality, while the use of added saturation correlation metric presents a partial solution to
finding a suitable visualization method for inverse correlations. As detailed in sections 4.2.2
and 4.3.2, the visualizations are sufficient enough in their explanatory capabilities that they
can be used to investigate and infer detailed information from real-world, complex data. Many
advantages of the metrics established by da Silva et al. [4] remain, such as being able to use
the projection technique as a black box, with the added option for a different neighborhood
calculation technique allowing users a workaround for compression issues with some projection
techniques. Like with the established metrics from da Silva et al. [4], the partitioning of the
projection into regions of dimensionality or regions defined by correlated pairs is automatic
and emphasizes ease-of-use.

• Computational Scalability
We can briefly contrast the computational scalability of all different metrics (dimensionality,
correlation, distance contribution, variance contribution) for large datasets. Scalability gives
us an overview of how efficiently the metrics are able to deal with large input. To test this, we
use the large software quality dataset [6] containing 6773 observations 12 attributes. Testing
was performed using a Intel Core 2 Duo CPU P8600 @ 2.40GHz processor, with a GeForce
320M/integrated/SSE2 videocard running on 64-bit Ubuntu 14.04. After completing pre-
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processing steps (reading and storing data, computing distances between points, generating
GUI elements), we test with a radius of 0.1 of the diameter. We measure the time in seconds
necessary starting from selecting the metric from the GUI to completing the visualization.
The variance metric performs best at 28.802s, second comes the distance contribution metric
at 36.352s. Despite its larger amount of ranks, the correlation metric comes close at 38.203s.
The dimensionality metric using sum thresholding comes last, at approximately 1m8s. The
correlation metric scales closely compared to the variance and distance metrics, while the
longer processing time necessary for the dimensionality metric is the result of the computations
necessary to complete the eigenvalue decomposition for many neighborhoods.

• Limitations and Future Work
The correlation metric suffers the same limitations as noted for established techniques[4]. As
input datasets increase in datasets increase in dimensionality, the amount of unique colors
that cannot be allocated to frequent top-ranked pairs will increase also. However, with the
implementation of the matrix picker, the information loss associated with this issue is severely
decreased. Likewise, with the dimensionality metric we face a similar issue. As the amount of
dimensions increase, the size of the rainbow heatmap will increase also. As a result, the col-
ors in the heatmap will become more and more indistinguishable from each other. However,
because of additions to the software tool the user is able to customize the frequency necessary
to be allocated a color, thus partially resolving this issue as well. For a long-term solution, we
believe increasing the options for users to customize their visualization will prove to be best
solution for resolving the limitations of color-mapped labeling of projections. For the corre-
lation metric, this could include additional visualization of a complete pair-wise correlation
table indexing the values of all correlations coefficients, or adding the ability to only rank all
pair-wise correlations for a single attribute with all other attributes in the visualization. The
correlation metric would also benefit by allowing it to be integrated with its own variation on
the dimension-set options used with the established metrics of da Silva et. al[4].

The visualization of the metrics can be enhanced by improving the way in which different
properties are highlighted. With the correlation metric, we use added saturation for indi-
cating inverse relationships. This is a serviceable but flawed method, because some colors
in the colormap might be less sensitive to additional saturation, leading to little distinction
between inverse and linear correlated regions. A core future solution to this problem should
focus on resolving the limitations of using colors to illustrate explanatory visualizations, by
for example illustrating inverse regions with different shapes or sizes of points. The matrix
picker can also be enhanced, by adding visualizations that allow the user to easily observe the
significance of the correlations in the matrix. The calculation of the correlation metric can be
enhanced by integrating different statistics of correlation, such as Spearman Rank Correlation
method and the Kendall rank correlation coefficient.

As with the similarity metrics established by da Silva et. al[4] the dimensionality and correla-
tion metrics have a limited scope with respect to their ability to service complex classifier or
predictor system designs. Additionally, as we saw in sections 4.2.2 and 4.3.2 the information
that we are able to infer from the visualizations is currently sometimes restricted to attempt-
ing to compare the results found with those found using more complicated models.

Another key limitation is the sensitivity of the metrics. Each of the metrics is enhanced
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by giving it several options for setting the parameters of the metric(neighborhood calcula-
tion, thresholding). As we observed in section 4, varying these parameters can produce very
different results for the same dataset. The sensitivity means slight changes in the parameter
settings can lead to producing inaccurate visualization from which users may derive false con-
clusions. It is left up to the user to select the right parameters, but as the aim of this thesis
was to automate the process of generate explanatory visuals as much as possible, we would
like to define models and methods in the future that enable us to reduce the burden put on
the user.

With respect to future work for the correlation metric, we could investigate an alternative
approach to visualization which uses the example of correlation heatmaps as a basis. An
example of an application of such a heatmap is provided in the research of Rao T, Srivastava
S[35](Figure 2) in investigating the relationship between microblog discussions and market
movements, with the former measured in search volume indices, and the value of various se-
curities index used to quantify the latter. The idea is to represent the range of the Pearson
correlation coefficient can take as a color scale from -1 to 1, where “-1” would equal a very
“red” color while “1” would equal a very “blue” color. Values in between -1 to 1 would
interpolate between these “red” and “blue” colors. Similar to idea of the “matrix picker”
introduced in section 3.2, we can then generate an interactive grid matrix where each of the
squares is colored by interpolating between red and blue using the value of the Pearson cor-
relation coefficient between the pairs of attributes. Like with the matrix picker, the user can
click on a square in the grid. For the pair associated with that square, the projection would
be visualized by generating a heatmap of the Pearson correlation coefficient just for that pair
over the entire plot, by locally examining the value of the coefficient much like we locally
examine the value of dimensionality as with the dimensionality metric. While this approach
would lack providing a “global” perspective, it would provide users with a large amount of
freedom to investigate dependency relationships between individual pairs of attributes over
the entire region of the data.

5.2 Conclusion

This thesis presents new techniques that provide a novel method to automatically generate ex-
planatory visualizations which can enhance 2D scatter-plots of multidimensional projections. The
techniques build on previous research, and differentiate themselves by offering different kinds of ex-
planations, while also being able to complement the visual explanations using existing techniques.
The first technique focuses on explaining the data by visually indicating where in the data correla-
tions between attributes are present. Additional visualizations, by varying the color compositions,
indicate the strength of the correlation, and whether the correlation is a linear or inverse one. With
the addition of the matrix picker, user interaction with the software tool is enhanced by allowing
users to select which correlations they want to compare and visualize. The testings results indicate
that the correlation metric is capable of accurately representing correlations between attributes in
the projection in different regions, which allows for a more intuitive representation in comparison
to established methods. The second technique focused on explaining data based on their dimen-
sionality. By visualizing the projection with a heat-map, the data is partitioned into areas that are
distinguished by estimations of the shape of their variance. This allows for a new way to interpret
the data, allowing us to how different regions in the projection are shaped. The technique enhanced
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by giving the user different ways to estimate the dimensionality, with additional options for pa-
rameter selection. By setting additional parameters for how to generate the heat-map, we offer a
workaround of the danger of having an unworkable size for the heat-map. Additional contributions
include:

• The metrics we propose are local explanations of the data (with a simple way for the user to
define locality). Thus allowing us to generate and indicate different explanatory visualizations
for different regions in the data.

• The ordinal (heat) colormap for the dimensionality metric and encoding of hue/brightness
encoding with an additional color legend simplify the process of intuitively developing a visual
understanding of the data

• Scalability for both metrics is achieved both visually and computationally, as they are able to
cope with projections having tens or hundreds of thousands of data-points and tens..hundreds
of dimensions.

• Our proposed metrics are generic, what kind of dataset is used as input is not relevant as
long as it is numeric/quantitative.

• The interaction with the GUI for changing parameters in the visualizations is very simple
and maintains a easy learning curve in terms of interacting with the controls or application.

• The metrics can generate explanatory visualizations independently of which projection-technique
is used.

• The metrics can be re-used and added to any tool that uses 2D projections, atop of other
exploratory mechanisms, showcasing the adaptability of the metrics.

• A new technique for neighborhood calculation was implemented, which can compensate for
limitations of some projection techniques, thus allowing for more accurate evaluations and
visualizations of projections.

We can conclude the research question and both sub-questions have been addressed. By applying
our metrics on synthetic data, we were able to indicate patterns and shapes that could not otherwise
be visualized using the metrics based on local variance and distance contribution. By applying our
metrics to real-world data, comparing the resulting visualizations to those generated local variance
and distance contribution metrics, and cross-referencing the results with other research examining
the same data, we showed that we can simplify the task of understanding and detecting trends in
highly complex scientific datasets in ways the local variance and distance contribution metrics were
not able to. Both the dimensionality metric and the correlation metric can be used to generate ex-
planatory visuals which indicate fundamentally different patterns, behavior and trends in the data.
Not only are the proposed metrics different from established metrics, they are also fundamentally
different from each other. More work remains to be done on researching different ways to generate
explanatory visuals; for example developing methods to indicate local dimensionality per pair of
correlations over the entire projection, or in developing new metrics which can be used to generate
fundamentally different explanatory visualizations from those established in this thesis.
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Appendix A

Guide to the software tool

To build the software, several dependencies need to be installed, and proper guidelines need to be
followed to correctly utilize the program. This appendix serves as a comprehensive guide to the
user for these purpose.

A.1 CUDA

To use the software, you need CUDA, a parallel computing platform and programming model
invented by NVIDIA.

• First install NVIDIA video driver via “Softwares and Updates” tool, tab ”Additional Drivers”.

• Install additonal packages: sudo apt-get install freeglut3-dev build-essential libx11-dev

libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

• Download CUDA installation run file, and extract its parts: ./cuda 6.5.14 linux 64.run

-extract=dir to extract

• Install CUDA toolkit: sudo ./cuda-linux64-rel-6.5.14-18749181.run and create a sym-
bolic link pointing to /usr/local/cuda

• Create the file /etc/profile.d/cuda.sh to environment variables:

– export PATH=/usr/local/cuda/bin:$PATH

– export LD LIBRARY PATH=/usr/local/cuda/lib64:$LD LIBRARY PATH

• Execute ldconfig: sudo ldconfig * Install Cuda Samples (included in the downloaded .run
file)

– sudo ./cuda-samples-linux-6.5.14-18745345.run

– execute cuda-install-samples-6.5.sh /home/user/

• **Note:** There is a bug on Ubuntu 14.04 running optimus systems that does not allow
execution of CUDA programs.
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– **Workaround:** The user has to execute a sample as sudo first:
sudo NVIDIA CUDA-6.5 Samples/1 Utilities/deviceQuery

– Add this line in the end of .bashrc: * export LD PRELOAD=/usr/lib/x86 64-linux-gnu/mesa/libGL.so.1

A.2 Dependencies

CUBu (https://bitbucket.org/rmmartins/cubu)
* All platforms: download the sources and follow the instructions on README.md to build and
install.
* Open CMakeLists.txt and point the CUBU variable to the base folder.

Triangle (http://www.cs.cmu.edu/ quake/triangle.html) – Last tested version: 1.6 (10/08/14)
All platforms: Download the sources on the site and extract to directory “lib” under the
project root but do not build it. We’ll build it together with our own code.
Open CMakeLists.txt and point the TRIANGLE variable to the base folder.
Ubuntu: Use your package system (ex.: libtriangle-dev)

ANN (http://www.cs.umd.edu/ mount/ANN/) – Last tested version: 1.1.2 (10/08/14)
* Win32: There are pre-compiled binaries on the site.
* Linux: You can probably find it in your package system (ex.: libann-dev). If not, download
the sources and use make linux-g++ to build.

FreeGLUT (http://freeglut.sourceforge.net/) – Last tested version: 2.8.1 (10/08/2014)
* Win32: There are pre-compiled binaries
here(http://www.transmissionzero.co.uk/software/freeglut-devel/).
* Linux: just get it from your packaging system (ex.: freeglut3-dev).

GLUI (http://glui.sourceforge.net/) – Last tested version: 2.35 (10/08/2014)
* Win32: Download the sources and build the (ancient) solution found in src/msvc.
* It depends on (Free)GLUT so add $(INCLUDE) to the project’s include dirs.
* Change the Target Name (on Properties/General) to glui32 and the Output File (under
Properties/Librarian) to “Debug/glui32.lib. * This will not generate a DLL. Install
glui32.lib and GL/glui.h as defined previously.
* Linux: just get it from your packaging system (ex.: libglui-dev). On Ubuntu it has been
removed from recent repos, but you can find it [here](http://packages.ubuntu.com/raring/libglui-dev),
for example.
* After building the static lib, move the project directory to the “lib” folder under the project
root.

FreeImage (http://freeimage.sourceforge.net/) – Last tested version: 3.16.0 (10/08/2014)
* Win32: There are pre-compiled binaries on the site.
* Linux: just get it from your packaging system (ex.: libfreeimage-dev).

GLEW (http://glew.sourceforge.net/) – Last tested version: 1.10.0 (10/08/14)
* Win32: There are pre-compiled binaries on the site. Install the “glew32” (not “s”) lib
(together with the DLL).
* Linux: just get it from your packaging system (ex.: libglew-dev)



65

Boost (http://www.boost.org/) – Last tested version 1.59.0 (22/08/2015)
* Unix: just get it from the packaging system (libboost-all-dev)

FTGL (http://sourceforge.net/projects/ftgl/) – Last tested version 2.1.3-rc5 (22/08/2015)
* Linux: just get it from the packaging system (libftgl-dev)

FreeType 2 (http://packages.ubuntu.com/precise/libfreetype6-dev) – Last tested version libfreetype6-dev

2.5.2-1ubuntu2.5 (22/08/2015)
* Linux: just get it from the packaging system (libfreetype6-dev)

Eigen 3 (http://packages.ubuntu.com/precise/libeigen3-dev) – Last tested version libeigen3-dev

3.2.0-8 (07/05/2016) * Linux: just get it from the packaging system (libeigen3-dev)

A.3 Building

1. The preferred way is to build with CMAKE. For example:
* Win32: run CMAKE-GUI, point to the source folder, create a new “build win32 folder for the
binaries, configure and generate. This will create a VS solution (ProjectionExplain.sln)
that you can (hopefully) build without problem. Building the INSTALL project will put the
executable in the right place (root of the solution).
* Unix: mkdir -p build && cd build && cmake .. && make install

2. If you do not want to or cannot use CMAKE, try makefile.old at your own risk. A simple
make should work. If it does not, check Makefile.old to see if everything is correct. Some
notes:
* ANN code is expected to be in “../lib/ann 1.1.2 (or change the Makefile).
* Triangle code is expected to be in “../lib/triangle (or change the Makefile)

3. If you want to use Netbeans, start a new Netbeans C++ project from existing code and point
it to the projection-explainer root directory (where the CMakeLists.txt is). Then Netbeans
will create some new files like nbproject and CMakeFiles.
* Whether you need to update anything, like including new files or moving them, update the
CMakeLists.txt and remove CMakeCache.txt. Then rebuild the project.
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A.4 Running the program and data format

You need to run the program as a command line command. Example:

. / pro jw iz −e −f data / s t a t i c / segmentat ion lamp −d

Here:

• projwiz is the name of the executable

• -e tells the program to use the functionality implemented for this project. This includes all
functionality of the new metric and visualization methods. Use -n to use the functionality
implemented by da Silva such as point triangulation, dimension set explanations and label
placements.

• -f tells the program to expect an input file argument. data/static/segmentation is the
directory location of the file.

• lamp is the name of the projection technique used to reduce the data.

In this example, the name of the input data is segmentation. You will need one file that con-
tains the nD data, which in this case would be called segmentation.data. You will also need
one file containing the projected data. In this case, because we use LAMP, it would be called
segmentation.lamp.2d. Generally, the format for the files is:

1 . dataname . data
2 . dataname . p r o j e c t i o n t e c h n i q u e . 2 d

Examples of projection techniques are “lamp”, “pca” “tsne” or “lsp. You can name the “pro-
jectiontechnique” anything you like. The number of measurements in both files needs to be the
same.


