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Abstract

We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our

framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based

surfaces. At the core of our method is a finite element discretization of PDEs on point surfaces. This discretization is

based on the local assembly of PDE-specific mass and stiffness matrices, using a local point coupling computation.

Point couplings are computed using a local tangent plane construction and a local Delaunay triangulation of point

neighborhoods. The definition of tangent planes relies on moment-based computation with proven scaling and stability

properties. Once local stiffness matrices are obtained, we are able to easily assemble global matrices and efficiently solve

the corresponding linear systems by standard iterative solvers. We demonstrate our framework by several types of

PDE-based surface processing applications, such as segmentation, texture synthesis, bump mapping, and geometric

fairing.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface processing tools and techniques are wide-

spread in computer graphics, animation, medical ima-

ging, computer aided modeling, and computer vision.

Many surface processing operations can be described via

partial differential equations (PDEs). Using PDEs to

implement surface processing has a long history and

several advantages, as compared to other more algo-
e front matter r 2004 Elsevier Ltd. All rights reserve
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rithmic surface processing techniques. First, PDEs

describe concisely and naturally a large spectrum of

transformations, such as deformations, smoothing, or

denoising. Secondly, PDE-based approaches come with

a solid mathematical basis that provides quantitative

and qualitative results about the way they alter a given

surface. Finally, many efficient and exact methods for

PDE discretization and solving are readily available.

Among the latter, the by far most used approach is the

combination of finite element (FE) discretization and

iterative numerical methods, which naturally matches

the triangular mesh models ubiquitous in computer

graphics.

Recently, point based representations have been

proposed as an alternative to triangles for three-

dimensional (3D) surfaces, with a number of advan-

tages. No ‘mesh’, or connectivity information has to be
d.

www.elsevier.com/locate/cag
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stored explicitly. This allows a simple and compact

representation, ideal for fast rendering and editing.

When combined with advanced rendering techniques

such as splatting [1,2], point based surfaces can be

superior to triangle meshes in terms of rendering quality

and data storage flexibility.

Processing point-based surfaces via PDEs should add

the modeling power of PDE representation to the

flexibility of the point based model. However, defining

and solving PDEs using finite elements on point based

surfaces is not straightforward. The main problem here

is that point-based surfaces are mesh-less, so there is no

direct way to define the finite elements underlying the

PDE space. We shall not consider the option of building

a global mesh from the point set [3,4] here, as it

undermines the fundamental philosophy and advantages

of point based models. Moreover, global point cloud

triangulations and PDEs on triangle meshes respectively

have been already extensively treated.

Instead, we propose an alternative approach for finite

element based PDEs on point surfaces. We proceed by

constructing a number of local FE matrices that

represent the surface properties over small point

neighborhoods. These matrices are next assembled in a

single matrix which allows PDE discretization and

solving on the complete surface. We extend the results

presented in [5] for surface segmentation, fairing,

and texture synthesis by presenting new applications of

our framework for bump mapping and point cloud

triangulation.

We first review the basics of point based representa-

tions and point cloud triangulations (Section 2), some

basic PDE problems on surfaces (Section 3), and the

general finite element approach on triangular surfaces

(Section 4). Next, we detail the difficulties of treating

PDEs on point clouds (Section 5). Section 6 presents our

construction of tangent spaces and local meshes. We use

this basis to build finite elements on point surfaces, by

assembling local and global FE matrices (Section 7).

Using such matrices, we solve several PDEs on point

surfaces, leading to segmentation and texture processing

(Section 8.1), texture synthesis (Section 8.2), inpainting

(Section 8.4), bump mapping (Section 8.3), surface

fairing (Section 8.5), and point cloud triangulation

(Section 8.6). Section 9 details our implementation

decisions. Finally, Section 10 concludes the paper.
2. Related work

In the last years, a large number of papers related to

point-based surfaces has emerged. We briefly outline

those related to our work, without attempting a

complete overview.

Point set methods have two main components:

approximating a usually smooth surface from the point
set, followed by rendering the approximation. Approx-

imating surfaces from points can be done by many

techniques. These mainly differ in the assumptions laid

on the point set and the smoothness model. A quite

simple approximation replaces the point set with a

triangulated surface model, or triangle mesh. Several

efficient triangulation methods for point clouds exist

[3,4,6,7]. In many cases, such techniques can be seen as

producing piecewise C1 approximations of the point

cloud. Although efficient and reasonably simple to

implement, such techniques may produce surfaces

lacking the desired smoothness, as described in [8,9].

To alleviate this, smoothing operations can be applied to

the obtained triangle mesh, such as iterative Laplacian

smoothing [10], curvature flow fairing [11], or discrete

variational fairing [12]. Alternatively, increased smooth-

ness can be obtained by using higher local approxima-

tions, such as piecewise polynomials [13].

Rendering point surfaces follows the surface approx-

imation assumptions. Different rendering primitives

may be used, ranging from simple flat shaded planar

discs, such as used by the QSplat system [14], up to

elliptically weighted Gaussian splats [1] and differential

points [15]. To achieve a smooth surface, one can use the

moving least squares method [2,8], or blend disk

primitives which are tangent to the surface [1]. More

complex primitives encode more information on the

vicinity of a rendered point, such as surface geometry, at

additional rendering expense. Simple primitives render

faster but may have limited quality, especially for

nonuniformly sampled surfaces.
3. PDEs on surfaces

We start by defining basic notions of differential

operators on surfaces. To this aim, we will use the

concept of tangential gradients on embedded surfaces M

in R3: The tangential gradient rMu for a function u

defined in a neighborhood of M; is given by

rMu ¼ rR3 u � ðn � rR3 uÞ n;

where n : M ! S2 is the normal mapping. The gradient

in the ambient space is thus projected onto the surface’s

tangential space. The result coincides with the classical

geometric gradient rMu for embedded surfaces. In the

following, we denote the scalar product of two vectors

a; b 2 Rm by a � b: The components of rMu are denoted

by riu:
For a vector field v : M ! R3 of components v ¼

ðv1; v2; v3Þ; we define its divergence using the components

of the tangential gradient, i.e.,

div Mv :¼ ri vi:

Here and in the following, we use the Einstein

summation convention. In this notation, the Laplace
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operator on surfaces is given by

DMu ¼ ririu:

For surfaces in R3; curvature may be expressed by the

shape operator S which is—using tangential gradients—

given by the 3 	 3-matrix S ¼ DMn ¼ rMn: This matrix

operates as a symmetric endomorphism on the tangent

spaces and may be diagonalized by the principal

curvatures k1 and k2: The classical mean curvature is

then given by h ¼ tr rMn ¼ k1 þ k2 and we have the

well known identity DMx ¼ �h n where x is the position

vector of the surface.

We can now formulate, on surfaces, the same type of

problems as on Euclidean domains. A basic problem

type is the boundary value problem:

For a subset O � M; a diffusion tensor A, and a right-

hand side f we ask for a function u : �O ! R which solves

�div MðArMuÞ ¼ f ð1Þ

on M and reaches values u ¼ u@ on the boundary @O
of M:

An example application for such an elliptic problem is

the inpainting of a locally destroyed coloring of the

surface. As a second problem type we consider reaction

diffusion problems on M:

Find a function u : Rþ
0 	M ! R with uð0; �Þ ¼ u0 for

some function u0; such that

@tu � div MðArMuÞ ¼ f ; ð2Þ

where A is the diffusion tensor and f the source term.

Here u can be a scalar or a vector valued quantity, and

A ¼ A½u
 and f ¼ f ½u
 may depend nonlinearly on u. An

example of such a problem is segmentation via diffusion

of a ‘‘marker color’’ which stops at the surface’s feature

lines. Another example is the smoothing of a gray scale

surface texture, which leads to a scalar diffusion problem,

where A is the nonlinear anistropic diffusivity. In

addition, we consider reaction diffusion systems for

texture synthesis, such as introduced by Turk [16]. Given

several components, or species, f encodes the coupling of

the species’ concentrations via a particular reaction.

Reaction diffusion systems are a simple and effective way

for synthesizing repetitive textures on surfaces. As the

next application, if we consider u ¼ x; where x is the

position vector of the surface itself, we obtain a curvature

motion problem. Indeed, if A ¼ 1 and f ¼ 0; it is well-

known that Eq. (2) is equivalent to mean curvature

motion, i.e. @tx ¼ �hðxÞ nðxÞ: Using a nonlinear diffusiv-

ity, we obtain a feature preserving fairing method.

Different PDEs can be modelled similarly, if desired.
4. Reviewing finite elements on triangular surfaces

Before we consider solving these PDEs on point based

surfaces, we briefly discuss the by now classical finite
element discretization scheme, frequently used for the

numerical treatment of PDEs on discrete triangular

surfaces. Let Mh denote an approximating triangulation

of M; where h indicates the corresponding grid size. We

define the space of piecewise affine, discrete functions

Vh and consider the fully discrete weak formulation of

the elliptic problem (1) in Vh: We ask for a discrete

function U 2 Vh such thatZ
Mh

ArMh
U � rMh

F ¼

Z
Mh

f F; ð3Þ

for all discrete test functions F 2 Vh: Functions U in Vh

can be represented by nodal vectors �U in Rn; where �U ¼

ðUjÞj¼1;...;n is a vector with components Uj : Let fFigi¼1;...;n

be the usual nodal basis of Vh with FiðxjÞ ¼ dij for all

vertices xj of the grid Mh: We can express a discrete

function U in terms of its nodal values Uj ¼ UðxjÞ and

get U ¼ Uj Fj : The discrete problem can be expressed in

matrix vector notation by

L �U ¼ M �F ;

where the mass matrix M and the stiffness matrix L are

given by

M ¼

Z
Mh

FiFj

� �
i; j

; ð4Þ

L ¼

Z
Mh

ArFi � rFj

� �
i; j

; ð5Þ

and �F ¼ ð f ðxiÞÞi is the vector of nodal values f ðxiÞ

at vertices of the triangulation xi: Hence, the

discrete elliptic operator in matrix form turns out to

be M�1L: In case of the parabolic problem (2),

we consider a time discretization with time step t
and have to find a sequence fUkgk¼1;...; � Vh of

approximations to the continuous solution

(Ukð�Þ � uðtk; �Þ) such that

Z
Mh

Ukþ1 � Uk

t
F

þ

Z
Mh

A½Uk
rMh
Ukþ1 � rMh

F� f ½Uk
F ¼ 0

for all F 2 Vh: Note that Mh ¼ MhðktÞ if the surface

itself is evolving as e.g., in case of surface fairing

applications. We obtain, for each time step of our

problem, the system of linear equations

ðM þ tL½Uk
Þ �U
kþ1

¼ Mð �U
k
þ t �F ½Uk
Þ;

where the stiffness matrix depends on the discrete

solution, i.e.

L½U 
 :¼

Z
Mh

A½U 
rFi � rFj

� �
i; j

:
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Algorithmically, the integral expressions in (4) and (5)

are split up into a sum over local contributions on

triangles. The matrices and right-hand side vector are

computed as follows. We initialize L ¼ 0 and next do a

traversal of all triangles T 2 Mh: On each T with nodes

P0;P1;P2; a corresponding local matrix ðlijðTÞÞij is

computed first, corresponding to all pairings of local

nodal basis functions, and next added to the matching

locations in the global matrix L. For every pair i; j we

update LaðiÞ;að jÞ ¼ LaðiÞ;að jÞ þ lijðTÞ: Here aðiÞ is the global

index of the node with local index i. We proceed

similarly with the mass matrix M.
5. Differences for point based surfaces

One faces several difficulties when aiming to transfer

the PDE discretization approach outlined above to

point cloud surfaces. Conceptually, such surfaces are not

described in terms of a two dimensional set in R3: In

particular, there is no global mesh available and, as

outlined in Section 1, it would conflict with the general

paradigm of point based modeling to replace the usually

huge unstructured point set by a standard mesh. In

particular, one would stop working on the actual,

usually noisy, arbitrarily sampled data, along with their

statistical properties, and completely replace them by a

mesh having other properties. The standard method for

handling point surfaces is to extract a local approximate

tangent space on the point cloud [2,4,8,13]. This tangent

space is generally used just for computing point normals

used e.g., in shading. We will use this idea to obtain

proper discrete counterparts of the differential operators

div M and rM and a metric for the discrete integration

over the surface. Hence, we proceed by constructing a

local tangent space and consider the local projection of

the point set onto this tangent space. We are then able to

define stable coupling quantities between neighbor

points, using a strictly local Delaunay meshing. The

mentioned coupling quantities to be defined will turn out

to be suitable discretizations of the off-diagonal entries

in the global stiffness matrix we aim to recover. The

local tangent spaces of different points usually do not

coincide, which induces a loss of symmetry in our

matrix. To remove this problem, we finalize the matrix

construction by applying a suitable symmetrization.

Finally, the diagonal entries of the stiffness matrix can

be defined based on a requested invariance property.

Indeed, the continuous differential operator

div MðArM�Þ applied to a constant function u should

vanish. Hence, we require that L �U ¼ 0 for �U ¼

ð1; . . . ; 1Þ: We proceed similarly for the mass matrix

and the right-hand side of the considered PDE. The

complete approach is detailed in the following sections,

leading to a stable and consistent approximation scheme

for general PDEs.
6. Tangent spaces and local meshes

We proceed by defining, for every point x in the

considered cloud, a tangent space. This space attempts to

approximate the points in a small neighborhood N of x.

The size of N should be chosen such that (a) it contains

enough points for stable computation of a tangent space

and (b) the radius of N is smaller than the feature size we

want to be visible in the approximation. For (a), N can

be efficiently computed using the k nearest neighbors of

x, for given k. For (b), N can be defined as the ball B�ðxÞ

of given radius � centered at x. In practice, combinations

of the two criteria give the best results. We prescribe a

minimum number of neighbors kmin; to enforce the first

requirement. If the kth
min closest neighbor of x is closer

than the prescribed minimal feature size �; we consider

all additional nearest neighbors in B�ðxÞ: For relatively

uniformly sampled surfaces, the first criterion is, by

itself, sufficient to guarantee a stable tangent plane

computation, if k is taken large enough, as discussed

later in this section. For non-uniformly sampled

surfaces, the second criterion guarantees that the

neighborhood N has a minimal size �: The choice of �;
in connection with the sampling rate, should provide a

stable tangent plane computation. The combination of

these two criteria have given good results for all point

surfaces we considered. Obviously, highly non-uni-

formly sampled surfaces may exist for which the above

criteria either yield unstable tangent planes or produce

too much smoothing. However, most point surfaces

encountered in practice are densely sampled, as they try

to capture as many surface details as possible.

Moreover, as explained later in this section, we use the

tangent planes just as an instrument to compute

local neighborhoods. For this purpose, we can

tolerate some amount of orientation error in the plane

computation.

Next, we use the zero and first order moments of N.

Moments have several proven properties that allow us to

robustly compute the tangent spaces as well as to

distinguish between smooth and non-smooth surface

parts, both as a function of the ball size �: Robustness is

clearly needed in the tangent plane computation.

Distinguishing smooth from non-smooth surface areas

is needed for our surface segmentation (Section 8.1) and

fairing (Section 8.5) applications. In this section, we give

the moment definitions and properties relevant for the

tangent plane computation. Next, we discuss the

concrete moment-based implementation of the tangent

planes.

For a continuous surface M; the zero moment is given

by the local barycenter of M with respect to a Euclidean

ball B�ðxÞ centered at x:

M0
� ðxÞ ¼ M0

� :¼

Z
�

B�\M

x dx: ð6Þ
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The first order moment is then defined as

M1
� ðxÞ :¼

Z
�

B�\M

ðx � M0
� Þ � ðx � M0

� Þ dx

¼

Z
�

B�\M

ðx � x � M0
� � M0

� Þ dx; ð7Þ

where y � z :¼ ðyizjÞi; j¼1;...;3: It turns out that the first

moment approximates the matrix PTxM corresponding

to the projection onto the tangent space TxM: Indeed,

in smooth surface regions we have:

M1
� ðxÞ ¼ 2c�2PTxM þ oð�2Þ ;

where c is a constant that only depends on the

dimension. For a proof, we refer to [17]. This shows

that the eigenvectors of the first moment define an

orthonormal basis of R3; where the surface normal

belongs to the vanishing (smallest) eigenvalue. For a

discussion of the non smooth case we refer to again [17].

Let l04l14l2 be the eigenvalues of the 3 by 3

symmetric matrix M1
� ; then we consider the correspond-

ing eigenvector e2 as the normal on the approximate

tangent plane, whereas e1 and e0 form a 2D coordinate

system in the plane itself. Fig. 1a illustrates the above in

two dimensions. The zero and first moment (Eqs. (6) and

(7)) are computed numerically as sums over the sample

points. Because of this, our tangent plane computation

is very similar to the principal component analysis, or

so-called ‘surface variation’, used in [2,8,13]. A more

exact discretization of the moment integrals is presented

in [17] for triangular meshes. We could use this

discretization for point-based surfaces too, by using

the local triangulations presented below in this section.

However, this makes the computations slower. Essen-

tially, the radius � in both our moment-based and the

surface variation approaches has the role of a filter size:

The tangent plane ignores features significantly smaller

than �:
Once the tangent plane fx 2 R3 j e2 � ðx � xiÞ ¼ 0g is

defined for a point xi; we project all neighbors x
j
i in the
projected neighbors
projected points NP 2D triangulation 

2D triangle fan

neighbors

3D points N

3D triangle fan F

tangent plane

ball Bε(x)

ε 2 ε   ε0, 1

x

(a)

x
i 
 in N

i
j

neighbors

of x
i 
 in N

i
j

projection
P

(b)

xp

x

Fig. 1. Tangent plane (a) and local triangulation (b).
neighbor set Ni onto it, yielding the projected point set

N
p
i ¼ fX

j
i gj¼0;...;k in the 2D coordinate system ðe0; e1Þ

(Fig. 1a). Here X
j
i 2 R2 are the projections of x

j
i 2 R3

onto the above 2D coordinate system. To simplify

notation, we incorporate xi as x0
i in the set of neighbors

N
p
i : Next, we compute the Delaunay triangulation of the

points N
p
i : This yields a triangle mesh Ti in the tangent

plane. The triangulation is a strictly 2D process,

confined to the frame ðe0; e1Þ: From the triangulation,

we select the triangle fan F
p
i ¼ fT

p
i gi of projected

triangles T
p
i around the projected seed point X 0

i (Fig.

1b). Finally, we define the neighbor set N
p
i of xi as being

the points x whose projections X
j
i are used by the

triangles in the fan F
p
i : By Ni we denote the

corresponding set of 3D points before projection on

the tangent plane.

Note that the points Ni define a local 3D triangle fan

Fi of the point set whose projection on the tangent

plane is exactly the triangle fan F
p
i defined by the point

set N
p
i :

However, the above scheme has a problem. The

Delaunay triangulation may produce triangles with too

small angles which, when assembled in matrices

discretizing PDEs, can cause inaccuracy and instability

problems when solving these PDEs (Section 7). These

problems are well known from discretizing PDEs on ill-

conforming meshes. We prevent this as follows. If an

angle smaller than a user given amin; set in practice to

around 25 degrees, appears in the triangulation, we

remove one of its points from Np and re-triangulate the

remainder. The process is repeated until no ill-shaped

triangles are created. In practice, this causes no visible

slow-down. We tested a large number of noisy point sets

of 30 000 up to a million points. The worst case

encountered contained a few tens of such triangles per

point set, which were successfully removed in three re-

triangulation passes. Even though these cases are rare,

their removal is essential to ensure robust convergence

of PDE discretization schemes.

Our tangent plane construction has several desirable

properties. First, the moment-based computation is a

noise-robust way to define the tangent plane. Larger

neighborhoods N act as stronger noise filters. It is

important to note that our approach is not the same as

producing a smoothed mesh. Indeed, the neighbors Ni

of a point xi are defined to be only the immediate

neighbors of xi in the Delaunay triangulation of the

projected neighborhood N
p
i : As Ni increases due to

increase of � or kmin; the set Ni practically stays of

constant size. In practice, Ni contains the average

number of points in a conforming Delaunay triangula-

tion, i.e. 4 up to 8..10 points, whereas the average size of

Ni; for the point sets we worked with, ranged between 30

and 100 points. Secondly, the computation of ðe0; e1; e2Þ

does not need to be very accurate. We use them just as a

means of finding the neighbor set Ni out of the points in
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the point set. Even reasonably large orientation varia-

tions of e0; e1 cause no change in Ni; as the Delaunay

triangulation of X
j
i j uses the same closest points. We do

not produce new points, but just couple the existing

ones. Finally, the removal of ill-shaped triangles ensures

that our stiffness matrices (Section 7 and further) are

well conditioned, a property which is not directly

enforced by classical finite elements on arbitrary triangle

meshes.

Our method of triangulating tangent plane projec-

tions for the k closest neighbors resembles the local

triangulation proposed by Linsen et al. [4]. However, we

consider large k values (30 up to 100). Linsen et al. use

k ¼ 6; which should lead to considerably less stable

tangent planes. Our triangulation quality check enforces

minimal angles amin; whereas [4] does not guarantee this.

A very similar method to the triangulation proposed in

this paper is presented by Floater and Reimers, in the

context of triangulating unorganized point sets [18].

Fig. 2 (left) shows the bunny model in which we chose

three points on the left ear. The points, their neighbor-

hoods N for k ¼ 60; and lines to their neighbors Ni are
Fig. 2. Point set (left). Three selected points with neighbor sets N
shown in red, yellow, respectively green in the detail

image Fig. 2 (right). Note that, although each Ni is large

(60 points), the corresponding Ni has 6 neighbors.

Moreover, the neighbor set Ni stays the same for k 2

[20::60]; which outlines the stability of our method.
7. Assembling the finite element matrices

We have shown how to construct, for every xi in a

point set, the neighbor set Ni: In this section, we show

how to build the matrices needed for solving PDEs on

point surfaces. Given the local 3D triangle fan Fi ¼

fTlgl ; we define the preliminary matrix entry ~Lij as

~Lij ¼
X

l

ArTl
Fi � rTl

Fj jTl j; ð8Þ

where Fj are the affine linear basis functions on the

triangles of F defined by Fkðx
j
i Þ ¼ dkj for all k and j. A is

the application-dependent discrete diffusivity term. Here

the gradient rTl
is the gradient on the affine triangle Tl :
i and Ni (right). Major eigenvectors along edges (bottom).
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We could alternatively define ~Lij by integrating in the

tangent plane only, i.e., on the triangles of F
p
i ; instead of

Fi: The right choice is application dependent. If we

process (e.g., denoise) the surface itself, it is incorrect to

use projected quantities, as they do not take into

account the spatial orientation of the points. Indeed,

this would couple points in flat regions as strongly as

points in curved regions. As already outlined, if we

compute on the 3D triangle fan, we use the tangent

planes just as a help for the triangulation and obtaining

the neighbor relations Np; and perform all other

computations in 3-space. When processing a fixed and

very noisy point cloud, the smoothing induced by the

tangent space construction may be desirable. In that

case, one would replace the 3D triangle fan Fi by its

projection F
p
i :

The quantity ~Lij describes the coupling of point i with

all its neighbors j, from the point of view of i. Clearly, ~Lji

is not necessarily equal to ~Lij ; as the neighbor computa-

tions of i and j are strictly speaking independent (Section

6). Moreover, we must still define a point’s self-coupling,

i.e. the matrix’s diagonal entries. To produce a complete,

symmetric ‘stiffness’ matrix L, we now define

Lij ¼
1

2
ð ~Lij þ ~LjiÞ; ð9Þ

for iaj and for the diagonal entries

Lii ¼ �
X

xj2NðxiÞ

Lij : ð10Þ

The latter ensures—as already mentioned in Section 4—

the desirable property that Lð1; . . . ; 1ÞT ¼ 0: The matrix

L has now the same properties as the classical stiffness

matrix on a triangular mesh. However, L is not

produced via a global triangulation, but via our local,

on-the-fly triangulation.

Finally, for the mass matrix M, we consider a

diagonal, lumped mass matrix, and set

Mii ¼
1

3

X
l

jTl j: ð11Þ

Here, as for the stiffness matrix, we can either consider

triangles in the 3D fan Fi or alternatively their 2D

projections in the projected fan F
p
i :
8. Applications

8.1. Surface segmentation

Nonlinear diffusion methods are well known in image

processing applications [19,20]. In these applications,

one solves Eq. (2), where u is the scalar gray value or

vector-valued image color. Time plays the role of a

scaling parameter: uðt ¼ 0Þ is the initial image, and

fuðtÞgt40 is a family of progressively smoothed images.
Appropriate choices for the diffusivity A and source

term f yield different diffusion types. For example, A ¼

1 and f ¼ 0 gives the well known heat equation with its

isotropic smoothing effect. A better choice for image

processing is to set A small in areas where we want to

keep image details and large in areas where we desire

strong smoothing. Finally, we can enforce the diffusion

direction to follow the feature lines (Fig. 3).

As a more challenging application, we consider the

segmentation of regions on a surface M which are

bounded by sharp edges. For this, we use a diffusion

process where we limit diffusion across and close to

edges and have it large in smooth areas. For this, we can

set A ¼ C�; where

C� ¼ G
jjM0

� ðxÞ � xjjl2ðM
1
� ðxÞÞ

�l0ðM
1
� ðxÞÞ

� �
;

with GðsÞ ¼ ðaþ bs2Þ
�1 with suitably chosen a; b40: In

all our applications, we have fixed a ¼ 0:01 and b ¼ 100:
The function G causes C� to be much larger in relatively

smooth surface areas than close to edges, thus makes the

surface classification easier.

Fig. 4 shows the classifier C� for the bunny model, for

different values of �: Specifically, � was implicitly

determined as the distance from the current point to

the kth closest point, for different values of k. Using a

blue-to-red (rainbow) colormap for C�; smooth regions

appear red, whereas edges appear blue. Moreover,

surface ‘features’ are detected at different scales, the

scale being given by the value of �: These results are very

similar to the multiscale features presented by Pauly et

al. for point sets [21]. The main difference is that we use

the ‘enhancement’ function G to clearly separate, by

several orders of magnitude of C�; smooth areas from

edges. For our applications (e.g., segmentation), this

strong separation is essential.

This is the surface classifier presented in [17]

which is small in the vicinity of edges on the

surface and almost 1 in smooth surface regions.

However, the above choice for A may not stop

diffusion completely close to edges, which is what we

need for segmentation. To this end, we set A ¼ HðC�Þ

and f ¼ KðuÞ; where

HðuÞ ¼
0; u4g;

aðu � gÞq; upg;

�

KðuÞ ¼
0; u41;

að1 � uÞq; up1;

�

for suitably chosen 0oq51; a40; and g40: In practice,

a good choice is q ¼ 0:5; a ¼ 1; and g ¼ 0:05: Given that

C� ranges from very small close to edges to 1 in flat areas

(Section 6), our choice for g; and subsequently for H,

ensures that diffusion is zero close to edges and strong in

smooth surface areas. We set the initial condition u0 ¼ 0
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Fig. 3. Seed points (a), diffused signal u for yellow seed after 5 iterations (b), and two views of the obtained segments (c, d) for a surface

having 75 781 points.
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over the whole surface M; except for a small hand-

picked seed area within the region to be segmented,

where we set u0 ¼ 1: The diffusion process stops

spreading the seed intensity and stop at the surrounding

edges, due to the choice of A. Furthermore, the right-

hand side f serves as a contrast enhancement, which

pushes u to the value 1 at any position which has a

positive u value. Figs. 3 and 5 illustrate the segmentation

process on two different point set surfaces, where we

used different colors for every region and corresponding

seed. The colors’ saturations correspond to the diffused

signal u. In Fig. 3 we show the use of A ¼ C�; which

causes a very small amount of diffusion to leak out of

the segmented regions. This is visible as the light red and

green tints on the model’s arms that come from the

respective red and green segmented regions. Exact

segments can be easily obtained by e.g., by using an

upper threshold on the signal u. A better choice is shown

in Fig. 5 where we use the second option A ¼ HðC�Þ:
Here, the obtained segments are clearly separated by

white areas. These areas correspond to high curvature

regions, where the function H has zero values which

completely block diffusion.

One issue is how to perform the seed point generation

automatically. Several possibilities exist. For example,

we can detect the ‘flattest point’ (by using the maximum

of the classifier C�). This point is seeded, and its

corresponding surface segment is computed via diffu-

sion. We can repeat the process to get further segments,

by eliminating the already segmented points from the

detection step. This method does not require more

diffusion steps as compared to the manual seed point

placement.

Computing the diffusion-based segmentation is effi-

cient, as the matrix A needs to be assembled just once.

On a Pentium IV 1.8 MHz machine, one diffusion

iteration takes 0.3 s for the 75 781 points model in Fig. 3

and 0.57 s for the 121 723 points model in Fig. 10.
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Fig. 5. Seed points (a), diffused signal for a seed after 15 iterations (b), and obtained segments (c) for a surface having 65 500 points.

Fig. 4. Classifier for different k-closest point values.

U. Clarenz et al. / Computers & Graphics 28 (2004) 851–868 859
Segmentation typically needs 10 to 20 iterations. The

above performance figures could probably be improved

by a factor of 3 by using a more efficiently coded linear

solver.
8.2. Texture synthesis

We describe now the use of PDEs to generate textures

on point surfaces, using the reaction diffusion method
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Fig. 6. Top row: spot texture synthesis. Bottom row: stripes texture synthesis.
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presented by Turk in [16]. This method uses two

‘chemical species’ concentration functions a and b that

diffuse and react, i.e., build up or annihilate each other,

on a given surface. The process is described by

@a

@t
¼ Faða; bÞ þ DaDa; ð12Þ

@b

@t
¼ Fbða; bÞ þ DbDb; ð13Þ

where Fa and Fb are the creation rates and Da and Db

are the diffusivities of the species a and b, respectively.

The system is initialized with constant a and b values

biased by a small random perturbation. After several

iterations, regular patterns appear (cf. Fig. 6, top row).

By using a five species system, stripe-like patterns can be

generated (cf. Fig. 6, bottom row). We have used exactly

the same PDEs and parameter settings as the original

work by Turk [16].

We discuss first the synthesis of spots and stripes

textures. Fig. 6 shows these types after 100, 600, and

1700 iterations for the spots (top row) and 100, 300, and

600 iterations for the stripes (bottom row). Here, we

visualize the concentration (a or b) result of the reaction

diffusion via a blue-to-red colormap. The patterns and

the number of iterations needed are practically identical

with the ones produced by [16].

Next, we synthesize a zebra-like pattern, by disabling

the initial random perturbation and setting the initial

concentration to a given value v. We extend Turk’s

method by forcing the zebra pattern to follow the

surface edges by relating v to the moment-based
classifier value. For this, we select all points where C�

is closer to its minimum value than 10% of its range.

This delivers points on and close to surface edges. We

next set v to 1 on these points and 0 on the remainder

and proceed with the texture synthesis. The species start

diffusing from the surface edges (red regions in Fig. 7a)

into the smooth areas (blue regions in Fig. 7a). Fig. 7a–c

shows three instants of the zebra pattern formation. A

second application is shown in Fig. 8. Here, the

thresholded classifier selection allows us to easily select

the ‘bumpy features’ of the dinosaur model, such as the

fingertips, eye, and back ridge. The selected points are

shown drawn in yellow in Fig. 8. Fig. 8b–d depict three

instants of the zebra pattern formation, showing how

the zebra stripes propagate from the seed set. These

results are very similar to the zebra patterned animal

presented in [16], where the seed selection was done,

however, manually. On a Pentium IV 1.8 GHz machine,

for the bunny dataset, the spot formation took around

30 s, the stripes 8 s, and the zebra pattern 18 s.

8.3. Bump mapping

A second application of reaction–diffusion equation is

to generate bump mapped surfaces. For this, we solve

the same set of Eqs. (12) and (13) as for texture

generation. However, we use now the gradient ra of the

computed species concentration a to bias the points’

normal vectors n:

nbump ¼ n� Kra: (14)
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Fig. 7. Aligned zebra patterns after 10 iterations (a), 100 iterations (b), and 1300 iterations (c).

Fig. 8. Constructing zebra patterns. Selected seeds (a), patterns after 20 iterations (b), 100 iterations (c), and 900 iterations (d).
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The bias factor K controls the amount of bump

mapping. Good effects are obtained for jKj values

between 0.1 and 1. Rendering the point set using the

biased normals nbump produces the effect of a bump

mapped point surface. Positive K values produce convex

bumps, whereas negative values yield concave surface

indentations.

Computing the gradient ra of the reaction–diffusion

species a can be done in several ways. The first method is
to consider, for every point xi in the point set, its triangle

fan Fi ¼ fTlgl ; which is constructed during the stiffness

matrix assembly process described in Section 7. Next, we

compute the gradient rTl
a on every triangle Tl as

usually, i.e. by projecting the normal to the graph of a

on Tl ; and set ra by averaging all rTl
a for all triangles

Tl : This is the classical finite element setting, and is the

method we have used in our implementation. A second

method is described by Turk in [16]. Essentially, Turk’s
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method involves interpolating a between the sample

points xi using 3D radial basis functions:

aðxÞ ¼

P
q2B�ðxÞ

aðqÞwðjx � qj=dÞP
q2B�ðxÞ

wðjx � qj=dÞ
: (15)

Only those points q are considered which are in the

neighborhood B�ðxÞ of the point x. The radial basis

functions w are defined as

wðrÞ ¼
2r3 � 3r2 þ 1; 0oro1;

0; r41:

(

Finally, the value d is taken to be the double of the

average inter-point distance. With this scheme, ra is

numerically computed by forward differences from the

interpolation (15).

Fig. 9 shows several bump mapping examples. The

bunny (Fig. 9a) has been bump mapped with convex

bumps (K ¼ 0:5) created from a spot texture (shown in

Fig. 6, top row). For the statue head (Fig. 9b), we used

concave bumps (K ¼ �0:3) created from a similar spot

texture. Finally, the object in Fig. 9c has been bump

mapped by using an edge-following zebra texture. This

produces bump structures that are parallel with the

object’s sharp edges (Fig. 9d).

Taking larger d values and larger neighborhoods B�

acts like a low pass filter on ra; and thus produces
Fig. 9. Bump mapp
softer bump mapping, at a higher computation cost. At

the other extreme, the smallest neighborhood B� is

actually Ni; the neighbors of xi used by its triangle fan

Fi: In this case, the normal estimation method using

radial bases becomes practically identical with the one

using linear finite elements.

An important question to answer is whether the

above radial basis interpolation could be used to

define a completely mesh-free PDE discretization

approach for point surfaces. In principle, the

answer is yes. However, two problems appear in

practice. First, the above scheme does not provide a

‘partition of unity’, i.e. does not guarantee that the

sum of all basis functions for all points xi is

identically one overall on the surface. Second, there is

no efficient way to compute the integrands of the

stiffness and mass matrices (Eqs. (4) and (5), Section 4)

in case of radial basis functions. In contrast, evaluating

these integrands reduces to simple sums over triangle

fans (Eq. (8)) for the affine linear basis functions our

approach uses.
8.4. Inpainting textures

Inpainting, originally an artist’s work, is the process

of repairing local damages in an image, or texture, by
ing examples.
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using the image colors outside of, and close to, the

damaged area to fill in, or ‘paint in’, the defect itself.

Several inpainting methods exist which essentially try to

restore the damaged area so that various properties

(statistic data, gradient information) of the valid image

are extrapolated in the damaged area in a natural way

[22,23]. We demonstrate here a simple linear inpainting

method which allows repairing the color texture on a

damaged region D of a point set surface M; by

extending the texture on the boundary @D of D into

the interior of D: For this, we consider the boundary

value problem (1) with A ¼ C�: This diffusivity

choice prefers rather independent texture expansion on

both sides of an edge. Hence, we avoid texture

smearing across edges. Fig. 10 shows the inpainting of

a model of 121 723 points. First, we created

several defects by painting on the model. Such

defects are shown in yellow in Fig. 10c,e. The texture

was set to black in the defects area. Using the

anisotropic diffusivity A (low close to creases,

high in flat areas) for inpainting diminishes

texture smearing close to creases: The model’s black

hair color and facial color are kept separate (Fig. 10c,d).

The same happens with the leg’s skin color and

white shoe color (Fig. 10e,f). However, the black

trouser color tends to diffuse on the left leg (Fig. 10b),

as this region is flat. If desired, this can be prevented by

using an anisotropy tensor A that incorporates color

gradient information. We reserve this application, as

well as using a more sophisticated inpainting model, for

future work.
8.5. Fairing of point based surfaces

The next application of our framework for PDEs on

point based surfaces is surface fairing using anisotropic

geometric diffusion. Here, geometrical surface noise is

smoothed out, whereas features such as edges are

preserved or possibly even enhanced [11,24]. This is

especially useful for point surfaces acquired via noisy

scanning. Given an initial compact embedded manifold

M0 in R3; we compute a family of faired manifolds

fMðtÞgt2Rþ

0
; with corresponding coordinate mappings

xðtÞ: The time t describes the fairing process and xðtÞ are

given by solving the system of anisotropic evolution

equations:

@tx � div MðArMxÞ ¼ 0: ð16Þ

We start with the initial condition Mð0Þ ¼ M0: We

define the tensor A such that we have strong diffusion

along surface features and weak diffusion across them.

As before, we use a moment-based classifier. When

computing it, we also obtain a basis w1;w2 in the tangent

plane TxM; defined by the major and medium

eigenvectors of the first order moment (Section 6).
In this basis, the tensor A is defined as

A ¼
1 0

0 C�

 !
:

Since C� is high in smooth regions and low close to edges

and corners, Eq. (16) smooths the surface by keeping the

features. Due to the anisotropy A, we enforce a signal

enhancement in the direction of the eigenvector w1: In

the direction of w2; the diffusion is proportional with the

classifier C�; i.e., strong in smooth areas and weak close

to edges, which is exactly what we desire. For more

details, we refer to [25], which describes this application,

but without detailing the actual PDE discretization we

consider here. Fig. 11 shows several results, all obtained

with a few tens of diffusion iterations. The important

surface edges, such as the bunny’s ear edges, body-hip

contact line, the transversal femur cut, and the chiselled

letters ‘A’ and ‘X’, are preserved. Small ‘noise’ details,

such as the bunny’s skin ripples, bone irregularities, and

stone graininess, are removed. Remark, also, that the

point model of the carved stone (Fig. 11 right) exhibits a

small (black) hole at the extremity of the bottom right

ending of the letter ‘A’. Part of the point model, this hole

does not cause problems to the fairing process, which

underlines the stability of the proposed approach.

8.6. Point set triangulation

As a last application, we construct a triangle mesh

from a given point set. For this, we recall the process of

local tangent plane and triangle fan construction

(Section 6) where, for each point xi in the point cloud,

a triangle fan Fi ¼ fTlgl is constructed. If a triangle Tl

in the fan has the points with indexes ði; j; kÞ as vertices,

and ioj; we keep Tl in our triangulation, otherwise we

skip it. This ensures that, if the same triangle is

generated as part of the local triangle fans of two

different points i and j, it will be added only once to the

triangulation. Finally, we render the resulting

triangle set using the point set normals as vertex

normals. Fig. 12(a, c) show two such triangulations.

For visual comparison, Fig. 12d shows the point set

rendering of the dragon rendered as triangulation

in Fig. 12c, which look practically identical. For better

insight in the triangulation quality, Fig. 12d shows a

close-up on the right paw of the dinosaur triangulation

from Fig. 12a.

It is important to stress that, given the purely local

nature of our triangle fan construction, this method is

not guaranteed to produce a perfect triangle mesh from

the point cloud, in which e.g., there are no holes, every

edge is shared by exactly two triangles, and there are no

overlapping triangles. However, just as in the triangula-

tion method of Linsen et al. [4], such problems occur

very seldomly, e.g., tens of occurrences for a point cloud
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Fig. 10. Texture inpainting after 1 step (a) and 30 steps (b). Details: defects (yellow) (c, e) and their inpainting (d, f).
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of 100 000 points. We have verified the above statement

experimentally, by visual inspection of the rendered

meshes. Since these problems occur seldomly, and their

extend is purely local (pairs of points shared by more
than two triangles, typically by three), believe that an

extra pass can be devised that would remove them and

create a manifold mesh. The computational cost

associated with the triangulation is practically identical
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Fig. 12. Point set triangulation.

Fig. 11. Top row: initial surfaces. Bottom row: surfaces faired via diffusion.
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to the matrix assembly cost (more on this in Section 9).

We present these triangulation results with the main aim

of bringing further evidence to our claim that the purely

local construction of finite element matrices (Section 7),

based on the same local point couplings as the

triangulation, produces robust results.
9. Implementation

Several aspects are essential for an efficient imple-

mentation. One of the costliest computations in the

whole process is the nearest neighbor search used for the

classifier and tangent plane computation (Section 6). We
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accelerate this search using the Kd and/or Bd trees

provided by the ANN package [26], also used by the

pointshop 3D point rendering system [27]. However,

ANNs standard Kd and Bd tree implementations treat

the (usually very numerous) points in the point cloud

independently: searching the neighbors of every point

implies, in a worst case, a full leaf-to-root search tree

traversal. In many point sets, the points are not

completely randomly distributed. Points geometrically

close to each other come close to each other in the point

vector too. One of the reason of this is the coherence

inherent to the 3D scanning process by which many

point models have been acquired. We use this to

accelerate the neighbor search, as follows. We do not

try to return the exact k closest points, but k points

contained within a small given radius � from a given

point. These points are kept in a cache. If the cache is

empty, we fill it by executing the standard k closest

neighbor search. If the cache is not empty, it contains

search results for the previous point, so we retain those k0

points closer than � from the current point. The cache

miss, i.e. the remaining, usually few, k � k0 points are

found by the usual tree search. This acceleration pays off

as function of k. Indeed, as k increases, neighborhoods

of close points will largely overlap. For k equal to 20, 50,

and 100 closest points, we got a speedup factor of 2.62,

3.92, respectively 5.46 as compared to the standard tree

search. This speedup was consistently observed for point

sets between 100 000 and one million points. On our

Pentium IV 1.8 GHz machine, for the point set and four

k-closest-points values in Fig. 2, we need 0.4, 0.6, 1.05,

and 1.83 s, respectively for the nearest neighbor search,

tangent plane, and classifier computations.

For the Delaunay triangulation (Section 6), we used

the triangle software [28] which provides efficient and

robust checking and enforcing of various quality norms

on the produced triangles, such as minimal angles. This

is important for the conditioning of the assembled

matrices (Section 7). We store the stiffness and mass

matrices used to discretize the PDEs in a compressed

row format that retains only the nonzero elements for

each row. Given that there are as many nonzeros per

row as points in a triangle fan (Section 7), i.e. usually

less than 10, this scheme accounts for massive memory

savings as compared to a full matrix storage. Finally, we

solve the linear systems given by the above matrices

using standard iterative techniques, such as conjugate

gradient.

We built our system, called QSplat++, based on the

QSplat rendering software [14] which uses a bounding

sphere hierarchy to quickly and progressively render

very large point sets. We perform all our moment,

tangent plane, and PDE solving computations on the

finest hierarchy level, i.e. the real points themselves. If

desired, the color, normal, and position results can be

propagated upwards in the hierarchy, so that we
immediately benefit from QSplat’s efficient rendering

for very large models. We could also perform all our

PDE computations on coarser hierarchy levels, e.g., to

trade off accuracy for speed.

One of the strengths of point-based methods is that

they can be easily restructured dynamically, i.e. allow

point insertion and removal at various stages of the

modelling process. For example, during a fairing

process, one may want to remove points in shrunk

surface regions, and insert points respectively in dilating

regions. This implies recomputing both the point

neighborhoods and the stiffness matrix. In our imple-

mentation of the fairing, we need to recompute the point

normals, neighborhoods, classifier, and stiffness matrix,

every few (2..3) smoothing steps [25]. Consequently,

point insertion and removal are supported by default.

However, there are applications where one would like to

perform local point insertion or removal, and not have

to reassemble the complete matrix. This can be achieved

by computing the �-neighborhoods of the inserted and

removed points, and updating only the matrix entries

that correspond to points in these neighborhoods.

All techniques described in this paper (texture

synthesis, segmentation, fairing, inpainting, bump map-

ping, and triangulation), as well as a number of other

standard painting and editing tools for point sets have

been implemented using a modular, plugin-like archi-

tecture, similar to pointshop 3D [27]. Fig. 13 shows a

snapshot from the user interface of QSplat++.
10. Conclusions

The main aim of the presented framework is to carry

over the surface processing capabilities of finite element

PDE methods, well proven for mesh based surfaces, to

point based surfaces. Our framework can be seen as a

two-scale approach. On the fine scale, we build local

point couplings by using Delaunay triangulations of

point projections on local tangent planes. The local

couplings define fine-scale finite elements. It is only on

this scale that the actual interpretation of the data as a

function is clear and straightforward. On the next scale,

we consider the different tangent spaces of different

points, and average the first-scale FE models of these

points to obtain the ‘global’ stiffness matrix (Section 7).

To interpret data as a function on the second scale, one

can average the function values on first-scale local

triangles and interpret them as function values on

interpolated points, where point interpolation is done

by averaging point interpolations from the fine scale. We

use the local tangent planes solely as a means of

computing the point couplings. Thus, our approach

differs from other methods on point clouds, such as

[2,4,8,9,13]. Let us note that, given different surface

approximations, like any produced by the afore cited
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Fig. 13. QSplat++ tool interface.

U. Clarenz et al. / Computers & Graphics 28 (2004) 851–868 867
methods, we could easily extend our matrix assembly

process to such surfaces, by reimplementing Eqs. (8) and

(11) on this approximation.

Running our PDEs on the same surfaces represented

as triangle meshes and point sets respectively, with the

same parameter settings, produced virtually identical

results. Let us emphasize that we avoid building a global

surface representation. Our only global object is the

stiffness matrix describing the PDE to solve. Assembling

this sparse global matrix allows computing the point

couplings only once. If desired, however, we could

completely avoid assembling this matrix, e.g., by using

iterative methods needing only one matrix row at a time,

which is computed on the fly. Such approaches

are well known e.g., in the field of progressive radiosity.

In this case, when computing e.g., the matrix row i,

one would proceed as follows: Compute all entries ~Lij

for row i, then compute, for all neighbors j of point i, the

entries ~Lji; and finally symmetrize to yield the entries Lij

of row i. As compared to assembling the complete

global matrix L, this would double the number of

computations. However, this would allow storing

only a single matrix row or column at a time, thus

would allow processing huge point sets by trading speed

for storage space.

Our framework can be extended in several directions.

First, more types of PDEs could be solved, such as flow

problems, by merely adapting the matrix assembly step.

Secondly, one could extend the approach sketched in

Section 8.6 to build consistent global triangulations

from point clouds. Finally, multiresolution schemes on

point surfaces can be built to accelerate the PDE solving

to target interactive applications.
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