
Computers & Graphics 77 (2018) 30–49

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Survey Paper

A task-and-technique centered survey on visual analytics for deep

learning model engineering

�

Rafael Garcia

a , b , ∗, Alexandru C. Telea

c , Bruno Castro da Silva

a , Jim Tørresen

b , João Luiz Dihl
Comba

a

a Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
b Universitetet i Oslo, Oslo, Norway
c University of Groningen, Groningen, The Netherlands

a r t i c l e i n f o

Article history:

Received 15 April 2018

Revised 17 September 2018

Accepted 24 September 2018

Available online 3 October 2018

Keywords:

Visual analytics

Neural network visualization

Deep learning visualization

Deep learning

Neural Networks

Visual analytics survey

a b s t r a c t

Although deep neural networks have achieved state-of-the-art performance in several artificial intelli-

gence applications in the past decade, they are still hard to understand. In particular, the features learned

by deep networks when determining whether a given input belongs to a specific class are only implicitly

described concerning a considerable number of internal model parameters. This makes it harder to con-

struct interpretable hypotheses of what the network is learning and how it is learning—both of which are

essential when designing and improving a deep model to tackle a particular learning task. This challenge

can be addressed by the use of visualization tools that allow machine learning experts to explore which

components of a network are learning useful features for a pattern recognition task, and also to iden-

tify characteristics of the network that can be changed to improve its performance. We present a review

of modern approaches aiming to use visual analytics and information visualization techniques to under-

stand, interpret, and fine-tune deep learning models. For this, we propose a taxonomy of such approaches

based on whether they provide tools for visualizing a network’s architecture, to facilitate the interpreta-

tion and analysis of the training process, or to allow for feature understanding. Next, we detail how these

approaches tackle the tasks above for three common deep architectures: deep feedforward networks, con-

volutional neural networks, and recurrent neural networks. Additionally, we discuss the challenges faced

by each network architecture and outline promising topics for future research in visualization techniques

for deep learning models.

© 2018 Elsevier Ltd. All rights reserved.

d

t

d

l

l

o

L

f

t

t

o

l
1. Introduction

One of the main goals of Artificial Intelligence (AI) is to build

systems that achieve human-level efficiency in recognition tasks,

such as image classification, speech recognition, and sentiment

analysis. Although most of these tasks seem trivial to human be-

ings, they are extre mely challenging for computer algorithms due

to the lack of a formal description of how to solve such problems.

For example, humans can, in general, easily recognize if there is

a dog in a given image, but it is hard to tell how we got to this

conclusion. In other words, it is not clear how to formalize which

features in the image makes humans recognize the presence of
� This article was recommended for publication by Stefan Bruckner.
∗ Corresponding author at: Universidade Federal do Rio Grande do Sul, Porto Ale-

gre, Brazil.

E-mail addresses: rgarcia@inf.ufrgs.br (R. Garcia), a.c.telea@rug.nl (A.C. Telea),

bruno.silva@inf.ufrgs.br (B. Castro da Silva), jimtoer@ifi.uio.no (J. Tørresen),

joao.comba@gmail.com (J.L. Dihl Comba).

p

n

r

n

D

https://doi.org/10.1016/j.cag.2018.09.018

0097-8493/© 2018 Elsevier Ltd. All rights reserved.
ogs [1] . Is it the shape of the objects? Is it the color contrast be-

ween different regions in the image? Moreover, even harder, how

o humans learn to recognize dogs in the first place? How do we

earn to use such features to identify dogs? How can we teach such

earning abilities to machines? One of the areas of AI that focus

n finding solutions to approach these problems is called Machine

earning (ML). ML algorithms use statistical techniques to optimize

unctions to progressively achieve better performances in a par-

icular task [2] . To train an ML model, the designer must provide

he model with training inputs with known answers—e.g., images

f dogs and images without dogs—, the model thus automatically

earn to model a function that minimizes the chances of wrongly

redicting such inputs.

In the area of machine learning, a particular class of tech-

iques has proven increasingly efficient and effective in pattern

ecognition applications in the past years: deep learning (DL) tech-

iques. In contrast to what may be called ‘classical’ ML techniques,

L techniques do not rely on the designer to provide a set of

https://doi.org/10.1016/j.cag.2018.09.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.09.018&domain=pdf
mailto:rgarcia@inf.ufrgs.br
mailto:a.c.telea@rug.nl
mailto:bruno.silva@inf.ufrgs.br
mailto:jimtoer@ifi.uio.no
mailto:joao.comba@gmail.com
https://doi.org/10.1016/j.cag.2018.09.018

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 31

h

p

a

t

(

o

s

t

b

p

t

m

a

e

r

a

c

w

s

w

1

l

b

F

m

p

o

p

d

w

a

f

a

u

I

r

b

t

b

w

s

w

m

s

a

s

l

d

t

t

t

t

e

s

h

h

c

i

f

c

m

c

e

a

h

o

b

p

e

i

q

D

m

q

f

a

(

k

(

t

h

p

a

c

S

b

m

t

v

l
and-engineered features to be used in the learning and decision

rocesses. Rather, they rely on a (large) set of labeled samples to

utomatically extract and store such features in the so-called archi-

ecture of a deep neural network (DNN) [3] . DNNs contain multiple

up to hundreds of) layers that perform simple filtering, thresh-

lding, and aggregation operations on subsets of the input data

amples. The power of such architectures relies (1) on their ability

o model very complex nonlinear decision functions and decision

oundaries in the input data space by combining many such sim-

le operations; and (2) on the fact that the set of learned parame-

ers involved in implementing such operations (also known as the

odel learned by the network) can be automatically inferred from

 (typically large) set of labeled data samples, by minimizing the

rror between the predicted and the ground-truth labels.

DNNs have recently shown excellent performance in pattern

ecognition tasks in part due to the increase in computing power

vailable for training ever larger architectures, e.g., by using GPU

omputing. Early on, Krizhevsky et al. proposed the AlexNet net-

ork [4] , a convolutional neural network (CNN) architecture with

ix hidden layers that won the 2012 ILSVRC competition on the

ell-known ImageNet dataset [5] , with a top 5 test error rate of

5.4%; i.e., the percentage of images on the test set whose true

abel was not among the 5 classes considered to be more likely

y the model. This architecture was later refined by Zeiler and

ergus [6] , which decreased the training set size by one order of

agnitude while providing an improved 11.2% error rate. In that

ublication, the authors have argued that often the “development

f better models is reduced to trial and error”, and proposed a

ioneering visualization for depicting feature maps to aid the un-

erstanding of the network training process. By increasing the net-

ork size (or depth , as measured in terms of number of layers),

nd the training set size, subsequent works managed to provide

urther increases in task accuracy; e.g., in the work of Simonyan

nd Zisserman [7] , where a network with over 100 layers was

sed; in GoogLeNet [8] (22 layers, achieving top 5 error 6.7% for

LSVRC); and in Microsoft’s ResNet [9] (152 layers, where a 3.6% er-

or was achieved for ILSVRC). Several other similar examples have

een published in the past few years.

Even though higher accuracy may be achieved by increasing

he architectural complexity of DNNs, such a design choice also

rings about several important challenges in deploying such net-

orks. First, the computational training effort required by such

ystems becomes quite high—DNNs can often require days or even

eeks of training time even when using a system composed of

any GPUs. Suboptimal configurations of the network architecture,

uch as its training set size and the network hyperparameters, can

lso require the entire learning process to be restarted or run from

cratch, which is very expensive. As a consequence of these chal-

enges, it becomes increasingly important for one to be able to un-

erstand the complex interaction between all of these aspects (i.e.,

he characteristics and size of the training and testing datasets;

he network architecture; the network hyperparameters; and the

est results) in order to effectively fine-tune a DNN for a specific

ask. This is by itself a very complex challenge as raised by Liu

t al. [10] , grounded chiefly in two reasons: (1) the size of the

pace spanned by all these design dimensions is huge , so an ex-

austive exploration thereof is impossible; moreover, this space is

ighly non-linear, since small changes to the hyperparameters may

ause significant changes to the performance of the correspond-

ng trained model; (2) the abstract nature of this space—i.e., the

act that it is hard to intuitively understand the effect of particular

hanges to hyperparameters in the corresponding performance—

akes it hard to understand how and why a DNN behaves in a

ertain way.

The above constraints determine that, in practice, most design-

rs construct and train their DNN models virtually as ‘black box’
lgorithms. More specifically, while designers do have, at least at a

igh conceptual level, a relatively good idea of what pooling, drop-

ut, and convolutional layers implement, the joint effect of com-

ining several (tens to hundreds) of such layers and varying their

arameters can only, in practice, be assessed via empirical end-to-

nd measurements of the performance of the resulting DNN. This

ntroduces several important and, so far, only partially answered

uestions:

• What has a model learned? Without a good understanding of

what decision hypothesis a given trained network has acquired,

users and designers of a DNN typically have no idea about what

regions of the original data space (sampled by the training pro-

cess) were ‘internalized’ by the resulting model. As such, it is

not clear how to allocate further training effort s to improve

the network. Also, a model may have poor generalization per-

formance. Currently, this can only be verified by testing the

network on novel data (validation) or by deploying it in field

operation—when it may be too late to detect generalization is-

sues. Understanding what a model has inherently learned (or

not) is therefore of key importance.
• Why has a model learned a particular decision hypothesis? Re-

lated to the above point is the challenge of understanding why

a model has learned (or not) to generalize certain aspects of

the training data. Knowing this may directly provide feedback

to the designer as to what needs to be changed in the net-

work architecture, hyperparameters, or in the training data to

further strengthen desired properties of the network or to ad-

dress particular issues. Moreover, this will also give a better

understanding of the properties of the input data space, e.g.,

in terms of sub-spaces that are particularly challenging for the

learning process. Without knowing why a particular model re-

sulted from the training process, DNN optimization can very

much be a blind search process.
• How has a model learned a particular decision hypothesis? Even

if a DNN performs well, one may want to understand how it

has internally stored knowledge about the training data; e.g.,

in which specific layers (or parts thereof) or parameter value

ranges were particular types of knowledge encoded. This may

help in understanding the reason why specific DNN architec-

tures are appropriate for specific tasks and thus help to ex-

trapolate such knowledge when tackling new problems. With-

out this, addressing a new problem in a different data space

might require starting the entire network engineering process

from scratch.

Recently, these concerns have been discussed primarily by the

L community. For example, Marcus [11] argues that the DL field

ay be ‘approaching a wall’ and outlines ten challenges: (1) re-

uirements for huge amounts of labeled data; (2) limited capacity

or transfer between problems; (3) difficulty of dealing with hier-

rchical structure; (4) difficulty to deal with open-ended inference;

5) DL is not sufficiently transparent ; (6) it is hard to integrate prior

nowledge; (7) it is hard to distinguish correlation from causation;

8) assumption of a stable world; (9) DL’s answers cannot be always

rusted ; (10) DL is hard to engineer with . Among these, we focus

ere on challenges (5), (9), and (10), which directly relate to our

reviously-made points regarding the ‘black box,’ unpredictable,

nd hard to fine-tune nature of DNNs, respectively. Similar con-

erns regarding these issues have been expressed in the works of

amek et al. [12] and Ribeiro et al. [13] .

The need to address the above challenges has been recognized

y scientists at the confluence of several domains (data science,

achine learning, and data visualization). One particular approach

o achieving this goal, which we survey in this paper, is to use

isualization techniques and tools. This approach is rooted in ear-

ier works related to understanding high-dimensional data spaces

32 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

a

v

t

2

c

m

t

s

i

i

b

t

a

g

n

k

u

a

d

i

i

p

y

t

p

p

m

m

f

n

a

C

t

t

r

f

r

x

m

i

a

i

R

i

i

s

o

d

o

o

t

c

u

a

i

n

a

n
[14–18] and visualizing the operation of classical ML algorithms—in

particular, visualizing feature spaces and the impact of using differ-

ent feature selection processes [19–27] . However, such earlier tech-

niques do not directly address the challenges that are particular to

DNNs, such as the ones mentioned earlier in this section, and in-

stead focus on understanding more general correlations between

the network structure, the high-dimensional input-feature spaces

used during training, and the resulting network performance. More

recently, novel techniques in information visualization and visual

analytics (VA) have aimed at supporting and improving DNN en-

gineering by taking into account their particular challenges; how-

ever, the relatively fast growth of this field has not yet been fully

covered by existing surveys.

Contributions: We aim to alleviate the problems discussed above

with the following contributions:

1. we propose a task-and-architecture based taxonomy of visual-

ization techniques that help engineering DNNs by whether they

tackle one of three possible tasks : (1) facilitating the visualiza-

tion of the network structure; (2) facilitating the interpretation

and analysis of the training process; or (3) allowing for feature

understanding. We explain the particularities of these different

tasks, discussing their goals, their challenges and how they are

applied in the context of three types of network architecture:

deep feedforward networks, convolutional neural networks, and

recurrent neural networks;

2. we survey a comprehensive body of over 40 papers related to

visualization in DNN engineering, and explain how these fit

within the proposed task taxonomy;

3. we outline important limitations of current work in the area

and suggest directions for future exploration.

The structure of this survey is as follows. In Section 2 , we in-

troduce import concepts and notation regarding classical machine

learning and deep learning engineering. In Section 3 , we detail

the above-mentioned tasks and in Section 4 how visual analytics

techniques relate to the main deep learning architectures in or-

der to complete such tasks. In Section 5 , we introduce our taxon-

omy and discuss in details different visualization techniques used

for tackling these tasks in the context of deep feedforward net-

works, convolutional neural networks, and recurrent neural net-

works. Section 6 discusses how these techniques cover the needs

of different types of DNN designers and also outlines important

technical limitations which can spawn future research directions.

Section 7 concludes the paper.

Relation with other surveys: Several other surveys partially touch

our focus of interest. The most important existing surveys related

to ours include tutorials on deep learning visualization [28–31] ;

visualization of convolutional networks [32,33] ; visualization of

machine learning models [34] ; predictive visual analytics [35] ; in-

teractive machine learning [36–38] ; interpretable machine learn-

ing [39] ; and surveys of multidimensional visualization techniques

[14,16,17] . Closest to our focus, Hohman et al. [40] present a sur-

vey on visual analytics for deep learning. Their survey follows a

human-centered approach to answer the following questions: (1)

why to visualize different aspects of a deep model or its corre-

sponding training process; (2) who uses deep learning visualiza-

tion; (3) what to visualize in deep learning; (4) how to visual-

ize deep learning; and (5) when in the process of designing and

training a network the visualization process will take place—e.g.,

during the network engineering step; throughout training; or af-

ter the model parameters and corresponding features are learned.

Our survey also addresses these questions but offers another an-

gle of attack that looks at visualization techniques classified by the

task and subtask it addresses and which model architecture (DFNs,

CNNs, RNNs) they apply it. Furthermore, we focus specifically on

how such tools support a visual analytics approach for solving the
bove tasks, rather than on the more general perspective of how to

isualize deep learning data. As such, our survey is complementary

o, and also extends, the work of Hohman et al.

. Classical machine learning and deep learning

In this section, we introduce basic notation relevant both for

lassical machine learning algorithms and also for deep learning

odels. Later, we will clarify what are the main differences in how

hese techniques work.

Let x ∈ X be an input (e.g., an image or a sound) drawn from a

et or distribution of possible inputs X (e.g., the set of all possible

mages). Let y ∈ Y be a label or output associated with a particular

nput x . If the model is tackling a regression task, y is a (possi-

ly high-dimensional) continuous value. Otherwise, in classification

asks, y is a discrete label associated to one or more members of

 finite set of classes which elements of X can belong to. Both re-

ression and classification are considered supervised learning tech-

iques, as they are trained with inputs which the actual labels are

nown. For instance, if x is an image, Y could be the set {dog, cat},

sed to denote the possible animals that may appear in the im-

ge. In many practical applications, a particular label y in a set of

 possible labels is represented by a vector y ∈ {0, 1} d , where the

 th element of y is 1 only if y corresponds to the i th possible label

n Y . Let D = { x i , y i } , for i ∈ { 1 , . . . , N} , be a set of N training exam-

les associating particular inputs x with their corresponding labels

 . The objective of a supervised learning algorithm is to analyze a

raining set D and construct a function f : X → Y so that when f is

resented with novel inputs (e.g., unseen images) it can correctly

redict their corresponding label.

Machine learning algorithms usually optimize their perfor-

ances by incrementally improving the function f in order to

inimize a given cost function C that measures how well f per-

orms; i.e., how well that function correctly predicts the labels of

ovel inputs. In the regression setting, when f predicts labels that

re continuous numbers, C can be a Mean Squared Error such as

(f) = E x ∼X

[
(f (x) − y) 2

]
. In many practical applications, the func-

ion f might be easier to learn if the input information is presented

o it in a pre-processed way; for instance, when training an algo-

ithm for detecting cats in pictures, it might be easier to learn an f

unction that takes as inputs edge and color information instead of

aw pixel values. This can be achieved by transforming the inputs

 ∈ X via a so-called feature function � : X → R

m mapping any ele-

ent of X to a point in some m -dimensional. Each of the m values

n �(x) is a feature of x denoted as � i (x), where i is the index of

 given feature in �(x). In this case, f : R

m → R

d , i.e., it takes as

nput some x and feeds �(x) to f , which produces a prediction in

d associated with a given label.

When deploying an algorithm to learn a function f that min-

mizes the given cost function C , the designer needs to implic-

tly specify what is the space of possible functions that will be

earched over. This is typically done by representing f via a set

f so-called model parameters � = { θ1 , . . . , θm

} ∈ R

m . By assigning

ifferent numerical values for each of the m model parameters, we

btain a different function f ; for instance, f could be in the form

f (x) = θ0 + θ1 x in case of a simple linear prediction model. On the

ther hand, by using a � with a much higher number of parame-

ers (typical case in neural networks), f may become an arbitrarily

omplex, nonlinear, and thus difficult to interpret function. Prior to

sing a learning algorithm, it is common to group the features of

ll training inputs into a single matrix X ∈ R

N×m , whose i -th row

s associated with input x i and where columns store the m compo-

ents of the feature vector �(x i). In what follows we denote as X

j
i

s the j th feature value of the i th input in X .

Classical ML algorithms: Classical ML algorithms include tech-

iques such as k-nearest neighbors [41] , support vector machines

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 33

Fig. 1. Design of classical machine learning algorithms. The pipeline starts with the

collection of a training set D and a test set (not shown in the picture). Secondly,

the engineer selects the features that will be used for learning. Such features can

be regular attributes of the original dataset or more complex features generated

by some preprocessing. Often, VA techniques play a key role in helping engineers

to select relevant features. Once the features are chosen, the model is trained by

learning to make accurate predictions on training set samples. Once the training is

finished, the engineer checks the performance of the model on the test set and then

decides what to do next. If the model is not performing properly, some choices one

could take are: resume training for more epochs; modify model hyperparameters;

or select a different set of features for the training set.

[

e

t

a

n

r

t

c

a

p

�

g

t

t

f

t

F

o

a

m

w

f

s

t

t

t

f

i

w

e

i

w

f

l

d

a

c

n

a

l

l

Fig. 2. Architecture of typical DNN (training phase). Raw inputs are received by the

first layer, which produces an activation a 1 by multiplying the input vector by a

matrix of parameters followed by a (possibly non-linear) activation function. This

activation works as input to the next layer that computes its own activation a 2 . The

process continues until a prediction is outputted on the last layer of the model. As

in classical machine learning algorithms, the predicted output is compared to the

actual one and a cost error is calculated measuring how good the prediction was.

Thus, parameters in the model are updated accordingly, in order to minimize the

prediction error. As neural networks have parameters distributed among multiple

layers, a backpropagation algorithm is needed to update all layers properly. In this

algorithm, the error in deeper layers is transmitted back to shallower layers, updat-

ing the parameters of every layer in the model.

l

a

a

i

l

w

i

v

f

a

p

l

s

n

r

D

n

p

d

a

c

p

p

i

o

l

l

i

d

m

c

i

T

a

p

b

t

i
42] , decision trees [43] , logistic regression [41] , and random for-

st classifiers [44] . These methods, when computing an f func-

ion that minimizes the cost C , rely on manual specification of

 feature function � for transforming arbitrary inputs x into a

ew representation �(x) ∈ R

m (see Fig. 1). Classical ML algorithms

equire manual work by the designer in order to construct or iden-

ify meaningful features that allow the algorithm to efficiently dis-

riminate between the classes. For instance, � could take as input

n image and return another image where the magnitude of each

ixel indicates whether an edge exists in that region. Alternatively,

could be the identity function, in which case the learning al-

orithm operates not over a new feature-based representation of

he input x , but on the values of x directly. When this is done,

he step of computing features is replaced by a step of selecting

eatures—essentially, selecting a subset of the columns of X that

he designer identifies as sufficient for the learning algorithm (see

ig. 1). For instance, when classifying whether a person is a male

r female based on features corresponding to age, height, weight

nd eye color, the column corresponding to eye color may be re-

oved by the feature selection process since it is not correlated

ith gender labels. Manually constructing � and/or manually per-

orming feature selection has two advantages: (1) it may be pos-

ible to manually design features that are informative enough so

hat it becomes easy to identify a clear discrimination rule to de-

ermine whether an input belongs to a given label; and (2) features

hat have an intuitive, application-domain related meaning allow

or an effective way to understand the entire process of engineer-

ng a learning algorithm and analyzing its training process.

Deep learning: Deep learning (DL) techniques target the cases

hen assumption (1) above does not hold. In such cases, both the

xtraction of the features X

j and the construction of f are automat-

cally performed by a Deep Neural Network (DNN). A neural net-

ork is one particular form of representing a prediction function

 . It is a graph of connected neurons typically organized in L > 2

ayers. The purpose of each layer is to further transform the input

ata given to the network, automatically building new and more

bstract feature representations of it which allow for more efficient

lassification of that input. Each layer l is composed by a set of s l
eurons or units u l

i
(Fig. 2). Neurons in the first layer take as input

ll attributes �(x) of a given input data x ; neurons in subsequent

ayers (l > 1) take as input the output of all neurons of the previous

ayer. Based on these inputs, each neuron computes its output by
inearly combining them with their set of learnable parameters and

pplying some non-linear function to the result, thereby producing

n activation or output a l
i

that is passed as input to all neurons

n the next layer. The output (or activation value) of a neuron in

ayer l is given as input to neurons in layer l + 1 and is associated

ith a parameter θ ji ; in particular, θ ji is a parameter indicating the

mportance of the output or activation of the j th neuron in the pre-

ious layer l to the activation of the i th neuron in layer l + 1 . More

ormally, each neuron j in layer l computes its output/activation

l
j

as φl (
∑

i a
l−1
i

θ ji) , where θ ji is a parameter indicating the im-

ortance of the activation of the j th neuron in the previous layer

 − 1 to the activation of the i th neuron in layer l ; and φl is a

o-called activation function performed by the layer l , usually a

on-linear transformation such as tanh , a sigmoid function, or a

ectified linear function [1] . In case the function f modeled as a

NN outputs y ∈ R

d , the network’s final layer L is composed of d

eurons; when presented with some input x , the network’s label

rediction is given by a vector a L ∈ R

d of activations of each of the

 neurons in layer L .

In a DNN, besides layers of neurons as described above, it is

lso possible to create so-called convolutional layers, which are

omposed of neurons that essentially implement filters that com-

ute features based on their inputs—e.g., the set of neurons of a

articular convolutional layer could implement filters for perform-

ng edge detection when given an input image x . The advantage

f this in comparison to the approach taken by classical machine

earning algorithm is that the filters/features computed by each

ayer are automatically learned by the algorithm, thereby eliminat-

ng the need for manually designing a feature function � . When

eploying a DNN, one needs to make a set of design choices: how

any layers the network will contain; how many of those will be

onvolutional layers; which particular activation function φ to use

n each layer; and how many neurons u l will compose each layer l .

hese choices are often referred to as the architecture of the DNN

nd are encoded as a set of hyperparameters P . The choice of hy-

erparameters is typically manually decided by the DNN engineer

ased on earlier experience with similar problems. The parame-

ers � of the network, on the other hand, are learned by a train-

ng algorithm in order to minimize some cost function C . Training

34 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

Fig. 3. Visual analytics workflow for DNN workflow engineering support showing

the tasks of training analysis (TA), architecture understanding (AU), and feature un-

derstanding (FU). The workflow starts by collecting a dataset D with known labels

and splitting it into training and test set (A). The second step is to design the net-

work architecture (B), i.e., to decide how many layers the model should have, the

type and the order of such layers plus the tuning of hyperparameters. Next, the

model is trained by minimizing the prediction error on training set instances (C)

and tested by comparing predictions for test set instances with their actual labels

(D). The three tasks proposed on this survey aim to help designers in several steps

of the workflow. Architecture understanding provide more information to design

better model architectures, training analysis helps to explain what went wrong in

the training and how to fix it, and finally, feature understanding provides experts

with ways to interpret models and explain how input features were used in order

to build the prediction assigned by the model.

o

p

u

a

t

p

c

d

l

c

d

w

w

�

v

p

p

3

m

F

s

t

a

p

i

s

D

p

a

t

e
algorithms of neural networks are usually based on performing

gradient descent over the cost C with respect to parameters �

on the final layer—i.e., by updating � ← � − α∇ �C—and using

the backpropagation algorithm to propagate this gradient update to

the previous layer, recursively modifying the parameters of each

neuron according to the results computed in subsequent layers [1] .

However, computing the gradient ∇ �C requires a linear pass over

the entire training set D , which in typical DNN applications may

be very large. For this reason, one can alternatively use a so-called

mini-batch training process, which splits the dataset D into B sub-

sets of D —each one a smaller data batch compared to the entire set

D —and then computes an estimate of the true gradient based on

that reduced number of training examples. Updating the network

by processing all B batches once is referred to as an epoch . This

process is repeated for E epochs. Note that this training method-

ology introduces additional hyperparameters to the problem: the

batch size B , a learning rate α, and number of training epochs E .

These are determined by the DNN designer before training based

on their earlier experiences or heuristics.

Deep neural networks may have several kinds of architectures,

each with their own type of neurons performing a different set

of operations. In this paper, we focus on three architectures that

have been very popular in deep learning applications in recent

years: Deep Feedforward Networks (DFNs); Convolutional Neural Net-

works (CNNs); and Recurrent Neural Networks (RNNs). For the pur-

pose of this paper, it is important to differentiate between these

three architectures because the distinctiveness of their neurons

brings different challenges when performing the tasks we propose

in our taxonomy. As it follows, we introduce in more details the

definition of these three architectures.

Deep Feedforward Networks: The most traditional deep learning

models are deep feedforward networks (DFNs), also called mul-

tilayer perceptrons (MLPs). As in other supervised learning ap-

proaches, the objective of a DFN is to approximate an unknown

function f that can efficiently reproduce the relationship between

inputs and outputs of a training set. What distinguishes DFNs from

other machine learning techniques is that they are composed of

multiple layers, each with multiple neurons. This hugely increases

the number of learnable parameters the network has (parameters

�, Fig. 2) and allows it to model functions that are much more

complex than those encoded with only a few parameters. In a DFN,

layers are fully connected, which means that the i th neuron in

layer l , u l
i
, receives as input a vector a l−1 containing the activations

of all neurons in the previous layer l − 1 . The final layer L can have

a single neuron—thus, the network produces a single output, used

e.g., for one-class classification—or multiple neurons, used for dis-

criminative classification goals or multidimensional outputs.

Convolutional Neural Networks: In recent years, many appli-

cations in image classification and pattern recognition achieved

state-of-the-art performance through the usage of Convolutional

Neural Networks (CNNs) [45] . CNNs specialize standard DFNs as

they use convolution operations in at least one of their layers.

The objective of these operations is to find (small-scale) patterns

in the input and send this information to subsequent layers codi-

fied via their output activations. The following layers, in turn, look

for more complex patterns, thereby creating a chain of pattern de-

tections that, when trained well, can achieve close-to-human per-

formance in image-related applications. Convolutional layers are

usually composed of three stages: multiple convolutional opera-

tions; a nonlinear function; and a pooling function that changes

the current output value of a layer by aggregating some statistics

computed on neighboring outputs [1] . However, the convolutional

operation performed by CNNs also bring some challenges to their

analysis. A single parameter in a convolutional unit acts over every

region of the input domain, meaning that small modifications of

the parameters of a convolutional unit may affect all the domain
f the output activation. Additionally, convolutional units usually

roduce multidimensional activation outputs, differently from DFN

nits, that usually produce a single scalar as activations [10] .

Recurrent neural networks: Although DFNs and CNNs have

chieved impressive results in classification and recognition tasks,

hey are not suitable for applications where inputs have a tem-

oral or sequential relationship, such as word prediction or ma-

hine translation. Recurrent neural networks (RNNs), a different

eep learning model, were proposed to handle this type of prob-

em [46] . RNNs are intrinsically different from DFNs and CNNs be-

ause their neurons store a different kind of information called hid-

en states . Hidden states have internal values that are combined

ith the traditional learnable parameters � of neural networks

hen computing output activations. In contrast to the parameters

, which are frozen after training, the hidden states modify their

alues each time a new input is processed. This way, the same in-

ut instance can, and likely will, generate a different output if the

revious inputs in the temporal sequence were different.

. Deep learning engineering: workflow and tasks

The process of developing a deep learning model comprises

ultiple phases. A typical workflow proceeds as follows (Fig. 3).

irst, given a dataset D consisting of labeled samples (x , y), the de-

igner splits D into two disjoint subsets: the training set D train and

he test set D test (Fig. 3 A). Such approach is necessary because ML

lgorithms—particularly those containing a very high number of

arameters �, as is the case of DNNs—can easily overfit the train-

ng data—i.e., they learn to make good predictions for the training

et but fail to generalize well to novel inputs, such as the ones in

 test . By testing the performance of the network on a set of com-

letely new inputs, one can check whether the model can gener-

lize its predictions to novel data samples that were not in the

raining set. This selection should be done carefully. Otherwise,

ven powerful learning algorithms may not perform as desired [1] .

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 35

S

o

h

t

n

o

A

s

o

c

g

s

p

(

c

a

p

c

h

t

w

t

F

q

T

i

A

q

t

e

t

w

a

o

s

m

t

a

s

a

a

p

p

a

c

[

t

h

f

w

t

4

t

a

u

a

g

l

e

t

e

m

c

i

u

l

fi

h

c

t

D

t

m

o

t

m

p

t

s

c

s

d

p

w

r

w

t

c

i

o

c

t

t

D

fl

i
electing a good training set is not trivial, even if one takes care

f issues such as class-label balancing. For instance, it is not clear

ow well the samples in D train capture the variability of the en-

ire data domain, i.e., how well D train helps to learn all information

eeded to generalize the task at hand to unseen inputs. The sec-

nd step in the development workflow is to design a DNN (Fig. 3 B).

s outlined in Section 2 , this means choosing an architecture and

uitable hyperparameters. Both operations are done largely based

n similar designs from the past or heuristics. Yet, it is far from

lear how suitable such design choices will be in practice for a

iven problem. The third step (Fig. 3 C) consists of training the de-

igned DNN, following the process detailed in Fig. 2 . Finally, the

erformance of the trained model is measured on the test set D test

 Fig. 3 D). This is done using aggregated error metrics such as ac-

uracy, precision, recall, or area under the received operator char-

cteristic curve (AUROC) [47,48] . Alternative schemes involve com-

uting the confusion matrix [49] (for classification tasks), which

alculates the number of correct predictions for each class and

ow many times a particular label was mistaken by each one of

he alternative labels. This approach is useful for simple models

ith only a few class choices, but confusion matrices become hard

o inspect and visualize for tens or thousands of classes.

If testing delivers satisfactory performance, the workflow in

ig. 3 can be finalized. When this is not the case, the key

uestion is: what can the designer do to improve performance?

his involves feedback loops at several workflow levels, each one

nvolving a specific task as defined in the Contributions section.

dditionally, even models performing successfully bring important

uestions. Often experts want to understand what kind of features

he model learned to recognize or understand how the model op-

rates over an input in order to predict its labels. These are addi-

ional tasks that we address in this paper. Note that the tasks that

e propose to tackle follow the terminology proposed by Brehmer

nd Munzner [50] , in which they define an arbitrary task as a set

f both high-level and low-level, domain-specific (but also data-

pecific) activities that may be involved in answering the afore-

entioned question at a specific workflow level. The particular

asks that we consider in this paper are the following:

1. Architecture Understanding (AU): it is important to be able to

analyze how the network architecture affects its performance

to determine how a given model (which may be performing

poorly) might be updated. To do so, one needs to understand

how the network works so they can determine which aspects

of the network to modify and when;

2. Training Analysis (TA): one needs to understand why training

did not perform as expected; otherwise one does not know

what to change next when trying to improve network perfor-

mance. Based on insights from TA, one can modify the design

of the network, e.g., change its number of layers, neurons per

layer, activation functions, inter-layer connections, or hyperpa-

rameters;

3. Feature Understanding (FU): at the highest level, one needs to

understand which aspects of the input data (samples and/or

features) affect the quality of the learning process. By doing

this, a designer may choose to, e.g., increase the number of con-

volutional layers in a DNN so that more powerful feature sets

can be discovered. Additionally, before applying a deep learning

solution in a practical application, it is desirable to understand

exactly what the model is doing, i.e., which features in the in-

put the model takes into account when deciding the output la-

bel and how the model operates on these features in order to

calculate such result. Without this understanding, it is difficult

to ensure the model is working as desired and users may hesi-
tate in apply it in practice. e
Note that unless suitable support is provided for the TA, AU,

nd FU tasks, designing an effective DNN is very much a ‘blind

earch’ process, which requires many costly iterations, either in an

utomated form (e.g., hyperparameter grid search) or done manu-

lly [10] , by empirically choosing the model architecture and hy-

erparameter based on the developer expertise. These tasks can

rofit from visualization and visual analytics methods in several

spects [32,34] . For instance, visual tools prove to be an effi-

ient way to understand which features a deep model has learned

51] and which particular neurons are responsible for computing

hose features [52] . In Section 4 , we introduce visual analytics and

ow it can help deep learning engineering, while in Section 5 , we

urther explain the visual analytics role in terms of the taxonomy

e propose and how recent techniques have been tackling varia-

ions of the tasks above.

. Visual analytics of deep learning networks

Visual analytics (VA) has emerged as an extension of informa-

ion visualization (infovis) having as aim the analytical reasoning

bout problems described by large, complex, and abstract datasets

sing interactive visual interfaces [53–55] . While infovis (usually)

ims at visually depicting a dataset with the aims of potentially

aining some insights, VA covers the more involved tasks of formu-

ating, refining, and (in)validating hypotheses about the phenom-

na that lay behind the data at hand. As such, VA techniques and

ools propose a so-called ‘sensemaking loop’ in which designers

xplore the data from multiple perspectives, posing increasingly

ore targeted questions [56] . Hence, the ability to interactively

hange visualizations and pose complex on-the-fly defined queries

s key to VA. Important VA techniques target problems related to

nderstanding high-dimensional datasets represented by features

ike X

j introduced in Section 2 . VA has proven effective in many

elds such as software maintenance, health science, e-government,

omeland security, and social sciences [57,58] .

In the last years, VA has increasingly focused on supporting ma-

hine learning applications [59] . VA integrates with ML and DL in

erms of proposing specific types of sensemaking loops for specific

L tasks. Note that the deep learning tasks (AU, TA, and FU) are

ypically executed several times during the iteration of the sense-

aking loop (Fig. 3), as typical in VA workflows. At each iteration,

ne obtains additional insights and either change the DNN settings

o improve it, or digs deeper into querying the available data to

ake a decision. Separately, visual tools and techniques that sup-

ort the three tasks are not disjoint. For instance, to understand

raining results (TA), one can use a network visualization (AU) that

hows the roles of neurons in different layers in computing specific

lass labels.

Visualization of DNNs has caught the attention of the re-

earch community for many years. Pioneering work in this field

ates back to the beginning of the century. Streeter et al. pro-

osed a technique called NVIS [60] , where an artificial neural net-

ork is represented as a matrix heatmap that encodes the pa-

ameters of all neurons u l
i

over all layers 1 ≤ l ≤ L . Another early

ork, Tzeng and Ma [61] propose a node-link graph visualiza-

ion to show a network’s architecture, coloring each neuron ac-

ording to the strength of its activation a l
i

for a given selected

nput. While effective for depicting the structure and operation

f small networks, such methods do not effectively scale to treat

urrent-day DNNs that have millions of parameters and connec-

ions. Following these early developments, several new visualiza-

ion techniques have been proposed to tackle open challenges in

L. By analysing such techniques and relating them to the work-

ow tasks described in Section 3 , we built a taxonomy classify-

ng existing VA approaches for DL in three tasks–AU, TA, FU—,

xplaining how they tackle such tasks and their respective goals.

36 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

t

l

i

F

l

l

w

f

p

c

b

F

t

b

s

l

r

H

e

s

m

5

o

w

t

t

s

o

o

t

o

t

q

h

o

t

s

o

l

i

a

b

a

t

p

v

i

n

t

s

o

p

m

t

i

i

a

t

t

i

We also discuss how those techniques tackle particular prob-

lems for the three more common deep learning architectures—

DFNs, CNNs, RNNs. As follows, we present this taxonomy in

Section 5

5. A Taxonomy on visual analytics for deep learning

In this section, we present a taxonomy on how VA techniques

have been applied to support the proposed tasks (AU, TA, FU) for

the three main DL architectures. We first discuss the methodology

used to create this taxonomy, followed by sections where we de-

tail the goals and sub-tasks on each task. We also describe how

recent publications have been using VA to tackle them and how

such techniques are applied to different network types.

5.1. Methodology

Deep learning visualization is a relatively new topic that has

caught the attention of researchers from both machine learning

and visual analytics communities over the past few years. There-

fore, publications in this area are widely spread over proceedings

and journals of different domains, imposing a need for a strong

methodology when selecting papers for a survey like this one. To

ensure that we were able to find all of the most relevant publica-

tions in the area, we searched for contributions in proceedings and

journals of several areas, such as machine learning, visual analyt-

ics and computer vision. Particularly, we focused on well-regarded

proceedings in the mentioned areas such as IEEE VAST, IEEE In-

foVis, EuroVis, IEEE Transactions on Visualization and Computer

Graphics, ICML, NIPS, ACM SIGKDD, ICCV, and CVPR. In particu-

lar, about a quarter of the papers presented at IEEE VAST 2017 fo-

cused on visual analytics for deep learning. As the interest in deep

learning visualization is recent, we decided to focus on publica-

tions released from 2010 onwards, although we mention some ear-

lier works that have historical importance in the field [51,60] . From

all the set of publications retrieved on the mentioned proceedings,

we filtered the ones mentioning, in their title or abstract, the de-

ployment of visualization methods to understand or analyze neu-

ral network models or features. We also searched for papers with

keywords such as model and neural network visualization on on-

line platforms like arXiv and Google Scholar. Finally, we searched

through the references of all the filtered publications to find other

relevant papers.

From the set of collected papers, we identified how VA tech-

niques have been applied to support the AU, TA, and FU tasks

for three of the most popular deep learning architectures in the

literature: deep feedforward networks (DFNs), convolutional neural

networks (CNNs), and recurrent neural networks (RNNs). Table 1

provides an overview of the papers we surveyed and their respec-

tively addressed tasks and network architectures. For complete-

ness, we mention that other DL architectures exist, e.g., Autoen-

coders [62] , Generative Adversarial Networks (GANs) [63] , Deep Belief

Networks (DBNs) [64] , and Deep Q-Networks (DQNs) [65] architec-

tures. For a recent overview of such architectures, we refer to Gib-

son and Patterson [66] . We did not include such architectures in

our survey as we did not find enough papers proposing visualiza-

tion techniques addressing their particular problems [67,68] . That

said, it is worth to note that these architectures face many chal-

lenges similar to the ones addressed in this survey, making the

techniques reviewed here also relevant for the analysis of them.

It is also important to note that complex applications may require

the use of networks combining elements of two or more type of

models—e.g., a network containing both convolutional and recur-

rent layers. In such cases, VA tools must be adapted to tackle the

needs of all the network’s components.
Furthermore, we note that these tasks do not exhaustively cover

he applications of VA in deep learning engineering. Visual ana-

ytics can (or could) be employed in other tasks, such as train-

ng data analysis, performance analysis, and model comparison.

or training data analysis , visualizations can help identifying the

ack of necessary features or bias in a training set. However, the

iterature still shows a lack of approaches addressing this problem,

hich makes it an interesting topic for future research. For per-

ormance analysis , VA can provide powerful tools to analyze the

erformance of deep models by providing ways to compare the

onfusion between multiple classes [69] or to depict the distri-

ution of an output value over the set of input features [70] .

or model comparison , VA can answer why a model performs bet-

er than another [71] . This also brings difficult challenges, mainly

ecause it is hard to compare models that do not share the

ame structure (for instance, number of layers and neurons per

ayer) since such models end up having completely distinct pa-

ameters, which make them recognize features in different ways.

owever, comparing networks with similar structure but differ-

nt hyperparameters [71–73] can be an effective way to under-

tand how the hyperparameters affect the final performance of the

odel.

.2. Architecture understanding

As explained in Section 2 , modern DNNs may have hundreds

f layers and hundreds of thousands of neurons. When using such

ide and deep models, it is easy to lose track of all the aspects of

heir architectures or which computations they do at each unit of

he model. Thus, visual analytics can play a key role in helping de-

igners have a better insight into the characteristics and behavior

f their models during the development pipeline. The main goal

f visualizing information related to the architecture of a DNN is

o give a good understanding of both high and low-level aspects

f the model [75] . At a very high level, performing the architec-

ure visualization , i.e., showing the network topology (as a graph)

uickly tells designers the overall structure of the network, e.g.,

ow many layers L it has, how their sizes s i vary, and which kind of

peration they perform. This helps to understand a DNN much in

he same way that architectural diagrams reverse-engineered from

ource code help software maintenance [103] .

At finer levels, visualizing the connections between neurons

n consecutive layers—encoded as the parameters �l of a given

ayer l —may help understanding how simple features get merged

nto more abstract ones in the classification process [10] . Addition-

lly, one can visualize the combination of DNN structure-and-data,

y annotating the DNN graph with parameter vectors, activations,

nd training statistics. This helps in understanding how struc-

ure correlates with behavior [10,71] . Showing this helps to find

ossible inefficiencies of the model, such as neurons who are acti-

ating for too many classes and thus are not relevantly contribut-

ng to the final prediction [80] , inert units, or redundant compo-

ents that recognize the same features [52] . In other words, such

echniques aim to provide an architecture validation of the model.

Another way to understand the impact of architecture choices

uch as hyperparameter tuning is to perform model comparison

f two or more networks. Achieving a clear insight on how hyper-

arameters affect statistical models is not trivial and the VA com-

unity has devoted a whole field of study, called Visual Parame-

er Space Analysis (VPSA), for this topic [73] . However, this analysis

s particularly difficult for deep neural networks, as they have an

nsane number of parameters that significantly grows with each

dded layer. Researchers in the VA community have been tackling

his problem by comparing similar models with different architec-

ural choices, in order to achieve better insight in what differences

n the final performance these choices had [72] .

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 37

Table 1

Taxonomy of VA-related publications related to different DNN architectures and engineering tasks. Tasks are further refined as follows: Archi-

tecture Understanding: architecture visualization (AVis), architecture validation (AVal) and model comparison (MC); Training Analysis: real-

time analysis (RTA) and evolution of model metrics (EMM); and finally Feature Understanding: model interpretability (MI), feature explain-

ability (FE) and performance validation (PV).

Taxonomy

Technique Tasks Networks

Architecture understanding Training analysis Feature understanding DFN CNN RNN

Zeiler and Fergus, 2014 [6] FE •
CNNVis, 2017 [10] AVis and AVal FE • •
Samek et al., 2017 [12] FE • •
Montavon et al., 2018 [28] FE • •
FeatureVis, 2016 [33] FE •
Erhan et al., 2009 [51] MI •
Rauber et al., 2017 [52] EMM MI •
Zahavy et al., 2016 [67] MI • •
DGMTracker, 2018 [68] AVis and AVal EMM FE • • •
RNNVis, 2017 [71] MI and FE •
CNNComparator, 2017 [72] AVal and MC • • •
Activis, 2018 [74] AVis FE • •
TensorFlow GraphVis., 2018 [75] AVis • •
TensorFlow Playground, 2017 [76] AVis and AVal RTA MI •
ReVACNN, 2016 [77] AVis RTA FE • •
Harley, 2015 [78] AVis FE • •
BIDViz, 2017 [79] RTA and EMM

• • •
DeepEyes, 2018 [80] AVal MI and FE • •
Deep View, 2017 [81] AVal EMM FE • •
Grad-CAM, 2016 [82] FE •
RNNbow, 2017 [83] EMM

•
Yosinski et al., 2015 [84] MI and FE •
Alsallakh et al., 2018 [85] MI • • •
Nguyen et al., 2016–1 [86] MI •
Nguyen et al., 2016–2 [87] MI •
Aubry and Russell, 2015 [88] MI •
Simonyan et al., 2013 [89] MI and FE •
Wei et al., 2015 [90] MI and FE •
Mahendran and Vedaldi, 2015 [91] FE •
Mahendran and Vedaldi, 2016 [92] FE •
Zintgraf et al., 2016 [93] FE •
Dosovitskiy and Brox, 2016 [94] FE •
Zintgraf et al., 2017 [95] FE •
Heyi Li et al., 2017 [96] FE •
VisualBackProp, 2016 [97] FE •
LSTMVis, 2018 [98] MI and FE •
Jiwei Li et al., 2015 [99] MI and FE •
LAMVI, 2016 [100] FE •
Ding et al., 2017 [101] FE •
Karpathy et al., 2015 [102] FE •

5

g

s

s

i

h

v

w

t

t

t

m

t

t

i

n

s

t

r

t

i

s

f

a

i

s

u

i

s

A

m

a

t

[

o

e

d

s

o

p

t
.2.1. Architecture visualization

Deep learning architectures are essentially directed acyclic

raphs (DAGs) where nodes represent neurons and edges repre-

ent connections between subsequent layers [10] . For this rea-

on, graph visualization has been a straightforward way to visual-

ze the architecture of deep models [10,74–77] . Such visualizations

elp deep learning engineers in multiple ways. First, they pro-

ide an overview of the operations that the model is performing

hen an input flows through the network [74] . As a refinement to

his, showing what the network does in different layers and parts

hereof helps the engineer understand whether the chosen archi-

ecture is appropriate and, if not, where it should be adapted or

odified [75] .

For such a graph visualization to be effective, it is not enough

o depict only the connections between neurons, as this informa-

ion is typically already known by the architect and is the same

n all layers (i.e., drawing the individual neuron connections with

o associated value does not bring additional insights). Graph vi-

ualizations become effective when they show additional data on

he activity of the neurons. One way to do this is to show the neu-

on parameters, e.g., by color coding. However, parameters are hard

o interpret, particularly in deeper layers. A more insightful design
s to show neuron activations for specific inputs [10] . For this rea-

on, many existing works show the activation vectors a l produced

or one or more inputs via color-coded matrices or vectors [10,68] .

As DNNs become deeper and wider to tackle more complex

pplications, scalability becomes an important issue for visualiz-

ng the network’s graph structure. One solution for this is to vi-

ually cluster neurons having similar activations [10] and next

se edge bundling to visually group connections linking neurons

n the same clusters [10,75] . By clustering groups of neurons with

imilar activations, architecture visualization can be made clearer.

lso, this approach can highlight large groups of neurons that

ay be involved in correctly predicting a particular label, as well

s to highlight classes that are not being sufficiently learned by

he model (e.g., few neurons respond to inputs of that class)

10] . Edge bundling has proven very effective to trade clutter for

verdraw when creating simplified views of graphs of millions of

dges [104,105] and hence it has the required scalability for han-

ling very large DNNs. Another approach proposed to improve the

calability of graph visualizations is the omission of non-critical

perations (e.g., pooling layers, which implement a type of pre-

rocessing on the outputs of a given layer using fixed operations

hat are not updated by the training process, and thus sometimes

38 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

Fig. 4. CNNVis Tool [10] : the structure of the network is shown as a directed acyclic graph (DAG), where adjacent layers are grouped (A) and neurons within a layer are

clustered by the activation vectors they produce (B), allowing the identification of groups of neurons that learned to recognize similar features (E).

l

d

5

c

c

l

M

g

w

t

m

w

w

t

w

b

i

c

v

a

y

l

u

l

a

A

l

t

v

s

s

a

w

a
may be omitted in a visual analysis). Finally, to improve scalability,

it is also possible to highlight particular network regions with sim-

ilar properties—e.g., parts of a DNN with similar parameters and

activations [75] . Graph visualizations are strongly aided by interac-

tivity which can help designers focus on and explore in more detail

particular parts of the model they deem more interesting [75] .

5.2.2. Architecture validation

Architecture validation is a sub-task of AU where the focus is

to validate if the chosen architecture (i.e., number, order, type, and

size of layers) is the correct one. This sub-task is tightly corre-

lated to the previous one, as visualizing the network graph with

the display of information such as activation output for each neu-

ron can be effective in helping to find underperforming compo-

nents in the model [10] . Visualizing the graph structure is not

the only way to analyze the architecture of a DNN though. Other

kinds of visualizations can also be helpful in giving insights if the

chosen architecture is the right one, without explicitly visualiz-

ing the model’s graph workflow. For instance, several authors used

heatmaps to identify layers and neurons that are not being used

for the model, either because they are not producing significant

high activations for any kind of input—and thus can be dropped

from the architecture—or because they are activating too often for

too different inputs—what may indicate the need for more units

[10,68,74,80] .

5.2.3. Model comparison

Additionally, another sub-task worth mentioning is model com-

parison . In many contexts, it would be useful for experts to com-

pare different models to understand, for instance, why one per-

forms better than the other in a given application or dataset. This

is particularly useful when comparing two models with same ar-

chitecture but different hyperparameters—thus getting more in-

sight in the role the hyperparameter played in the learning

process—or in two models with same architecture and hyperpa-

rameters but trained until different epochs—enabling to analyze

how much the model learned between both epochs. In CNNCom-

parator [72] , the authors do that by comparing the difference in
earnable parameters after training using heatmaps and histograms

isplaying the difference between learned parameters.

.2.4. Architecture understanding on different models

Deep feedforward networks: DFNs are composed only by fully-

onnected layers where each neuron in a particular layer l re-

eives as input the output activation of all neurons in the previous

ayer l − 1 and the output activation of a neuron is a scalar value.

ost VA techniques aiming to analyze the architecture of DFNs use

raph visualization to display the architecture structure combined

ith heatmaps and color encodings to represent associated activa-

ion values, either on the edges [76,77] or on the nodes [68,78] . In

ost heatmaps, rows represent different input instances or classes

hile columns represent the many neurons in a layer [10,74] . This

ay, the analyst can have a good understanding of how the archi-

ecture is working, i.e., how it is performing the class prediction

hen an input is processed.

Convolutional Neural Networks: Just as DFNs, CNNs can also

e seen as directed acyclic graphs. However, CNNs have what

t is called convolutional layers . In such layers, neurons perform

onvolutional operations in the input data received from the pre-

ious layer. This brings some differences for the analysis of the

rchitecture of a CNN if compared to DFNs. First of all, the anal-

sis must take into account that a single parameter in a convo-

utional neuron is applied to not only one but several input val-

es. For instance, if an input image is sent to a convolutional

ayer, a given parameter in the layer will operate all over the im-

ge values, and not in just a single pixel as it happens in DFNs.

dditionally, visualizing the activation of CNNs layers is more chal-

enging as each unit produces a multidimensional output activa-

ion, and not a single value as DFNs do—e.g., each unit in the con-

olutional layer will produce an activation map with similar dimen-

ions as the input, while DFN units produce a single unidimen-

ional value. Such particularities must be taken into account when

nalyzing the architecture of CNN models. This is particularly true

hen visualizing activation heatmaps. As now neuron activations

re not scalar values but multidimensional vectors, such heatmaps

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 39

Fig. 5. RNNbow Tool [83] uses stacked bar charts to visualize how the gradient loss progresses through the hidden states of a recurrent neural network. On the top (1),

the designer can compare predicted labels with actual ones. The top bars measure the gradient magnitude used to update parameters at each timestep (2). The bars are

decomposed according to the source of each fraction of the whole gradient magnitude (3). On the bottom, the designer can interactively choose which training batch should

be displayed in the visualization (4).

a

s

t

n

u

o

p

n

i

t

t

a

e

c

o

t

a

c

n

[

a

i

a

p

t

b

W

b

d

p

a

s

o

t

5

l

m

w

t

i

v

a

V

s

s

d

n

n

fi

t

i

i

a

a

u

a

c

e

s

d

[

t

m

l

i

d

n

o

s

g

d

i

r

p

l

t

p

s

t
re not so straightforward to be produced. Nonetheless, graph vi-

ualization still is a natural way to visualize CNNs [10,68,77,78] . A

ypical approach when visualising convolutional layers is to use the

odes of the graph to display either the convolutional filter of the

nit (i.e., the unit parameters in the exact order they are applied

n the input [72] , the activation map produced by a particular in-

ut [68,77,78] , or inputs that produce strong activations on that

euron [10] . Fig. 4 shows an example of CNN architecture visual-

zation [10] . Here, neurons with similar activations are clustered

ogether, and only the features that produce the strongest activa-

ions on them are displayed, to limit visual clutter.

Recurrent Neural Networks: The visualization of the structure of

 RNN is a difficult and, to the best of our knowledge, still un-

xplored topic. One of the issues to overcome when building ar-

hitectural visualizations for RNNs is the large number of possible

utput formats they can have. In some applications, such as sen-

iment analysis, the RNN processes the whole sequence of inputs

nd then returns a single output [106] . However, in other appli-

ations such as machine translation, the network must output a

ew value at each element of the input stream that is processed

107] . Other variations, usually used for sequence prediction tasks,

im to predict an output equal to the following elements of the

nput stream every time an input unit is processed [1] . Addition-

lly, RNNs have a recursive structure in which input elements are

rocessed in a sequential manner. When one element is processed,

he hidden state of the unit is modified and this can, and proba-

ly will modify the behavior of the unit for future input elements.

hen visualizing the architecture of RNN models, analysts should

e aware of this particularities, as understanding the how the hid-

en state is being affected by input and how it is affecting the out-

uts is as important as understanding the structure of parameters

pplied on inputs and output activations. All in all, visualizations

upporting architecture understanding for RNNs are weakly devel-

ped and, given the complexity of these architectures, we consider

his a promising future research topic.

.3. Training analysis

The training of a deep model is a hidden process that gives

ittle to no insight to the designer about what is happening. If a

odel is not performing well, it is very hard for experts to identify

hat should be changed in the hyperparameters or even whether
here is a problem in the training process at all. As understand-

ng the training process is still an open challenge in deep learning,

isual analytics can play a powerful role in addressing it. By visu-

lizing the evolution of model metrics during the training process,

A techniques can help to understand how the model achieved

ome performance and to identify undesirable behaviors. For in-

tance, visualizing metrics about gradient values can help to un-

erstand how the updating process is changing the parameters of

eurons and hidden units [80,83] , allowing the designer to find out

etwork parts that are not stabilizing or that are not being suf-

ciently changed by backpropagation. Additionally, analyzing how

he neurons’ parameters and activations change through the train-

ng epochs are key to comprehend how the DNN evolved and how

t learned to recognize the relevant features for the relevant task

t hand [52] . Training metrics are not restricted to gradient and

ctivation evolution, though. Recent works have shown that several

ser-defined metrics can be effective in giving insight about what

nd how the network is learning [79,81] . Visual analytics also un-

overs new possibilities for training DNNs, as it can help design-

rs to analyze the training process in real-time, allowing the de-

igner to make assumptions about the model, and take corrective

ecisions, without having to wait for the entire training to finish

10,79] .

As with most machine learning techniques, neural networks are

rained via gradient-based methods, such as gradient descent, that

inimize a cost function C (see Sec. 2). Since DFNs have multiple

ayers, the traditional gradient-based method used (as described

n earlier sections) is the backpropagation algorithm, which up-

ates all parameters in the network, starting from the ones in fi-

al layer and moving towards shallower layers of the network, in

rder to minimize the prediction error for inputs in the training

et [1] . Two common problems that can occur during backpropa-

ation process are the vanishing gradient and the exploding gra-

ient [108] problem. In the former, the gradient becomes insignif-

cantly small very quickly, making the training process unable to

elevantly change the parameters of layers far away from the out-

ut layer. In the latter case, the gradient keeps an exaggeratedly

arge value for many layers, changing the parameters � so dras-

ically that the model never stabilizes. To understand this type of

henomena related to the gradient flow, Cashman et al. propose a

tacked bar chart visualization (Fig. 5). Each stacked bar represents

he magnitude of the gradient that produced the model’s parame-

40 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

Fig. 6. TensorFlow Playground tool [76] showing jointly the structure and activa-

tions of a simple DFN, and allowing interactive control and monitoring of the train-

ing.

i

[

m

t

p

t

m

i

t

i

t

w

o

5

i

e

e

b

t

a

s

v

j

L

s

s

s

p

s

c

p

t

d

r

(

(

c

b

s

o

c

t

t

t

a

t

o

c

w

t

d

h

t

L

p

l

i

d

l

c

a

s

ter update at a single time step. Each partition of a bar represents

how far in time each part of the gradient came from. Using this

visualization, the authors were able to effectively identify cases of

vanishing gradients, where large gradient partitions in one stack

bar quickly become very narrow partitions in the next time steps.

5.3.1. Visualization of model metric evolution

In this sub-task, the expert analyses how a particular metric

evolves over the training of the network. Such metrics are user-

defined and can contain information helping to understand, for in-

stance, if the gradient updating is being performed as expected

[83] , if the model is improving its performance [81] or if partic-

ular units or layers are indeed converging to some learning [80] .

The most traditional metric to visualize when analyzing the train-

ing process of ML models is to the accuracy of the model predic-

tions for the training or test set through the training epochs. While

this gives a good intuition on how accuracy changes with training,

it does not provide insights on how to improve it apart from more

training. For instance, information about how the parameters are

being updated on individual layers or neurons along the training

is not provided. Qi et al. [79] alleviate this by allowing designers

to define and plot their own metrics in real-time, allowing a more

effective guiding of the training process. As the learning is not uni-

form in all layers, developers may want to identify layers or neu-

rons that are not being well trained. To support this, Pezzotti et al.

[80] propose so-called perplexity histograms, a visual technique to

find stable layers, i.e., the ones that already stopped receiving rel-

evant parameter updates. By visualizing the progress of individual

layers during training, this helps to identify if a given layer’s pa-

rameters converge to a good solution or if the layer is not learning

to recognize any useful patterns in the input data. An alternative

approach, proposed by Zhong et al. [81] , uses heatmaps to depict

how neurons parameters and activations change over the train-

ing process. For this, they propose two metrics: discriminability—

measuring how different is the average activation produced in a

layer by elements of a particular class from elements of any other

class—; and density— which evaluates the quantity of higher acti-

vations a particular neuron produces.

5.3.2. Real-time analysis

Training of complex deep learning models can take up to days

or weeks to be completed. For this reason, designers can not al-

ways afford to wait until it is done to analyze the behavior and

features learned of the model. The ability to perform real-time

analysis while training deep models is essential and VA can play

a key role in providing it to experts. Indeed, many of the sur-

veyed VA solutions have as a goal to provide model information
n real-time, even in an interactive way [77] . For instance. Qi et al.

79] propose a system where model designers can codify and plot

odel information in real-time and thus make modifications in

he model as needed. TensorFlow playground [76] (Fig. 6), a very

opular online solution aimed to teach DL concepts, uses a real-

ime and interactive visualization to let designers analyze how the

any components of the network learn to divide the input space

n a way the model performance is optimized. Is important to note

hat real-time analysis can be related to any information regard-

ng the model—e.g., architecture, performance metrics, learned fea-

ures. Thus, basically, any other task or sub-task could be combined

ith a real-time analysis in order to make the engineering pipeline

f DL models faster and most effective.

.3.3. Training analysis on different models

Deep feedforward networks: Most methods to visualize the train-

ng process of DFNs focus on displaying how a particular metric

volves over time by a given layer or neuron. Focusing on a single

lement of the model rather than in the whole network is effective

ecause then the designer can get more information about where

he model is underperforming and how to modify it. One recent

pproach aiming at this is proposed by Rauber et al. [52] . For each

ample x i ∈ D train in the training set, they consider the activation

ector a (x i)
L −1 of the last hidden layer. Next, these vectors are pro-

ected from R

s L −1 (where s L −1 is the number of neurons in layer

 − 1) to R

2 using standard dimensionality reduction (DR) methods

uch as t-SNE [109] , yielding a 2D scatterplot of points p i , one per

ample x i . Key to DR methods is their ability to place points with

imilar high-dimensional vectors close to each other in 2D, and

oints with dissimilar vectors far apart in 2D, respectively—thus

howing how similar are the high-dimensional vectors. This pro-

ess is repeated for all training epochs, yielding a 2D trajectory of

oints per sample x i . These trajectories are then colored according

o the classes y i of the corresponding training samples, and bun-

led to yield a simplified, though suggestive, view of how the neu-

ons of the last hidden layer get increasingly more class-specialized

farther apart in the 2D projection) as training progresses. Fig. 7

middle) shows an example hereof. The same type of visualization

an be used to show how the network layers learn to discriminate

etween the different classes (Fig. 7 (right)). Here, each trail repre-

ents the projection of activations of all hidden layers 2 , . . . , L − 1

f a test sample x i , after training. As in the previous image, one

an see how same-class images yield increasingly more similar ac-

ivations as the data flows deeper through the network.

Convolutional neural networks: The training process of a CNN is

ypically done via backpropagation, in a very similar way to the

raining of DFNs. As such, most of the visual approaches used to

nalyze the training of DFNs can also be used on CNNs. However,

he differences between convolutional neurons and fully-connected

nes have an impact on the training process analysis. For instance,

onvolutional neurons usually output high-dimensional activations,

hich forbids temporal visualizations displaying how the activa-

ion of multiple inputs evolve over time [81] . Visualizing high-

imensional datasets that evolve through time is a topic that

as been intensively researched by the VA community and cer-

ainly can bring improvements to training process analysis [110] .

iu et al. [68] propose a specific visualization for CNN training—

articularly for generative models—that displays how features are

earned through the training process by plotting line charts show-

ng various designer-selected statistics of interest (activations, gra-

ients or parameter updates) over time. If the designer spots a

ayer with an interesting or abnormal behavior—such as an abrupt

hange of many activations in a single epoch—they can explore the

ctivations of that layer’s neurons in more details and visualize the

ubsets of input data that lead to such activations.

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 41

Fig. 7. By projecting activation vectors onto a bidimensional space, Rauber et al. [52] are able to explore the learned features (left), how they evolve over the training epochs

(middle), and how they are identified by different layers (right).

t

t

r

t

p

i

l

e

s

C

v

d

l

p

e

t

l

p

5

d

m

t

t

t

l

t

e

(

i

l

t

(

t

f

n

p

i

d

o

c

t

m

s

i

d

i

i

v

[

w

i

n

o

d

n

(

t

U

t

t

a

t

fl

f

i

(

i

[

p

b

i

v

n

a

s

a

t

o

c

l

t

a

F

a
Recurrent neural networks: The training process of RNNs is par-

icularly delicate if compared to the two previous architectures. Al-

hough such networks are also trained via backpropagation, their

ecursive structure makes them much more prone to suffer from

he vanishing gradient problem. This happens because, in the back-

ropagation algorithm, parameters are updated every time a new

nput element is processed by the network. However, RNNs must

earn to recognize patterns in long sequences of inputs, and the

rror propagated by the backpropagation algorithm might not be

trong enough to update the parameters in a proper manner.

ashman et al. [83] tackled this problem with a stacked bar chart

isualization aiming at understanding the so-called gradient flow

uring the training process. Specifically, they address the prob-

em of how gradient values change during the backpropagation

hase of training. Additionally, understanding how these param-

ters change throughout the process helps by providing insights

o the designer regarding how new training examples modify the

earned model; this, in turn, may help in determining how to im-

rove the model hyperparameters, if necessary.

.4. Feature understanding

Although a neural network may be performing well on unseen

ata, it is not always clear when and why this happens. Hence, the

achine learning community has put much effort in approaches

o figure out which features the input data must have in order

o produce the desired output [6,111] and how the model uses

hese features to compute its label prediction [10,52] . However,

earned features in DNNs are only implicitly described in terms of

he huge number of parameters � of the model, in contrast to the

xplicit , hand-engineered, features used by classical ML techniques

see Section 2). As such, VA aims to explain in an interpretable and

ntuitive way how the information spread over all neurons in all

ayers of a DNN captures these features [71] . One sub-task here is

o interpret the model , i.e., to show how features learned in earlier

closer to input) layers get merged in subsequent layers to iden-

ify more complex patterns [10] , how intermediate layers trans-

orm the input they receive [52] and what features each compo-

ent learn to recognize [84] . Another goal of the FU task is to ex-

lain learned features , i.e., to identify in a particular input or set of

nputs, which of their features were taken into account in order to

ecide the output label. By understanding what the network is rec-

gnizing, experts can give more reliability to their models, as they

an know what they are recognizing or predicting with more cer-

ainty [52] . This also allows identifying patterns and features the
odel has not learned to recognize, but which a human may con-

ider important [80] .

Feature understanding techniques can be classified into

nstance-based and feature-based visualizations. The former ones

epict the behavior of the model for specific input instances, be

t a single one or a subset of many. The main goal of such visual-

zations is to find which features of the input produce high acti-

ations in the network and in which neurons or layers that occur

74] . Feature-based techniques, on the other hand, aim to explain

hich features an input must have to produce a particular output

n the final layer or, more generally, in any layer [52] . Such tech-

iques are well suited when instances are not easily interpretable

r in applications with many possible outputs, where analyzing in-

ividual inputs can become tedious [74] .

In contrast to feature engineering methods, DL methods do

ot have an explicit representation of the data features they use

 Section 2). The representation of such features is actually ‘scat-

ered’ in the parameter parameters � of all neurons over all layers.

nfortunately, because DNNs are a composition of nonlinear func-

ions, it is difficult to retrieve any interpretable information from

he parameters values, particularly the ones in deeper layers. An

lternative way to understand the learned features is to analyze

he activations produced by these parameters when a given input

ows through the network. This can be done at several levels, as

ollows. By visualizing the activations vectors produced by a single

nput over the entire model, using e.g., heatmaps or matrix plots

an instance-based approach), one can understand how the sample

nformation flows through the network until we obtain an output

74] . Alternatively, by visualizing the activation vectors of multi-

le input samples for a single layer or even single neuron (feature-

ased approach), one can find which patterns the layer, or neuron,

s learning to recognize [52] . Another feature-based technique is to

isualize how the network divides the input data space X at each

euron [76] (see also Fig. 6). This approach is very intuitive to use,

s it effectively shows how each neuron u i classifies every possible

ample x ∈ X , by color-coding a 2D plot of X with the respective

ctivations a i (x), and also allows real-time changes of the archi-

ecture and hyperparameters and training monitoring. However, it

nly works for data spaces X ⊂ R

2 and relatively small networks (a

ouple of layers).

As well as for the TA and AU tasks, scalability is also a prob-

em for FU for more complex models, especially when visualizing

he activations of many neurons at once [10] . Additionally, some

pplications may have inputs composed of different data formats.

or instance, to classify a social media post, the model could have

s input an image, a text, and information on the user who posted

42 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

Fig. 8. In their work, Alsallakh et al. [85] use heatmap matrices to visualize how neurons in a user-selected layer respond to inputs of different classes. In their heatmaps

(b and c), each row represents one of the possible classes a training example may belong to, and each column represents one of the neurons in that layer. Thus, each cell

of the heatmap contains information about the activation produced by a specific neuron given an example from a particular class as input. As convolutional neurons output

high-dimensional activations, this information is encoded in a small array computed as described in (a). First, they average the neuron’s response for several samples from

that class, and then they downsample and linearize the resulting matrix, returning an array with the class activation information condensed in just a few values, if compared

to the original matrix. With this technique, they identify that activations of deeper layers build a more clearly defined class hierarchy, with particular groups—e.g., mammals

(d)—while shallo wer layers can identify only more generic groups of classes (b).

t

m

s

e

f

e

i

d

v

r

w

t

n

j

a

d

p

l

c

m

C

t

j

s

p

[

i

o

a

e

r

s

l

d

t

t
it [74] ; in such cases, visualizing essential features in a meaningful

way is harder than when X consists of a single data type.

5.4.1. Model interpretability

One of the main goals of visual analytics in deep learning is to

allow experts to interpret deep models. Unfortunately, model in-

terpretability is an ill-posed problem, as there is no universally ac-

cepted definition of what exactly means to interpret a model [39] .

However, many authors have considered interpreting a model as

the ability to understand and explain how the model builds its la-

bel decision given a particular input and what is the role of each

component of the model on the decision process. One way to at-

tack this problem is to visualize the activation space of each layer

or neuron [76] in order to inspect how the decision process work

at each component in the model. Unfortunately, such spaces are

often high-dimensional, what forbids this approach to be used in

complex models.

An alternative approach is to use heatmaps to display how a

component behaves for different kinds of input [10,74,80] . Visualiz-

ing activation heatmap matrices is one of the most widespread ap-

proaches for model interpretability. Here, activations are displayed

as a matrix where rows are input samples or sample classes and

columns are the neurons or layers of the DNN [74,80] . The col-

ors of the matrix cells encode the activation produced by each in-

put or class (row) to each neuron or layer (column) of the model.

When visualizing activations for particular inputs, heatmap matri-

ces work as instance-based techniques that show which parts of

the neural model learn features for that input [80] . Conversely,

when displaying activations for a single class or subset of inputs—

done usually by computing the average activation of all considered

input samples—heatmap matrices behave as feature-based tech-

niques, showing which network parts specialize in recognizing that

class or subset [74] . However, one should note that such visualiza-

tions can be misleading when inputs belonging to the same class

present distinct input features—for instance, in an image classifi-

cation task, a class building may be composed by images of very

different buildings (e.g., wood houses and shopping centers), yet
hey have the same label. Even in a network with high perfor-

ance on this task, neuron activations in hidden layers may be

ignificantly different for samples of this type (qualitatively differ-

nt input values but same associate label) [87] , and therefore dif-

erent activation patterns should not necessarily be interpreted as

vidence that the network did not successfully learn appropriate

ntermediate features. An example of such a heatmap matrix pro-

uced by Alsallakh et al. [85] is shown in Fig. 8 .

Heatmap matrices often do not scale well to datasets with a

ery high dimensionality—which is often the case in deep neu-

al networks—, as spotting interesting patterns becomes difficult

hen the number of rows and columns is too big. To overcome

his issue, many authors have used dimensionality reduction tech-

iques to visualize the activation space in a bidimensional pro-

ection. As outlined in Sec. 2 , the activations a l (x) produced by

 hidden layer l of a DNN for an input sample x form a high-

imensional vector that captures the different features of x . Com-

aring such vectors for all samples x in a training or test set al-

ows one to visualize how the network succeeds (or not) in dis-

riminating between these. To do this, dimensionality reduction

ethods can be used to create 2D scatterplots of these samples.

lose points in these scatterplots indicate samples which are found

o be similar by the network [52,67,74,80] . In particular, by pro-

ecting activations from multiple inputs, designers can identify in-

tances wrongly predicted and build hypotheses of why this hap-

ened by comparing them with inputs with similar activations

52] . Fig. 7 (left) shows such a projection for the well-known SVHN

mage dataset [112] , with points colored by the class label, based

n the last hidden layer activations after training [52] . This image

llows a designer to quickly observe that data points belonging to

ach class are divided into two compact clusters—one which rep-

esents light digits on a dark background, and one which repre-

ents dark digits on a light background. Hence, this visualization

ets one see that the network has learned irrelevant information of

igit- vs -background contrast, which is not useful when classifying

he digit images—and this is a finding that can help to fine-tune

he network to learn more effectively [52] . Additionally, by visual-

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 43

i

c

t

e

n

s

A

b

u

n

t

d

m

t

a

5

c

g

w

a

d

p

o

n

t

i

p

w

5

f

f

F

s

t

h

t

r

m

t

p

P

f

t

p

p

F

c

i

s

l

[

p

d

t

t

[

u

p

b

t

Fig. 9. Image-based visualizations explaining the input elements that lead to a clas-

sification outcome [13] . The example on top (a) shows an image which the model is

effectively recognizing relevant features to assigned the label dog (b), even though

the input present features that are not typical in dog images. The bottom image (c),

however, is not being correctly learned by the model, as the model is using back-

ground features to perform classification and ignoring pixels corresponding to the

actual dog (d).

i

s

t

i

t

t

c

p

t

i

f

t

b

a

i

s

i

c

c

p

(

d

c

p

t

t

c

g

t

W

p

v

zing how this activation space evolves through the training pro-

ess and over the layers—Fig. 7 (center and right, respectively)—,

hey can show how the model gradually learns to separate differ-

nt classes. The main downside of dimensionality reduction tech-

iques is the intrinsic information loss related to the compres-

ion of a high dimensional data to a bidimensional representation.

lso, different dimensionality reduction methods—or the same one

ut with different parameter tuning—can give different and equally

seful projections, as datasets may have multiple features that can-

ot be uncovered in a single projection. To overcome this limita-

ion, several authors have proposed interactive dimensionality re-

uction approaches [113] . However, given the scalability of those

ethods and the intrinsic high-dimensionality of activation vec-

ors, dimensionality reduction techniques are an effective way to

chieve model interpretability on deep models.

.4.2. Feature explainability

While model interpretability aims to understand the whole de-

ision process of a model, feature explainability aims to answer,

iven a particular input, which are the features present in it that

ere relevant for the prediction decision. Several techniques such

s code inversion [91] , layer-wise relevance propagation [114] , and

econvolutional networks [94] were developed to achieve such ex-

lainability. These techniques evaluate which attributes (e.g., pixels

r words) have information that is considered relevant by a given

euron in order to produce a particular activation value. Attributes

hat make neurons output high activation values are often more

mportant in the decision process the model learned to perform,

articularly in deeper layers. More details about these techniques

ill be given later in this section.

.4.3. Feature understanding on different models

Deep feedforward networks: In DFN models, we can interpret the

ully-connected layers as operations performing non-linear trans-

ormations in the multidimensional space the training data lies.

or this reason, techniques aiming to visualize high-dimensional

paces such as dimensionality reduction are often good alternatives

o analyze DFNs [52] . However, even though such an approach

elps to interpret the function of the layer as a whole, it brings lit-

le insight about individual units. Techniques that show how neu-

ons respond to different kind of inputs, such as heatmaps [10] are

ore desirable in such cases, as they give a clear understanding of

he role that neuron is playing in the recognition task.

Convolutional neural networks: Visualizing activations is as im-

ortant to understand CNNs as it is to understand traditional DFNs.

articularly, heatmap matrices have stood out as an effective tool

or this task [10,78,84,85] , as they can compactly display the ac-

ivations of neurons for multiple input samples [10] or in multi-

le convolutional filters [84] . By using a heatmap matrix to com-

are activation vectors for different inputs, Alsallakh et al. [85] (see

ig. 8) showed that this type of analysis can lead to non-trivial

onclusions—such as the identification of a hierarchical structure

n the classes present in a training set, given that classes that

hare similar features usually have similar activations in shallower

ayers and more distinct activations in deeper ones. Zeng et al.

72] also use heatmap matrices to visualize the differences in the

arameters of CNNs with the same architecture but trained with

istinct hyperparameters, aiming at understanding how they affect

he model’s performance.

DR projections have also been used in CNNs to compare activa-

ion vectors of different inputs [77] . For instance, Aubry and Russell

88] compare the activation vectors of slightly modified images to

nderstand the manifold created by these modifications in the in-

ut (image) space. Nguyen et al. [87] use DR projections of images

elonging to the same class in a training set to identify image clus-

ers that are characterized by distinct types of features. This allows
dentifying different styles, or kinds, of images that must be as-

igned to the same label by the model, which can be a challenging

ask for improperly trained models.

Since CNNs are often used in applications that take images as

nputs, heatmaps have also been used to show which regions of

he input image produce strong activations in a given convolu-

ional filter. For instance, Yosinski et al. [84] depict the filters of

onvolutional layers as images with the same resolution as the in-

ut image, with pixels colored based on how they contribute to

he activations produced by that filter. Many variations of such

mage-based techniques have been proposed for the tasks of CNN

eature understanding. We divide these methods into two main

ypes: instance-based and feature-based methods. Methods from

oth classes are reviewed and discussed next.

Instance-based techniques: Although deep CNN models can

chieve high accuracy in image classification tasks, it is not triv-

al to figure out which features an image should have to be as-

igned to some particular class. Understanding this may help in

dentifying mistakes made by the model, such as considering a re-

urrent background object or feature as intrinsically part of the

lass. Fig. 9 shows two examples hereof. Image (a) shows a sam-

le used as input for Google’s Inception neural network [8] . Image

b) shows which parts of this input image have been relevant for

etecting the class ‘Labrador’ in the input. We see that such parts

ontain both relevant information (the dog’s face) but also spurious

ixels (the bottom part of the character’s shirt). Image (c) shows

he image of a dog that was incorrectly classified as ‘Wolf’ using

he same neural network [13] . Image (d) shows that this incorrect

lassification relied solely on the presence of a particular back-

round. Using this insight, the designer of the network discovered

hat wolf images in the training set all had snow as a background.

e call such techniques instance-based visualizations, as they em-

hasize parts of input instances responsible for a high activation

ector a l in some layer l (see also Fig. 10 a).

44 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

we see a high
activation vector al...

real input image x

...what causes a1?

...to get a high
activation vector al...

synthesized image x

how to change x?...

a)

b)

Fig. 10. Instance-based vs. feature-based visualizations for feature understanding.

In the former, given a particular activation vector a l , the visualization aims to an-

swer which parts of the real input were more important to generate a l . In a feature-

based visualization, however, an artificial input in synthesized in order to maximize

the activation in particular neurons.

t

b

c

t

r

g

n

m

t

t

t

t

T

c

t

i

i

t

o

p

r

f

t

t

p

d

e

w

o

c

t

s

p

r

n

a

b

h

f

p

c

t

i

p

a

f

d

t

a

t

w

m

t

x

t

v

e

o

e

e

a
Several examples of such instance-based visualizations exist. Si-

monyan et al. [89] rank pixels in the input images by how much

they contribute to a particular class assignment. Montavon et al.

[115] backpropagate the activation from deeper layers to identify

relevant pixels in the input. Zintgraf et al. [93,95] iteratively re-

move different patches of the input image and check whether the

model is still capable of recognizing the correct class. More recent

works [82,97] analyze the weighted gradient in the last convolu-

tional layer to understand how information is flowing through the

model. Li et al., use a two-step algorithm based on Layer-wise Rele-

vance Propagation (LRP) [114] to recognize the more relevant pixels

to the activation. The results of such approaches are usually dis-

played as so-called saliency maps [89] , i.e., heatmaps where pixels

are colored based on their relevance to the classifier’s output.

A separate challenge of training deep models is to discover how

much of the input information has been lost over the layers. This

can be done by measuring whether (and how much) it is possible

to reconstruct an image from its activation vector produced in a

given layer of the network. As a neural network is a complex com-

position of nonlinear functions, it is likely that a perfect inverse

transformation (from activations to the input) is not possible, es-

pecially from the deeper layers. Some of the image’s most relevant

features may be reconstructed in this way. The main technique

to approach this problem is called code inversion [91] . To recover

a synthetic image ˜ x from the activation vector a l in a deep net-

work layer l caused by an actual input image x , gradient descent

is used to synthesize an image ˜ x that generates an activation vec-

tor as close as possible to the one generated by x . Mahendran and

Vedaldi [91] found that activations of lower layers can reconstruct

the input image x more faithfully than those from deeper layers.

This supports the hypothesis that deeper layers learn more abstract

(less detailed) representations of the input. In some networks, even

deep layers can preserve image-specific features like object posi-

tion and colors [94] . Mahendran and Vedaldi [92] present a com-

prehensive study measuring the quality of images generated by

code inversion according to criteria such as reconstruction sim-

ilarity, naturalness, interpretability, and classification consistency.

Other approaches use deconvolutional or up-convolutional net-

works to synthesize such approximate images [6,94] . Deconvolu-

tional networks try to produce the inverse operations performed

by a CNN and recover an image from an activation vector. By con-

trast, up-convolutional networks are conventionally trained CNNs
hat learn to predict images from the activation vectors produced

y the CNN under analysis.

Another instance-based technique related to image synthesis is

aricaturization [92] . In this approach, an input image is modified

o sharpen features that cause high activations in some given neu-

ons of a CNN model. This is usually done by an optimization al-

orithm similar to the one used in activation maximization tech-

iques (see below). However, the aim here is to exaggerate the

ost relevant features of real input, thereby allowing the designer

o find out what the model is learning from that input. Such fea-

ures were found to predominate in the final (deepest) layers of

he CNN model.

An important drawback of instance-based techniques is that

hey produce insights that are valid only for a single input x .

his leaves some important questions unanswered. It is usually not

lear if all the instances { x i } belonging to some class y must con-

ain the features highlighted by the explanation of a single such

mage x i —for instance, it is not evident from the examples shown

n Fig. 9 that all images that will be labeled as wolf will be so due

o the presence of background snow. To reach such a conclusion,

ne needs to manually browse through the explanations of multi-

le inputs x i belonging to the class wolf .

Feature-based techniques: Whereas instance-based techniques

eflect activation information associated with different inputs,

eature-based techniques work in the opposite direction (Fig. 10 b):

hey create synthetic input images x that cause high activation vec-

ors a l in some given layer l , or in a neuron u l
i

thereof. When ap-

lied to a neuron on the network’s last layer L , this technique pro-

uces images that capture the features that the network deems rel-

vant for the class that that neuron is responsible for [89] . This

ay, one can find which generic features the network searches

ver the input image space to predict specific labels. This approach

an also be applied to hidden layers to give insights on which fea-

ures these layers are looking for when predicting a class [51,84] .

As previously outlined, instance-based techniques are, by con-

truction, limited to showing learning explanations for a single in-

ut (e.g., which particular pixels of an input image where deemed

elevant for determining its class). By contrast, feature-based tech-

iques do not have this problem as they aim to show features that

re typically relevant for a whole class. Some techniques do this

y displaying images from the training set or test set that produce

igh activations for the neuron or layer of interest. It can be hard

or the designer to figure out which specific features in the dis-

layed image set are responsible for the high activations [86] . To

ope with this, many techniques use optimization methods to syn-

hesize a ‘summary’ image that maximizes the activation vector of

nterest. This type of analysis allows designers to uncover many

roperties of deep models. For example, Nguyen et al. [87] present

 case where a neuron in a hidden fully-connected layer activates

or different underwater objects, such as sharks, turtles, and scuba

ivers, indicating that these layers often learn high-level concepts

hat are present in multiple classes.

One of the first techniques to synthesize images that cause high

ctivations to a particular class is activation maximization [51] . As

he activation of a neuron can be seen as a nonlinear function φ(x)

here x is a given input (see also Fig. 2), the input ˆ x that maxi-

izes the above function can be found by applying an optimiza-

ion method—for instance, traditional gradient ascent—on the input

 with a fixed � equal to the network parameters learned after

raining. This is a non-convex optimization problem where con-

ergence to an optimal global value cannot be guaranteed. How-

ver, different and meaningful local optima can be found. These

ften represent different facets, or aspects, of the class of inter-

st [87] , such as different properties of an image that may all be

qually relevant for determining its class. This technique was first

pplied to deep belief networks [51] and later generalized to deep

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 45

Fig. 11. Activation maximization algorithm applied to eight different classes of the ImageNet dataset [5] . With this technique, experts can visualize which features a neuron

is looking for on the input. If applied to neurons in deep layers—those usually return high activations for only one class—one can see images that resemble actual classes on

the training set, however in a very unrealistic manner. Image adapted from Yosinski et al. [84] .

c

v

d

t

i

T

g

[

p

a

w

f

m

c

u

f

u

t

s

a

a

t

a

c

o

N

r

t

t

t

d

a

e

i

G

t

i

A

t

m

e

t

b

t

v

b

o

i

c

m

m

s

c

w

j

t

a

b

h

[

s

a

s

s

a

p

u

t

o

p

t

h

a

m

D

i

T

g

n

d

onvolutional networks [89] . Fig. 11 shows the results of the acti-

ation maximization technique produced by eight different classes

ataset [5] . The produced synthetic images highlight typical fea-

ures that actual images of the respective classes tend to have.

A drawback of activation maximization is that the synthesized

mages may be too abstract to interpret, as can be seen in Fig. 11 .

his is not surprising, given that the space of all images of a

iven class is too large to be captured by a single ‘average’ image

89,111] . To address this, several regularization methods have been

roposed. These methods constrain the generation of synthetic im-

ges by enforcing various criteria that are typically present in real-

orld images [89–91] . For example, Yosinski et al. [84] propose

our regularization techniques that aim to synthesize images with

ore realistic features: L 2 decay; Gaussian blur; small norm pixel

lipping; and small contribution pixel clipping. The two first reg-

larizations aim to remove high brightness amplitudes and high

requencies that rarely appear in natural images; the last two reg-

larizations remove pixels with negligible influences on the activa-

ions, letting the designer focus on the important features of the

ynthesized image. Activation maximization often produces im-

ges with repeated features, such as multiple objects or exagger-

ted objects of the analyzed class, as such exaggerations increase

he class-specific activation values. For instance, optimizing an im-

ge for a flamingo-recognizing activations leads to multiple peli-

ans scattered over the synthetic image (Fig. 11 top-left). This is

ne of the causes of the artificial look of such synthetic images.

guyen et al. [87] alleviate this problem by using a center-biased

egularization penalizes changes close to the borders of the image,

hereby forcing the optimization to synthesize features closer to

he image center.

While the above improvements create more interpretable syn-

hetic images, they still exhibit non-natural colors and bor-

ers. Generating realistic images has, however, been successfully

chieved by generative neural networks (GNNs) [63,116] . Nguyen

t al. [86] proposed to use a GNN model as a prior to generat-

ng realistic images that maximize the activation of a CNN neuron.

NNs are deep models that learn to generate novel samples from

he distribution in which the training set lies. In this case, the GNN

s trained to generate realistic images from a numeric vector input.

fter that, this numeric input is optimized to generate an image

hat maximizes the activation of a given neuron of the CNN.

Another issue faced when synthesizing images with activation

aximization is that classes may have very distinct instances. For
xample, a ‘store’ class could be represented both by images of

he outdoor facade of the store or by images of the inside of the

uilding. Hence, neurons—especially the ones in deeper layers—

hat recognize features of such classes must be able to activate for

ery different sets of input features. Such neurons are then said to

e multifaceted [87] . In such cases, traditional optimization meth-

ds like gradient ascent end up mixing features of different facets

nto the resulting synthetic image, which renders it ambiguous and

onfusing. To overcome this problem, Nguyen et al. introduce a

ultifaceted feature visualization [87] that initializes the activation

aximization algorithm with an image obtained by averaging in-

tances of the training set that belong to the same class facet. This

reates a bias aiming to make the algorithm synthesize an image

ith the features of that facet.

Recurrent neural networks: One of the main challenges for RNNs,

ust like for CNNs and DFNs, is to understand the activation pat-

erns produced by specific inputs and which features these inputs

re capturing, since being able to do so is key to understanding the

ehavior of the trained model. Like for CNNs and DFNs, heatmaps

ave also been used to visualize activations of recurrent models

71,100] . While it is possible to get good insights on which hidden

tates produce higher activations for a single input by looking at an

ctivation heatmap, it is not easy to understand if the same hidden

tates share similar behavior for a group of inputs, e.g., words with

imilar meanings. To address this problem, Ming et al. [71] propose

 technique that co-clusters hidden states and input elements—in

articular, it creates two cluster models: one of the activation val-

es of a selected hidden layer and one of the input values given

o the network; then it tries to identify correlations between types

f inputs that consistently generate activations associated with one

articular activation cluster.

Another application of heatmaps for RNN models is to measure

he importance of each input unit. Li et al. [99] proposed a saliency

eatmap that shows the saliency score of each word in the input of

 word classification task. This score is calculated by checking how

uch each input unit contributed to the final label assignment.

ing et al. [101] also use heatmaps to display the relevance of each

nput word for each output word in a machine translation model.

o calculate this relevance, they use a layer-wise relevance propa-

ation (LRP) algorithm. Unlike gradient-based approaches, LRP does

ot require the activations to be differentiable, which confers ad-

itional robustness to the approach.

46 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

Fig. 12. LSTMVis tool [98] showing the activations of the hidden states in a RNN model for a sequence of input units chosen by the designer. When the designer chooses

a text range, the visualization displays how hidden state values changed through the processing of such text range (a). The visualization provides several interactive tools,

such as the capability of choosing a threshold for highlighted hidden states (t), the matching and comparison of input sequences resulting in similar hidden states (b), and

the visualization of user-defined meta-data about the model (g1, g2).

i

s

l

s

i

p

d

6

f

t

c

b

r

e

t

p

a

H

h

a

r

r

n

a

u

v

w

t

T

l

t

m

b
Heatmaps have also been used to display characteristics of the

input text data. For instance, Karpathy et al. [102] —one of the

first works proposing the utilization of visualization to understand

RNNs—build a heatmap measuring the relevance of each input

character or word to the activation of a given hidden unit. This

approach was able to identify interpretable semantic units—for in-

stance, one specialized in identifying new lines—in a character

prediction application. Strobelt et al. [98] used heatmaps to dis-

play designer-defined metrics of interest on the input text, such

as to which part-of-speech (POS) a given word belongs shown

to (Fig. 12). Conceptually, this visualization is of the same kind

of explanatory type as the instance-based visualizations for CNNs

(Figs. 9 and 10 a), as they highlight parts of an input sample that

cause the network to choose a given output class.

RNNs are intrinsically designed to handle sequential input data

such as text or time series. When a new input item is processed,

the values of the model’s hidden units change. This affects the re-

sult not only for the current input item but also for a (potentially

long) range of subsequent input items. Understanding how each

input item changes these hidden units and affects latter computa-

tions helps identifying critical aspects of the model that may lead

to undesirable performance. Given the sequential nature of RNNs,

time series charts emerge as a straightforward way to visualize

changes in the hidden units’ values. Yet, we have found only a few

works in this direction. For instance, Strobelt et al. [98] proposed a

parallel coordinates plot (PCP) visualization where each dimension

is an input unit, and each polyline displays how a single hidden

state varies with the input. Hence, the horizontal PCP axis can be

interpreted as a temporal order, and the polylines are analogous to

time series. By allowing the designer to highlight units with high

activation for a given range of the input, Strobelt et al. were able

to find distinct regions of similar behavior in the input text stream,

and concluded that such regions had similar semantics.

6. Discussion and open challenges

Although a substantial amount of work has been done over the

past few years regarding the use of visual analytics in deep learn-
ng techniques, there are still many challenges that need to be

uccessfully addressed by future research. We discuss these chal-

enges from the point of view of the three types of tasks that we

tructured our survey along (i.e., architecture understanding, train-

ng analysis, and feature understanding) and, additionally, from the

oint of view of end-to-end requirements that engineers developing

eep models face in practice.

.1. Architecture understanding

Hyperparameter exploration: One problem that is still open even

or machine learning experts is how hyperparameters affect the

raining results. Developers of neural networks usually make ar-

hitectural choices such as the number of neurons per layer, num-

er of layers, activation function types, training batch size, learning

ate, and number of training epochs, by empirical and trial-and-

rror approaches. This considerably adds to the cost of fine-tuning

he training of deep models. In a more broad sense, analysing the

arameter space of a simulation model is a topic that has caught

 strong interest from the VA community in the past years [73] .

owever, that is still a lot of space for novel contributions that can

elp designers to more precisely tune their deep networks. Inter-

ctive ‘drawing board’ solutions where all these aspects can be di-

ectly controlled by a designer, while their effects are visualized in

eal time, exist [76] but cover only very small networks (tens of

eurons) with simple two-dimensional inputs.

It would be interesting for machine learning experts to visually

nalyze the hyperparameter space of a neural model and how val-

es in this space affect the model performance [34] . To do this,

isually more scalable techniques (capable of depicting large net-

ork architectures) are needed, as well as methods that annotate

he hyperparameter space with measured network performance.

here is work on the use of Bayesian optimization for actively se-

ecting which hyperparameter values to try next, based on anno-

ating particular settings of such values with the corresponding

odel performance and trying to infer which ones might work

etter [117] . Although there is some work about applying such

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 47

t

t

s

t

a

6

o

d

i

t

b

i

a

o

m

a

a

i

c

s

t

c

a

q

p

s

T

r

s

6

e

e

t

o

i

p

p

c

t

c

a

e

h

p

w

p

D

[

i

m

6

s

f

r

[

s

T

g

s

a

d

D

e

o

t

o

d

i

m

p

s

a

s

i

t

c

b

b

o

m

i

p

c

t

V

i

7

a

t

t

e

a

t

l

h

t

i

t

p

o

l

t

o

w

p

k

e

A

d

b

n

C
echniques to deep models [118,119] , more research is needed in

his direction.

Additionally, faster training pipelines, possibly based on multi-

cale techniques, are needed to close the sensemaking loop at in-

eractive rates, thereby allowing designers to effectively ‘steer’ the

rchitecture design as they observe its behavior.

.2. Training analysis

Training data exploration: To be properly trained, deep models

ften require large and high-dimensional training sets. However, to

ate, there are only a few solutions to understanding such train-

ng sets, and in particular, which aspects of the input data affect

raining in specific ways. Training instances may contain hidden

iases or mistakes, such as mislabeling, irrelevant correlations of

nput features with classes [13,52] , and, at a higher level, unbal-

nced coverage of the entire input space X by training samples. All

f these aspects can severely harm the effectiveness of the trained

odel. Visualization techniques, notably the ones focused on the

nalysis of high-dimensional datasets [14,52,80] , are a promising

lternative to address this issue. Additionally, a better understand-

ng of the training set characteristics can lead to more efficient

hoices of architectures and hyperparameters.

Training guiding and interaction: Due to the difficulty in under-

tanding machine learning techniques and the long time required

o train deep models, interactive solutions have received signifi-

ant interest from the machine learning community [36–38] . Visu-

lization methods are key to achieve such interaction, as they can

uickly show the designer what is happening during the training

rocess. However, only a few approaches have focused on using vi-

ualization to provide real-time feedback to the designer [76,77,79] .

he challenge here is directly related to hyperparameter explo-

ation, i.e., providing both visually scalable and computationally

calable (fast) metaphors for the training process.

.3. Feature understanding

Explainable models: Visual analytics has proven to be an

ffective tool in explaining the features learned by neural mod-

ls. Current visualization methods can show which features (from

he input data) have been learned by a given model. Many types

f features can be considered by these techniques, such as pixels

n an image, words in a text document, and value ranges of in-

ut data attributes (columns in a data table), each of which com-

uted either per input sample or per set of related instances, e.g.,

lass or class facet. Solutions produced by this type of visualiza-

ion highlight the most discriminative features for determining a

lass [13] and follow the intuitions used by earlier methods that

imed at achieving a similar goal but for classifiers that used hand-

ngineered features [20] . The need for more explainable models,

owever, is still noticeable. In particular, if one could say which in-

ut features are responsible for a model’s decision, the next step

ould be to show how that decision was made. This involves ex-

laining the responsibilities of groups of layers or neurons of a

NN and how these work together to calculate the final output

34] . In the long run, this will lift the current feature understand-

ng goal to cover the more important goal of understanding how a

odel as a whole took a given decision.

.4. Non-functional requirements

Apart from the functional requirements for the visual under-

tanding process of deep learning mentioned above, some non-

unctional requirements exist, as discussed next.

Fidelity: Modern DNNs can have hundreds of thousands of neu-

ons spread over hundreds of layers and millions of parameters
4,8,9] . The sheer amount of data embedded in, or produced by,

uch models demands novel VA techniques that scale effectively.

he key issue here is that of fidelity or trust: when data is aggre-

ated or simplified, how can we be sure that we trust what the vi-

ualization shows? For instance, many approaches use dimension-

lity reduction (DR) techniques to visualize the high-dimensional

ata produced by DNNs. Small changes on the hyperparameters of

R methods can lead to massively different visualizations that may

asily convey different or wrong insights [120–122] . The goal of

ptimizing dimensionality reduction so that it accurately conveys

he high-dimensional data structure of large datasets (millions of

bservations, hundreds of dimensions) is an ongoing research en-

eavor [123,124] .

Scalability: The large size of modern DNNs poses two scalabil-

ty problems. First, we need to develop visually scalable infovis

etaphors to depict the large amount of high-dimensional, tem-

oral, and relational data spanned by such networks. This is in it-

elf a key challenge in information visualization, for which answers

re yet to be found. Separately, we need access to computationally

calable ways of performing DNN training, so that insights found

n this process can be communicated to the designer at interac-

ive rates, for the VA sensemaking loop to be effectively closed. In

ases where interactive-rate training of DNNs is simply not possi-

le due to the size of the problem, approximation methods could

e developed that deliver a less accurate, but still insightful, view

n the training process at interactive rates.

Different applications: Current research works focus mainly on

odels handling image classification or natural language process-

ng tasks that use well-behaved training sets. However, more com-

lex applications usually have to handle training sets that may be

omposed of different types of data and that may come from dis-

inct sources, thus requiring more complicated architectures [74] .

isual analytics tools directing towards these models could be an

nteresting perspective for future research.

. Conclusion

In this article, we review works aiming at using visual an-

lytics techniques to understand deep neural networks—a topic

hat has been widely discussed by the research community in

he past few years. We classify these publications into three cat-

gories, depending on the particular visualization goal that they

im to achieve: network architecture understanding, visualization

o support training analysis, and feature understanding. In particu-

ar, we are able to identify that most of the reviewed publications

ave been mainly focused on understanding which features a given

rained model can recognize, how they do it, and how the learn-

ng of such features occurs. These visualization approaches prove

o be effective in validating the performance of deep models and

roviding more intuition of their inner workings to the designer

f the respective neural network model. However, there is still a

ack of contributions aiming at developing techniques that can in-

eractively guide the development of a deep neural network, with

nly a few approaches addressing this issue. Given that deep net-

orks are usually difficult and slow to train, we consider this as a

romising topic of future research, with visual analytics playing a

ey role in providing such visual interactivity to machine learning

xperts.

cknowledgments

Funding: This work was supported by the Conselho Nacional

e Desen-volvimento Científico e Tecnológico (CNPq) [grant num-

er 308851/2015-3]; the Research Council of Norway (RCN) [grant

umber 240862]; RCN and the Nor-wegian Centre for International

ooperation in Education (SIU) [grant number 261645]; and the

48 R. Garcia et al. / Computers & Graphics 77 (2018) 30–49

Rio Grande do Sul and Oslo collaboration on AI and Robotics (RO-

CAIR) [grant number UTF-2016-short-term/10128].

References

[1] Goodfellow I , Bengio Y , Courville A . Deep learning. The MIT Press; 2016 .
[2] Samuel AL . Some studies in machine learning using the game of checkers.

IBM J Res Dev 1959;3(3):210–29 .
[3] LeCun Y , Bengio Y , Hinton G . Deep learning. Nature 2015;521(7553):436–44 .

[4] Krizhevsky A , Sutskever I , Hinton GE . ImageNet classification with deep con-
volutional neural networks. In: Proceedings of the international conference

on neural information processing systems, vol. 1; 2012. p. 1097–105 .

[5] Deng J , Dong W , Socher R , Li LJ , Li K , Fei-Fei L . ImageNet: a large-scale hier-
archical image database. In: Proceedings of the IEEE conference on computer

vision and pattern recognition; 2009. p. 248–55 .
[6] Zeiler MD , Fergus R . Visualizing and understanding convolutional networks.

In: Proceedings of the European conference on computer vision. Springer;
2014. p. 818–33 .

[7] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. CoRR 2014;abs/1409.1556. arXiv: 1409.1556 .
[8] Szegedy C , Liu W , Jia Y , Sermanet P , Reed S , Anguelov D , et al. Going deeper

with convolutions. In: Proceedings of the IEEE conference on computer vision
and pattern recognition; 2015. p. 1–9 .

[9] He K , Zhang X , Ren S , Sun J . Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-

tion; 2016. p. 165–73 .

[10] Liu M , Shi J , Li Z , Li C , Zhu J , Liu S . Towards better analysis of deep convolu-
tional neural networks. IEEE Trans Vis Comput Gr 2017;23(1):91–100 .

[11] Marcus G. Deep learning: A critical appraisal. CoRR 2018;abs/1801.00631.
arXiv: 1801.00631 .

[12] Samek W, Wiegand T, Müller KR. Explainable artificial intelligence: Un-
derstanding, visualizing and interpreting deep learning models. CoRR

2017;abs/1708.08296. arXiv: 1708.08296 .
[13] Ribeiro MT, Singh S, Guestrin C. Why should I trust you? Explaining the pre-

dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining. KDD’16; ACM.
ISBN 978-1-4503-4232-2; 2016, p. 1135–1144.

[14] Liu S , Maljovec D , Wang B , Bremer P-T , Pascucci V . Visualizing high-
-dimensional data: advances in the past decade. Comput Gr Forum

2016;23(3):1249–68 .
[15] van der Maaten L , Postma E , van den Herik J . Dimensionality reduction: a

comparative review. Mach Learn Res 2009;10:66–71 .

[16] Cunningham JP , Ghahramani Z . Linear dimensionality reduction: Survey, in-
sights, and generalizations. J Mach Learn Res 2015;16:2859–900 .

[17] Sorzano C, Vargas J, Montano AP. A survey of dimensionality reduction tech-
niques. CoRR 2014;abs/1403.2877. arXiv: 1403.2877 .

[18] Blum MGB , Nunes MA , Prangle D , Sisson SA . A comparative review of di-
mension reduction methods in approximate Bayesian computation. Stat Sci

2013;28(2):189–208 .

[19] Rauber PE , Falcão AX , Telea AC . Projections as visual aids for classification
system design. Inf Vis 2018;17(4):282–305 .

[20] Rauber P , da Silva R , Feringa S , Celebi M , Falcão A , Telea A . Interactive image
feature selection aided by dimensionality reduction. In: Proceedings of the

EuroVA; 2015. p. 67–74 .
[21] Krause J , Perer A , Bertini E . INFUSE: interactive feature selection for pre-

dictive modeling of high dimensional data. IEEE Trans Vis Comput Gr

2014;20(12):1614–23 .
[22] Yuan X , Ren D , Wang Z , Guo C . Dimension projection matrix/tree: interactive

subspace visual exploration and analysis of high dimensional data. IEEE Trans
Vis Comput Gr 2013;19(12):2625–33 .

[23] Tatu A , Maas F , Farber I , Bertini E , Schreck T , Seidl T , et al. Subspace search
and visualization to make sense of alternative clusterings in high-dimensional

data. In: Proceedings of the IEEE VAST; 2012. p. 63–72 .

[24] Turkay C , Filzmoser P , Hauser H . Brushing dimensions: a dual visual
analysis model for high-dimensional data. IEEE Trans Vis Comput Gr

2011;17(12):2591–9 .
[25] Noris B. MLDemos: open source visualization tool for machine learning algo-

rithms. 2017. http://mldemos.epfl.ch .
[26] Gleicher M . Explainers: expert explorations with crafted projections. IEEE

Trans Vis Comput Gr 2013;19(12):2042–51 .

[27] Gleicher M . A framework for considering comprehensibility in modeling. Big
Data 2016;4(2):75–88 .

[28] Montavon G , Samek W , Müller K-R . Methods for interpreting and understand-
ing deep neural networks. Digit Sig Process 2018;73:1–15 .

[29] Samek W , Binder A , Montavon G , Lapuschkin S , Müller KR . Evaluating the
visualization of what a deep neural network has learned. IEEE Trans Neural

Netw Learn Syst 2017;28(11):2660–73 .
[30] Yeager L , Heinrich G , Mancewicz J , Houston M . Effective visualizations for

training and evaluating deep models. In: Proceedings of the International

conference on machine learning workshop on visualization for deep learning;
2016 .

[31] Zeng H. Towards better understanding of deep learning with visualization.
2016. [M.Sc. thesis], Department of Computer Science and Engineering, Hong-

Kong University of Science and Technology.
[32] Seifert C , Aamir A , Balagopalan A , Jain D , Sharma A , Grottel S , et al. Visualiza-
tions of deep neural networks in computer vision: A survey. In: Transparent

data mining for big and small data. Springer; 2017. p. 123–44 .
[33] Grün F, Rupprecht C, Navab N, Tombari F. A taxonomy and library

for visualizing learned features in convolutional neural networks. CoRR
2016;abs/1606.07757. arXiv: 1606.07757 .

[34] Liu S , Wang X , Liu M , Zhu J . Towards better analysis of machine learning
models: a visual analytics perspective. Vis Inf 2017;1(1):48–56 .

[35] Lu Y , Garcia R , Hansen B , Gleicher M , Maciejewski R . The state-of-the-art in

predictive visual analytics. Comput Gr Forum 2017;36(3):539–62 .
[36] Amershi S , Cakmak M , Knox WB , Kulesza T . Power to the people: the role of

humans in interactive machine learning. AI Mag 2014;35(4):105–20 .
[37] Bernardo F , Zbyszynski M , Fiebrink R , Grierson M , et al. Interactive machine

learning for end-user innovation. In: Proceedings of the designing the user
experience of machine learning systems (AAAI Spring Symposium Series);

2017 .

[38] Sacha D , Sedlmair M , Zhang L , Lee JA , Weiskopf D , North S , et al. Human–
centered machine learning through interactive visualization. In: Proceedings

of the European symposium on artificial neural networks, computational in-
telligence and machine learning; 2016 .

[39] Lipton Z. The mythos of model interpretability. CoRR 2016;abs/1606.03490.
arXiv: 1606.03490 .

[40] Hohman F, Kahng M, Pienta R, Chau DH. Visual analytics in deep learning:

An interrogative survey for the next frontiers. CoRR 2018;abs/1801.06889.
arXiv: 1801.06889 .

[41] Murphy K . Machine learning: a probabilistic perspective. The MIT Press; 2012 .
[42] Bishop CM . Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York; 2006 .
[43] Hastie T , Tibshirani R , Friedman J . The elements of statistical learning: data

mining, inference, and prediction. Springer; 2009 .

[44] Breiman L . Random forests. Mach Learn 2001;45(1):5–32 .
[45] LeCun Y , Boser B , Denker JS , Henderson D , Howard RE , Hubbard W ,

et al. Backpropagation applied to handwritten zip code recognition. Neural
Comput 1989;1(4):541–51 .

[46] Elman JL . Finding structure in time. Cognit Sci 1990;14(2):179–211 .
[47] Park SH , Goo JM , Jo C-H . Receiver operating characteristic (ROC) curve: prac-

tical review for radiologists. Korean J Radiol 2004;5(1):11–18 .

[48] Powers D . Evaluation: from precision, recall and F-measure to ROC, in-
formedness, markedness and correlation. J Mach Learn Technol 2011;2(1):37–

63 .
[49] Fawcett T . An introduction to ROC analysis. Pattern Recognit Lett

2006;27(8):861–74 .
[50] Brehmer M , Munzner T . A multi-level typology of abstract visualization tasks.

IEEE Trans Vis Comput Gr 2013;19(12):2376–85 .

[51] Erhan D , Bengio Y , Courville A , Vincent P . Visualizing higher-layer features of
a deep network. Technical Report 1341. University of Montreal; 2009 .

[52] Rauber P , Fadel SG , Falcão A , Telea A . Visualizing the hidden activity of artifi-
cial neural networks. IEEE Trans Vis Comput Gr 2017b;23(1):101–10 .

[53] Wong PC , Thomas J . Visual analytics. IEEE Comput Gr Appl 2004;24(5):20–1 .
[54] Keim DA , Mansmann F , Schneidewind J , Thomas J , Ziegler H . Visual analyt-

ics: scope and challenges. In: Lecture notes in computer science (LNCS 4404).
Springer; 2008. p. 76–90 .

[55] Lu J , Chen W , Ma Y , Ke J , Li Z , Zhang F , et al. Recent progress and trends in

predictive visual analytics. Front Comput Sci 2017;11(2):192–207 .
[56] Pirolli P , Card S . The sensemaking process and leverage points for analyst

technology as identified through cognitive task analysis. In: Proceedings of
the international conference on intelligence analysis; 2005 .

[57] Keim D , Andrienko G , Fekete J-D , Görg C , Kohlhammer J , Melan con G . Visual
analytics: definition, process, and challenges. In: Information visualization –

human-centered issues and perspectives. Springer; 2008. p. 154–75 .

[58] Keim D , Kohlhammer J , Ellis G , Mansmann F . Mastering the information age:
solving problems with visual analytics. Eurographics Association; 2010 .

[59] IEEE VAST 2017 Symposium. 2017. http://ieeevis.org/year/2017/info/papers .
[60] Streeter MJ , Ward MO , Alvarez SA . NVIS: an interactive visualization tool for

neural networks. In: Proceedings of the SPIE visual data exploration and anal-
ysis, vol. 4302; 2001. p. 1–8 .

[61] Tzeng FY , Ma KL . Opening the black box – data driven visualization of neural

networks. In: Proceedings of the IEEE visualization; 2005. p. 383–90 .
[62] Hinton GE , Zemel RS . Autoencoders, minimum description length and

Helmholtz free energy. In: Proceedings of the international conference on
neural information processing systems. NIPS’93. San Francisco, CA, USA: Mor-

gan Kaufmann Publishers Inc.; 1993. p. 3–10 .
[63] Goodfellow I , Pouget-Abadie J , Mirza M , Xu B , Warde-Farley D , Ozair S ,

et al. Generative adversarial nets. In: Advances in neural information process-

ing systems, vol. 27. Curran Associates, Inc.; 2014. p. 2672–80 .
[64] Hinton GE , Osindero S , Teh Y-W . A fast learning algorithm for deep belief

nets. Neural Comput 2006;18(7) .
[65] Mnih V , Kavukcuoglu K , Silver D , Rusu AA , Veness J , Bellemare MG ,

et al. Human-level control through deep reinforcement learning. Nature
2015;518:7540 .

[66] Gibson A , Patterson J . Deep learning. O’Reilly Media Inc.; 2017 .

[67] Zahavy T , Ben-Zrihem N , Mannor S . Graying the black box: Understanding
DQNS. In: Proceedings of the international conference on machine learning;

2016. p. 1899–908 .
[68] Liu M , Shi J , Cao K , Zhu J , Liu S . Analyzing the training processes of deep

generative models. IEEE Trans Vis Comput Gr 2018;24(1):77–87 .

http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0006
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0009
http://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1708.08296
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0012
http://arxiv.org/abs/1403.2877
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0019
http://mldemos.epfl.ch
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0025
http://arxiv.org/abs/1606.07757
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0030
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1801.06889
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0038
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0038
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0039
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0039
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0040
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0040
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0040
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0041
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0041
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0041
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0041
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0041
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0042
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0042
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0042
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0042
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0042
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0043
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0043
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0043
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0044
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0044
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0044
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0044
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0044
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0044
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0045
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0046
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0046
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0046
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0047
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0047
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0047
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0047
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0047
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0047
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0047
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0048
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0048
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0048
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0048
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0048
http://ieeevis.org/year/2017/info/papers
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0049
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0049
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0049
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0049
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0050
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0050
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0050
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0051
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0051
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0051
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0052
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0053
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0053
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0053
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0053
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0054
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0055
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0055
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0055
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0056
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0056
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0056
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0056
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0057
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0057
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0057
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0057
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0057
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0057

R. Garcia et al. / Computers & Graphics 77 (2018) 30–49 49

[

[

[

[

[

[

[
[69] Ren D , Amershi S , Lee B , Suh J , Williams JD . Squares: supporting interac-
tive performance analysis for multiclass classifiers. IEEE Trans Vis Comput Gr

2017;23(1):61–70 .
[70] Mühlbacher T , Piringer H . A partition-based framework for building and vali-

dating regression models. IEEE Trans Vis Comput Gr 2013;19(12):1962–71 .
[71] Ming Y , Cao S , Zhang R , Li Z , Chen Y , Song Y , et al. Understanding hidden

memories of recurrent neural networks. In: Proceedings of the IEEE visual
analytics science and technology (VAST); 2017 .

[72] Zeng H , Haleem H , Plantaz X , Cao N , Qu H . CNNComparator: comparative an-

alytics of convolutional neural networks. In: Proceedings of the workshop on
visual analytics for data learning (VADL); 2017 .

[73] Sedlmair M , Heinzl C , Bruckner S , Piringer H , Mller T . Visual parame-
ter space analysis: a conceptual framework. IEEE Trans Vis Comput Gr

2014;20(12):2161–70 .
[74] Kahng M , Andrews PY , Kalro A , Chau DH . Activis: visual exploration of

industry-scale deep neural network models. IEEE Trans Vis Comput Gr

2018;24(1):88–97 .
[75] Wongsuphasawat K , Smilkov D , Wexler J , Wilson J , Man D , Fritz D , et al. Vi-

sualizing dataflow graphs of deep learning models in tensorflow. IEEE Trans
Vis Comput Gr 2018;24(1):1–12 .

[76] Smilkov D, Carter S, Sculley D, Vigas FB, Wattenberg M. Direct-manipulation
visualization of deep networks. CoRR 2017;abs/1708.03788. arXiv: 1708.03788 .

[77] Chung S , Suh S , Park C , Kang K , Choo J , Kwon BC . RevaCNN: Real-Time

visual analytics for convolutional neural network. In: Proceedings of the ACM
SIGKDD workshop on interactive data exploration and analytics (IDEA); 2016 .

[78] Harley AW . An interactive node-link visualization of convolutional neural net-
works. In: Proceedings of the international symposium on advances in visual

computing (ISVC). Springer; 2015. p. 867–77 .
[79] Qi H , Liu J , Zou X , Tang A . BIDViz: real-time monitoring and debugging of ma-

chine learning training processes. EECS Department, University of California,

Berkeley; 2017. [Master’s thesis] .
[80] Pezzotti N , Hollt T , Gemert JV , Lelieveldt BPF , Eisemann E , Vilanova A . Deep-

Eyes: progressive visual analytics for designing deep neural networks. IEEE
Trans Vis Comput Gr 2018;24(1):98–108 .

[81] Zhong W , Xie C , Zhong Y , Wang Y , Xu W , Cheng S , et al. Evolutionary visual
analysis of deep neural networks. In: Proceedings of the international confer-

ence on machine learning workshop on visualization for deep learning; 2017 .

[82] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, et al. Grad-
CAM: Visual explanations from deep networks via gradient-based localiza-

tion. In: ICCV. 2017, p. 618–626.
[83] Cashman D , Patterson G , Mosca A , Chang R . RNNbow: visualizing learning via

backpropagation gradients in recurrent neural networks. In: Proceedings of
the workshop on visualization for deep learning (VADL); 2017 .

[84] Yosinski J, Clune J, Fuchs T, Lipson H. Understanding neural networks through

deep visualization. In: Proceedings of the international conference on ma-
chine learning workshop on deep learning; 2015 . arXiv: 1506.06579

[85] Alsallakh B , Jourabloo A , Ye M , Liu X , Ren L . Do convolutional neural networks
learn class hierarchy? IEEE Trans Vis Comput Gr 2018;24(1):152–62 .

[86] Nguyen A , Dosovitskiy A , Yosinski J , Brox T , Clune J . Synthesizing the pre-
ferred inputs for neurons in neural networks via deep generator networks. In:

Proceedings of the international conference on neural information processing
systems; 2016a. p. 3395–403 .

[87] Nguyen A, Yosinski J, Clune J. Multifaceted feature visualization: Uncovering

the different types of features learned by each neuron in deep neural net-
works. CoRR 2016;abs/1602.03616. arXiv: 1602.03616 .

[88] Aubry M , Russell BC . Understanding deep features with computer-generated
imagery. In: Proceedings of the IEEE international conference on computer

vision (ICCV); 2015 .
[89] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional net-

works: Visualising image classification models and saliency maps. CoRR

2013;abs/1312.6034. arXiv: 1312.6034 .
[90] Wei D, Zhou B, Torrabla A, Freeman W. Understanding intra-class knowledge

inside CNN. CoRR 2015;abs/1507.02379. arXiv: 1507.02379 .
[91] Mahendran A , Vedaldi A . Understanding deep image representations by in-

verting them. In: Proceedings of the IEEE conference on computer vision and
pattern recognition; 2015 .

[92] Mahendran A , Vedaldi A . Visualizing deep convolutional neural networks us-

ing natural pre-images. Int J Comput Vis 2016;120(3):233–55 .
[93] Zintgraf LM, Cohen TS, Welling M. A new method to visualize deep neural

networks. CoRR 2016;abs/1603.02518. arXiv: 1603.02518 .
[94] Dosovitskiy A , Brox T . Inverting visual representations with convolutional net-

works. In: Proceedings of the IEEE conference on computer vision and pattern
recognition .

[95] Zintgraf LM, Cohen TS, Adel T, Welling M. Visualizing deep neural net-

work decisions: Prediction difference analysis. CoRR 2017;abs/1702.04595.
arXiv: 1702.04595 .
[96] Li H, Mueller K, Chen X. Beyond saliency: understanding convolutional neural
networks from saliency prediction on layer-wise relevance propagation. CoRR

2017;abs/1712.08268. arXiv: 1712.08268 .
[97] Bojarski M, Choromanska A, Choromanski K, Firner B, Jackel L, Müller U, et

al. VisualBackProp: Efficient visualization of CNNs. CoRR 2016;abs/1611.05418.
arXiv: 1611.05418 .

[98] Strobelt H , Gehrmann S , Pfister H , Rush AM . LSTMVis: a tool for visual anal-
ysis of hidden state dynamics in recurrent neural networks. IEEE Trans Vis

Comput Gr 2018;24(1):667–76 .

[99] Li J, Chen X, Hovy E, Jurafsky D. Visualizing and understanding neural models
in NLP. CoRR 2015;abs/1506.01066. arXiv: 1506.01066 .

100] Rong X , Adar E . Visual tools for debugging neural language models. In: Pro-
ceedings of the international conference on machine learning workshop on

visualization for deep learning; 2016 .
[101] Ding Y , Liu Y , Luan H , Sun M . Visualizing and understanding neural machine

translation. In: Proceedings of the annual meeting of the association for com-

putational linguistics (Volume 1: Long Papers), vol. 1; 2017. p. 1150–9 .
[102] Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent net-

works. CoRR 2015;abs/1506.02078. arXiv: 1506.02078 .
[103] Diehl S . Software visualization: visualizing the structure, behaviour, and evo-

lution of software. Springer; 2007 .
104] van der Zwan M , Codreanu V , Telea A . CUBu: universal real-time bundling for

large graphs. IEEE Trans Vis Comput Gr 2016;22(12):2250–63 .

[105] Lhuillier A , Hurter C , Telea A . State of the art in edge and trail bundling tech-
niques. Comput Gr Forum 2017;36(3):619–45 .

106] Zhang L, Wang S, Liu B. Deep learning for sentiment analysis: A survey. CoRR
2018;abs/1801.07883. arXiv: 1801.07883 .

[107] Zhang J , Zong C . Deep neural networks in machine translation: an overview.
IEEE Intell Syst 2015;30(5):16–25 .

[108] Hochreiter S , Bengio Y , Frasconi P , Schmidhuber J . Gradient flow in recur-

rent nets: the difficulty of learning long-term dependencies. IEEE Press; 2001.
p. 464 .

[109] Maaten Lv d , Hinton G . Visualizing data using t-SNE. J Mach Learn Res
2008;9(Nov):2579–605 .

[110] da Silva RRO , Vernier EF , Rauber PE , Comba JLD , Minghim R , Telea AC . Met-
ric evolution maps: Multidimensional attribute-driven exploration of software

repositories. In: VMV; 2016 .

[111] Nguyen A , Yosinski J , Clune J . Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Proceedings of the IEEE

conference on computer vision and pattern recognition; 2015 .
[112] Netzer Y , Wang T , Coates A , Bissacco A , Wu B , Ng AY . Reading digits in natu-

ral images with unsupervised feature learning. In: Proceedings of the neural
information processing systems; 2011. p. 5–12 .

[113] Sacha D , Zhang L , Sedlmair M , Lee JA , Peltonen J , Weiskopf D , et al. Visual in-

teraction with dimensionality reduction: a structured literature analysis. IEEE
Trans Vis Comput Gr 2017;23(1):241–50 .

[114] Bach S , Binder A , Montavon G , Klauschen F , Müller K-R , Samek W . On pixel–
wise explanations for non-linear classifier decisions by layer-wise relevance

propagation. PLOS One 2015;10 .
[115] Montavon G , Lapuschkin S , Binder A , Samek W , Müller K-R . Explaining non-

linear classification decisions with deep Taylor decomposition. Pattern Recog-
nit 2017;65:211–22 .

[116] Dosovitskiy A , Brox T . Generating images with perceptual similarity metrics

based on deep networks. In: Advances in neural information processing sys-
tems, vol. 29. Curran Associates, Inc.; 2016b. p. 658–66 .

[117] Brochu E, Cora VM, De Freitas, N. A tutorial on bayesian optimization of ex-
pensive cost functions, with application to active user modeling and hierar-

chical reinforcement learning. CoRR 2010;abs/1012.2599. arXiv: 1012.2599 .
[118] Snoek J , Larochelle H , Adams RP . Practical Bayesian optimization of machine

learning algorithms. In: Advances in neural information processing systems,

vol. 25. Curran Associates, Inc.; 2012 .
[119] Snoek J , Rippel O , Swersky K , Kiros R , Satish N , Sundaram N , et al. Scalable

Bayesian optimization using deep neural networks. In: Proceedings of the in-
ternational conference on machine learning; 2015 .

120] Wattenberg M. How to use t-SNE effectively. 2017. https://distill.pub/2016/
misread-tsne .

[121] Martins R , Coimbra D , Minghim R , Telea A . Visual analysis of dimensionality

reduction quality for parameterized projections. Comput Gr 2014;41:26–42 .
122] Rauber P , Falcão A , Telea A . Visualizing time-dependent data using dynamic

t-SNE. In: Proceedings of the EuroVis – short papers; 2016. p. 137–42 .
123] McInnes L, Healy J. Umap: Uniform manifold approximation and projection

for dimension reduction. CoRR 2018;abs/1802.03426. arXiv: 1802.03426 .
124] Pezzotti N , Höllt T , Lelieveldt BP , Eisemann E , Vilanova A . Hierarchical

stochastic neighbor embedding. Comput Gr Forum 2016;35(3):21–30 .

http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0058
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0058
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0058
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0058
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0058
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0058
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0059
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0059
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0059
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0060
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0061
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0061
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0061
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0061
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0061
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0061
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0062
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0062
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0062
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0062
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0062
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0062
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0063
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0063
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0063
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0063
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0063
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0064
http://arxiv.org/abs/1708.03788
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0065
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0065
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0065
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0065
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0065
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0065
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0065
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0066
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0066
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0067
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0067
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0067
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0067
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0067
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0068
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0068
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0068
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0068
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0068
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0068
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0068
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0069
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0070
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0070
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0070
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0070
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0070
http://arxiv.org/abs/1506.06579
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0072
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0072
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0072
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0072
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0072
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0072
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0073
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0073
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0073
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0073
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0073
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0073
http://arxiv.org/abs/1602.03616
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0074
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0074
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0074
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1507.02379
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0075
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0075
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0075
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0076
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0076
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0076
http://arxiv.org/abs/1603.02518
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0077
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0077
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0077
http://arxiv.org/abs/1702.04595
http://arxiv.org/abs/1712.08268
http://arxiv.org/abs/1611.05418
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0078
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0078
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0078
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0078
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0078
http://arxiv.org/abs/1506.01066
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0079
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0079
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0079
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0080
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0080
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0080
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0080
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0080
http://arxiv.org/abs/1506.02078
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0081
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0081
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0082
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0082
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0082
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0082
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0083
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0083
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0083
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0083
http://arxiv.org/abs/1801.07883
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0084
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0084
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0084
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0085
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0085
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0085
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0085
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0085
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0086
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0086
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0086
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0087
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0087
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0087
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0087
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0087
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0087
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0087
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0088
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0088
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0088
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0088
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0089
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0089
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0089
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0089
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0089
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0089
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0089
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0090
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0091
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0091
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0091
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0091
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0091
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0091
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0091
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0092
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0092
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0092
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0092
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0092
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0092
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0093
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0093
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0093
http://arxiv.org/abs/1012.2599
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0094
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0094
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0094
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0094
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0095
https://distill.pub/2016/misread-tsne
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0096
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0096
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0096
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0096
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0096
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0097
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0097
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0097
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0097
http://arxiv.org/abs/1802.03426
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0098
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0098
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0098
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0098
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0098
http://refhub.elsevier.com/S0097-8493(18)30153-5/sbref0098

	A task-and-technique centered survey on visual analytics for deep learning model engineering
	1 Introduction
	2 Classical machine learning and deep learning
	3 Deep learning engineering: workflow and tasks
	4 Visual analytics of deep learning networks
	5 A Taxonomy on visual analytics for deep learning
	5.1 Methodology
	5.2 Architecture understanding
	5.2.1 Architecture visualization
	5.2.2 Architecture validation
	5.2.3 Model comparison
	5.2.4 Architecture understanding on different models

	5.3 Training analysis
	5.3.1 Visualization of model metric evolution
	5.3.2 Real-time analysis
	5.3.3 Training analysis on different models

	5.4 Feature understanding
	5.4.1 Model interpretability
	5.4.2 Feature explainability
	5.4.3 Feature understanding on different models

	6 Discussion and open challenges
	6.1 Architecture understanding
	6.2 Training analysis
	6.3 Feature understanding
	6.4 Non-functional requirements

	7 Conclusion
	 Acknowledgments
	 References

