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a b s t r a c t 

Skeletons are well-known descriptors that capture the geometry and topology of 2D and 3D shapes. We 

leverage these properties by using surface skeletons to remove noise from 3D shapes. For this, we extend 

an existing method that removes noise, but keeps important (salient) corners for 2D shapes. Our method 

detects and removes large-scale, complex, and dense multiscale noise patterns that contaminate virtually 

the entire surface of a given 3D shape, while recovering its main (salient) edges and corners. Our method 

can treat any (voxelized) 3D shapes and surface-noise types, is computationally scalable, and has one 

easy-to-set parameter. We demonstrate the added-value of our approach by comparing our results with 

several known 3D shape denoising methods. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

High-resolution 3D models are widely used in a variety of ap-

plications such as prototyping, computer-aided industrial designs,

games, and virtual reality systems. Such models inevitably have

measurement noises from various sources, such as scanning, dis-

cretization, or quantization [1,2] . Similarly, 3D shapes extracted

from volume data (e.g. MRI or CT scans) often contain significant

noise, be it topological [3] or geometric [4] , that needs to be re-

moved before further usage. 

Denoising a 3D model while preserving its salient geometric de-

tails (features) – also called regularization – is hard. Side effects

can occur, such as shape distortion and feature blurring, which

reduces the quality of the model. Additive noises from various

sources, present at different scales, complicate the situation, as

some noise may be wrongly considered a feature during regular-

ization. An effective regularization method should remove noise,

maintain features, and avoid side-effects. 

Many feature-preserving denoising methods have been pro-

posed [1,5–12] . Such methods work well for small- and single-

scale noise. They usually separate noise (to be removed) from fea-

tures (to be kept) locally . More advanced methods can remove

noise occurring at different spatial scales (multiscale noise). While
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ultiscale denoising methods exist, as discussed in Section 2.1 ,

hey are more complex and delicate to set up. A second issue

s that most feature-preserving denoising methods work on mesh

r point-cloud representations. Far fewer methods exist for binary

oxel volumes . 

Surface skeletons capture the topology and geometry of shapes

t different scales [13] . They are effective in many contexts – shape

egmentation [14] , registration [15] , retrieval [16] , and anima-

ion [17] . They have also been used for feature-preserving denois-

ng of 2D binary shapes [18,19] . Although surface skeletons of 3D

inary voxel shapes can be easily and efficiently computed [20,21] ,

hey have not been used for feature-preserving denoising of voxel

hapes. 

Given (1) the scarcity of feature-preserving denoising methods

or voxel shapes, and (2) the demonstrated effectiveness of 3D

urface skeletons to represent shapes in a multiscale way, we

ocus on how we can address task (1) with techniques from (2) for

oxel shapes. To this end, we study the skeleton-based denoising

f 2D binary shapes proposed in [19] , identify its limitations when

pplied to 3D binary shapes, and show how to overcome these.

e demonstrate our proposal on real-world binary 3D shapes cor-

upted by large amounts of multiscale, dense, and high-amplitude

urface noise. Results show that our method can recover very

ell the underlying features (corners and edges) of the original

D binary shapes. Our method can be applied to any binary 3D

hape corrupted by surface noise, is computationally scalable,

nd has only one simple-to-set parameter. Our method is useful

n cases where one wants to fully work in a voxel setting when

https://doi.org/10.1016/j.cag.2019.12.003
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epresenting and denoising shapes, rather than working with a

oundary representation (meshes or point clouds). Finally, we

how that 3D surface skeletons are an effective tool for feature-

reserving shape denoising – a task for which these skeletons

ave not been used so far. Summarizing, our contributions are as

ollows: 

1. We show (to our knowledge, for the first time) how surface

skeletons can do feature-preserving shape denoising; 

2. We treat feature-preserving denoising of shapes entirely in a

voxel setting; 

3. We show how we can effectively handle the case of multiscale

noise (of widely varying frequency and high spatial amplitude).

This paper is structured as follows. Section 2 overviews related

ork in shape denoising and skeletonization. Section 3 details our

ethod. Section 4 gives implementation details. Section 5 shows

esults on real-world shapes and compares them with existing

eature-preserving denoising methods. Section 6 discusses our

ethod. Section 7 concludes the paper. 

. Background 

.1. Feature-preserving shape denoising 

Many methods for feature-preserving denoising (fairing) of

D shapes exist. Early methods use anisotropic geometric diffu-

ion [22–25] , building on earlier image-processing methods [26] to

D shapes. Many such methods use a saliency map of the shape

urface that assigns high values to important features such as

trong edges. The saliency map weighs a shape deformation pro-

ess to remove noise but keep features. For example, Lange et al.

12] use directional and principal curvatures as well as the Wein-

arten map for the saliency map, and use anisotropic geometric

ean-curvature flow for their optimization. Other saliency-based

apping methods exist [9,27] . Diffusion-based methods [25,28–

0] preserve salient geometric features of the denoised surface and

an be computed efficiently [31] . However, such methods use first,

econd, or even fourth-order derivatives [32] (moments, curvature,

nd its second-order derivatives), which are local and can become

nstable when a large amount of noise is present. 

Other denoising methods use robust statistics or bilateral filter-

ng. They rely on a similarity measure that changes how the op-

imization process depends on the value of the points, thus being

ore robust to outliers. Hence, feature preserving smoothing can

e seen as estimating the surface in presence of outliers. An im-

ortant early work here is [5] . They use bilateral filtering, where

angent planes based on filtered normals drive the similarity mea-

ure. Oztireli et al. [11] use robust statistics (M-estimators) to drive

n implicit least-squares procedure that has good edge-preserving

ualities. This method performs well with a low number of sam-

les. Many other methods use robust statistics or bilateral fil-

ers [1,10,33–36] . Yet, such methods rely on local point neighbor-

oods, so they cannot differentiate globally important edges from

ocal (possibly noisy) geometric details. Also, such methods need a

iven finite-kernel size of to estimate curvature. If the size is too

mall, one gets noisy curvature estimates; if the size is too large,

urvature estimates are stable, but are localized in the filtered ver-

ion of the input shape (rather than the shape itself), which re-

ults in poor localization of shape features. To address this issue,

ildebrandt and Polthier [37] formulate surface fairing as an opti-

ization where a surface fairness measure is minimized subject to

onstraints, e.g., maximum distance to the input mesh. 

Another class of fairing methods first smooth face normals and

hen reconstruct the denoised surface [38–40] . Yagou et al. use

ean, median [39] , and alpha-trimming [40] filters to smooth the

ormal field. 
Tools from mathematical morphology can also perform surface

airing. For an implicit surface, level-set methods perform mean

urvature-flow smoothing [41] . This PDE-based method is fast and

as an automatic criterion to stop smoothing and keep the de-

oised surface close to the input. Additionally, an iterated me-

ian filter of the embedding (implicit) function is equivalent to

he mean curvature flow of the level sets [42,43] . A morphological

pening-closing filter smooths a (binary) signal similar to a median

lter [44] . 

.2. Denoising voxel vs polygon or point-cloud shapes 

As Sec. 2.1 shows, most feature-preserving denoising methods

se a boundary representation (b-rep) of shape, typically a polygon

esh or point cloud. Only very few denoising methods treat bi-

ary voxel representations (v-reps) of 3D shapes. This is explain-

ble since many applications use b-reps, which are more com-

act to store and can represent fine details more efficiently than

-reps. Also, b-reps offer a higher freedom for denoising, as (1)

oints can be placed anywhere in R 

3 , and (2) points can be added

nd/or deleted to enforce local shape properties. In contrast, v-reps

ensely sample R 

3 on a fixed-resolution grid, so have far less free-

om to represent small-scale details (and thus also when denois-

ng). This makes the creation of high-quality denoising methods

or v-reps (our goal in this paper) more challenging. Yet, binary

-reps have several advantages: They have a simpler implementa-

ion ; do not suffer from the problem of missing or inconsistent data,

uch as holes in a point cloud or meshes with inconsistently ori-

nted, self-intersecting, or degenerated, triangles; and can trivially

andle outlier samples, which appear as small-scale voxel groups

isconnected from the main shape, by using largest connected-

omponent filtering or morphological opening. 

.3. Skeletonization 

Notations Let � ⊂ R 

d be a compact shape, with boundary ∂�,

mbedded in 2D ( d = 2 ) or 3D ( d = 3 ). Its distance transform DT � :

 

d → R 

+ is given by 

T �(x ∈ R 

d ) = min 

y ∈ ∂�
‖ x − y ‖ . (1)

sing DT �, we can define the skeleton S � ⊂ R 

d as 

 � = { x ∈ �|∃ (y 1 , y 2 ) ∈ ∂� × ∂�, y 1 � = y 2 , 

‖ y 1 − x ‖ = ‖ y 2 − x ‖ = DT �(x ) } (2) 

imply put, Eq. (2) says that S � is the set of points inside the shape

which are at a distance equal to their distance-transform from

t least two different points y 1 and y 2 on the shape’s boundary

�. Even simpler put, S � is the locus of centers of maximally-

nscribed balls in � [45] . The points y i are called the feature points

f skeleton point x [46] , and are the contact points with ∂� of the

aximally-inscribed ball in � (of radius DT �( x )) of center x . The

et FT �( x ) of all feature points of a skeleton point x is called the

eature transform [47] of x . The pair ( S �, DT �), called the medial

xis transform (MAT) of �, is a dual representation of the shape,

.e. , allows one to exactly reconstruct � as the union of balls cen-

ered at the skeletal points x ∈ S � and having radii DT �( x ). 

Computing skeletons Many methods exist for computing approx-

mations of S �. Key to all such methods is a regularization pro-

ess that removes from S � so-called spurious branches, caused

y small-scale perturbations of the surface ∂�, due to sampling

nd/or acquisition noise. Such methods define an importance ρ :

 � → R 

+ and next define the regularized skeleton as S � = { x ∈
 �| ρ(x ) ≥ τ } for a user-selected regularization parameter τ ≥ 0.

or 2D shapes � ⊂ R 

2 , ρ is commonly set to the longest shortest-

ath distance δ along ∂� between all feature-point pairs, i.e. ,
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ρ(x ) = max (y 1 , y 2 ) ∈ F T �(x ) δ(y 1 , y 2 ) [48–50] . This keeps in S � only

skeletal points corresponding, via the feature transform, to bound-

ary details longer than τ units. 

3D skeletons computed via Eq. (2) or equivalents, also called

medial surfaces, have a considerably more complex structure than

their 2D counterparts, so regularization is imperiously needed

to provide simple enough representations for practical appli-

cations. Medial surfaces can be computed for both boundary-

representation (meshed) models and volumetric (voxel) models

by Voronoi and bisector methods, shrinking ball methods, topo-

logical thinning, and distance-field methods, see recent surveys

thereof [20,21] . Surface skeletons can be regularized by gener-

alizing the distance-between-feature points metric for 2D skele-

tons to the shortest-path (geodesic) distance along the surface ∂�

between feature points [50–53] . A similar metric ρ can be com-

puted by the advection of uniformly-spread mass from ∂� to S �
and then along the manifolds of S � towards its center [54] . Other

regularization metrics include divergence and moments of the dis-

tance transform’s gradient ∇DT � [55–57] and discarding skeletal

points whose feature points have a circumradius larger than a

given threshold [58] . 

Skeleton-based shape denoising Regularized skeletons open new

ways for shape denoising. If regularization removes the endpoints

of skeletal terminal manifolds in S �, then the MAT ( S �, DT �) of the

regularized skeleton S � allows reconstructing a simplified version

� of � where all surface zones corresponding to removed skele-

ton points are replaced by circle arcs (in 2D), respectively cylindri-

cal and spherical caps (in 3D). Hence, regularizing the skeleton by

removing points corresponding to noise-scale shape details directly

eliminates such noise. 

Not all regularization metrics perform equally well for the

above task. Local metrics (divergence, moment, or circumradius)

cannot distinguish between locally similar but globally different

shape configurations and may disconnect the skeleton during de-

noising [55–58] . Global metrics like the geodesic distance or mass-

advection do not have this problem as they monotonically increase

from the skeleton boundary towards its center [50,52–54] . Yet,

they have the separate problem that they also remove salient shape

features, such as edges and/or corners, together with same-scale

noise, much like classical isotropic Laplacian filtering [59] . 

Salience metrics alleviate this problem by adding information on

important (salient) shape features into the regularization. For 2D

shapes, Tek and Kimia iteratively remove skeleton branches using a

saliency metric equal to the area-difference between the smoothed

shape � and the original shape � divided by the skeleton branch

length [60] . Bai et al. [61] prune the skeleton by partitioning the

boundary ∂� into segments by discrete-curve evolution and re-

moving branches corresponding to less important segments. Liu

et al. [18,62] remove skeleton branches based on a saliency metric

including the reconstruction contribution (area difference between

� and �) and the length of the skeleton branch-part that is not

contained in the maximal sphere centered at the adjacent branch

point. Yet, such branch-pruning methods require a careful topologi-

cal analysis of the skeleton (detecting branches and their junctions)

which is very hard to generalize to the complex structure of 3D

medial surfaces, so are not readily applicable to 3D shapes. 

A different salience metric [19] uses the ratio 

σ (x ) = 

ρ(x ) 

DT �(x ) 
(3)

where ρ is the shortest-path importance metric in [49] . Consider

a noisy rectangle ( Fig. 1 a). For this shape, σ gradually decreases

along skeleton branches caused by noise details on ∂� but stays

roughly constant along branches caused by salient (important)

corners ( Fig. 1 d and inset). Hence, we can disconnect the noise

branches from the skeleton core – that is, the skeleton excluding
ranches created by small-scale, noise, perturbations on ∂� [63] –

y upper thresholding σ with a user-defined value σ 0 ( Fig. 1 e).

he low- σ removed skeletal points are the so-called skeleton lig-

tures [13] , along which ρ stays constant. Since σ stays high on

ranches caused by salient features (corners), these branches are

ot pruned. Next, one keeps the skeleton connected-component

ontaining the largest ρ value after the pruning pass ( Fig. 1 f). From

his, a denoised version � of the shape �, with salient corners

reserved, is computed as the union of balls of the core skeleton

 Fig. 1 f). However, the importance ρ is low towards the end of both

oise and salient branches ( Fig. 1 b and inset). Hence, regularizing

 � by upper thresholding ρ prunes both branch types, so recon-

truction removes both noise and smooth corners ( Fig. 1 c). 

. Method 

The skeleton-based method [19] described above effectively re-

oves even large-amplitude and multiscale boundary noise from

D shapes while keeping salient corners intact, is simple to imple-

ent, and computationally efficient (linear in the number of fore-

round pixels in �). Yet, generalizing this method to 3D shapes is

ot straightforward. We next identify three main problems for the

D case (see also Fig. 2 ): 

(A) Noise near features Consider the behavior of the saliency σ
 Eq. (3) ) along a noise-induced skeleton branch ( Fig. 1 d inset): The

our noise bumps are successfully removed as they are far from

he corner, so their ligature branches are long enough to allow DT �
o increase sufficiently to make σ to drop below the user thresh-

ld σ 0 . However, if such noise bumps were closer to the corner,

heir ligature branches would be too short to yield σ < σ 0 . So,

pper thresholding σ fails to remove noise close to salient cor-

ers. Decreasing σ 0 does not solve this problem, as it also removes

he tips of the skeleton branches caused by salient corners, which

s unwanted. The same problem appears in 3D for noise close to

hape edges or corners, which cannot be removed by thresholding

( Fig. 2 a, last column). 

(B) Noise crossing edges Consider elongated noise that crosses

intersects) a salient edge of a 3D shape. Fig. 2 b (column 1) shows

uch an example – a cube where a box-like bump was added

cross one edge. Fig. 2 b (column 2) shows the skeleton S � colour-

oded by the salience σ . We see that the noise bump creates

 skeletal sheet orthogonal to the cube’s surface skeleton. Up-

er thresholding σ removes some, but not all of the voxels on

his sheet ( Fig. 2 b, column 3). Unlike in the 2D case, threshold-

ng does not fully disconnect the noise-sheet from the rump skele-

on. Hence, we cannot remove such type of edge-crossing noise by

he connected-components procedure outlined for the 2D case in

ec. 2.3 . 

(C) Distance transform ripples Fig. 2 c shows a third and last

roblem of the method in [19] . The input cube shape was noised

y adding a few simple Gaussian-like bumps ( Fig. 2 c, column 1).

hese create several skeletal sheets ( Fig. 2 c, column 2). Threshold-

ng the salience σ fully removes these sheets ( Fig. 2 c, column 3).

owever, close to the junction points of the removed sheets, the

egularized skeleton exhibits several ‘ripples’, as its surface is bent

o as to be centered in the input shape, following Eq. (2) . Recon-

tructing the smoothed shape from this regularized skeleton next

reates some subtle, but unwanted, undulations on the final sur-

ace ( Fig. 2 c, column 4). 

We next propose several changes of 2D skeleton-based shape

moothing [19] that address the three above problems. 

.1. Problem A: Removing noise close to shape features 

As explained in Section 2.3 , along a noise-induced skeleton

ranch, the importance ρ first increases, then plateaus over the
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Fig. 1. Salience skeleton smoothing method for 2D shapes [19] . 

Fig. 2. Problems when applying the smoothing method [19] to 3D shapes. (a) Noise near corners or edges cannot be removed. (b) Noise crossing edges cannot be removed. 

(c) Distance transform ripples at the junctions of the removed skeletal sheets with the core skeleton create unwanted surface undulations. 
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ange of ligature points. Hence, we propose to detect ligature

oints by using the directional derivative of ρ along a vector field

 : S � → R 

3 that is tangent to the skeleton and points towards the

keleton core, i.e. , the quantity ∇ρ · v . In ligature areas, ∇ρ · v , ap-

roaches zero, as ρ is locally constant there. Indeed, by definition,

igature branches are sets of points that have the same feature

oints y i on ∂� [13] , hence the same shortest-paths between y i ,

ence the same ρ (shortest-path length). Separately, the distance

ransform always increases as we advance along a ligature branch

t

owards the skeleton core [13] . Hence, we propose to replace σ by

= 

∇ρ · v 

∇DT � · v 
(4) 

ust as σ , σ is low along ligatures. However, σ depends only on

he derivatives of ρ and DT �, and not their absolute values, so it is

cale-invariant with respect to the noise size and the noise posi-

ion vs salient shape features. 
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Table 1 

Errors of different vector fields used for the improved saliency metric σ ( Eq. (4) ). 

Importance gradient Distance gradient Bisector method Advection model 

ν( S ˜ �, S �) ε( S ˜ �, S �) ν( S ˜ �, S �) ε( S ˜ �, S �) ν( S ˜ �, S �) ε( S ˜ �, S �) ν( S ˜ �, S �) ε( S ˜ �, S �) 

cube 0.2506 0.2655 0.1565 0.1726 0.1523 0.1686 0.1556 0.1718 

bunny 0.5094 0.5621 0.1840 0.3893 0.1715 0.3820 0.1689 0.3835 

fandisk 0.5708 0.6057 0.2904 0.3741 0.2751 0.3684 0.2768 0.3666 

Fig. 3. Total error ε for different vector field models v as function of the smoothing 

threshold σ 0 for the fandisk model. 
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To compute σ , we need to define the vector field v . We next

present four designs for v which have different trade-offs between

implementation simplicity and accuracy, as follows: 

Importance gradient: As ρ is zero outside the skeleton by con-

struction, and increases along branches as we approach the skele-

ton core [52,53] , v = ∇ρ is a possible choice for v ; 

Distance gradient: As the distance transform increases as we ad-

vance away from ∂� into the shape, we can set v = ∇DT �; 

Bisector method: For any skeletal point x ∈ S �, its two feature

points y 1 and y 2 are on different sides of the tangent plane to S �
at x . This tangent plane bisects the angle formed by the feature

vectors y 1 − x and y 2 − x [64] . Hence, we can compute our vector

field as v = x − (y 1 + y 2 ) / 2 . 

Advection method: Several methods compute 3D skeletons by

contracting the surface ∂� in a vector field v that simulates ad-

vection of uniformly-spread mass from ∂� following a momentum

conservation principle [54,65] . We use here the field v proposed

in [54] , which has the desirable properties of being tangent to the

skeleton surface and pointing towards its core. 

Best method choice: We test which of the above four definitions

of v yields the best detector σ as follows. We consider a noise-

free shape � and its un-regularized (full) skeleton S �. We next

add noise to �, yielding the shape ˜ �, and compute its skeleton

S ˜ �, regularized by σ , for all vector fields v , with gradients com-

puted by central differences. Ideally, S ˜ � should be very close to

the ‘ground truth’ S �, since then the shape reconstructed from it

is very close to the original noise-free shape �. We compare S ˜ �
and S � with the following two metrics 

ν( S ˜ �, S �) = | S ˜ � \ S �| / | S ˜ �| , (5)

ε( S ˜ �, S �) = 1 − | S ˜ � ∩ S �| / | S ˜ � ∪ S �| (6)

that is, total error (false positives and false negatives), respectively

false positive rate. Table 1 shows these errors for three shapes in

Fig. 4 and the four considered vector fields v . Bold figures indi-

cate minimal errors per shape. We see that the bisector-method

achieves the lowest errors except for one case, where the distance-

based method is slightly better. 

Fig. 3 shows the total error ε ( Eq. (6) ) as function of the

smoothing threshold σ 0 for the fandisk model. The error monotoni-

cally decreases with σ for all four considered vector-field designs,
0 
hich implies detection robustness in terms of false positives. The

eature, bisector, and advection models yield very similar errors,

ll lower than the importance gradient model. Hence, from an er-

or perspective, the former three models are better. From an im-

lementation perspective, the importance gradient, advection, and

isector methods are all trivial to implement, and equally fast. The

dvection method is considerably more complex to implement and

ver two orders of magnitude slower as it involves solving a sys-

em of partial differential equations on the voxel volume (for de-

ails, see [54,65] ). Finally, the distance gradient involves differenti-

tion (computing ∇DT �), which can be affected by numerical noise

n low-resolution voxel models, whereas the bisector method does

ot. Hence, our final best-method choice is the bisector method. 

Fig. 4 compares the use of the improved saliency σ vs the orig-

nal saliency σ for the three shapes in Table 1 . We see that σ
emoves more noise skeletal sheets close to skeleton boundaries

han σ (compare markers in columns (c) vs (e)). Hence, the σ -

egularized skeleton yields better noise removal along the shape’s

ain edges (compare markers in columns (d) vs (f)). 

.2. Problem B: Removing edge-crossing noise 

The improved saliency σ removes noise close to the shape edges

nd most, but not all, small-scale noise located on such edges.

ig. 4 (insets in column (f)) shows some cases where noise on

dges cannot be removed. This is due to the complex topology

f 3D skeletal manifolds ( Section 2.3 ): Even when we fully prune

heir ligature sheets, noise-induced sheets will cross salient-edge

heets, so we cannot disconnect the former from the latter. This

as never a problem for 2D shapes, due to their far simpler-

opology skeletons. 

To solve this problem, we propose a new salience metric σ 
 

hat combines the desirable properties of the importance ρ and

alience σ (see next Fig. 5 ): We first compute the importance

, which is, as discussed earlier, low on both the noise sheets

orresponding to the bump added atop the box, and on the liga-

ures linking these sheets to the core, high- ρ , skeleton ( Fig. 5 b).

ext, we compute σ which is, as explained, low on ligatures but

igh on both the noise and core-skeleton sheets ( Fig. 5 c). Hence,

hresholding σ cannot disconnect the noise sheets from the core

keleton. We now introduce the computation of σ 
 : From each

keletal point x ∈ S �, we trace a streamline in the vector field v

computed by the bisector method, see Section 3.1 ), as long as

he encountered voxels y have increasing importances ρ( y ) and

aliences σ (y ) ≥ σ0 . Fig. 5 c shows two such streamlines with

hite arrows: If we start at point x (step 1 in figure), the stream-

ine advances as long as ρ increases and σ ≥ σ0 (step 2 in figure).

e can see that ρ increases and σ is indeed large along that path

y looking at their values in Figs. 5 b and c, respectively. When the

treamline reaches the center x ′ of the skeleton, ρ stops increasing

ince it is maximal here (red value in Fig. 5 b), so the streamline

tops (step 3 in Fig. 5 d). Finally, we set σ 
 ( x ) to the importance ρ
f the last voxel (that is, x ′ ) on the streamline (step 4 in figure). All

oints on core-skeleton sheets, like x , will get a high σ 
 value. In

ontrast, points on noise sheets (such as y in Fig. 5 e) get a low σ 
 

alue, since streamlines starting at them enter, at point y ′ , low- σ
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Fig. 4. Comparison of improved saliency metric σ and original saliency σ for shape smoothing. 

Fig. 5. Comparison of improved and global saliencies σ and σ 
 . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 6. Global saliency σ computed by (b) streamlines and (c) seed method. (a) 

shows the saliency σ for comparison purposes. 

Fig. 7. Three models with curvilinear noise added ( Section 3.2 ). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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igature sheets (blue in Fig. 5 c). Summarizing, on the core skeleton,

 is high (like σ but unlike ρ); and on noise and ligature sheets,

 is low (like ρ but unlike σ ). Hence, thresholding σ 
 completely

emoves both the ligature and the noise sheets connected to it

 Fig. 5 f). In contrast, thresholding σ does remove the ligatures but

ot the noise sheets, as shown earlier in Fig. 2 (3c). 

Computing σ 
 by tracing streamlines from all skeletal points is

ery expensive – O (| S �| 2 ) complexity – as it visits the same points

any times. We propose a faster method: First, we sort all voxels

 ∈ S � in decreasing ρ order, using radix sort. Next, we set σ 
 = ρ
or all ligature voxels ( i.e. having σ ≤ σ0 ) and also for the voxel(s)

aving the maximal ρ value. From these ‘seeds’, we propagate σ 
 

o 27-neighbor skeleton voxels, using flood-fill, so that a voxel’s σ 
 

s always set to the largest of the assigned σ 
 values to its neigh-

ors. The entire process takes now O (| S |) steps. Figs. 6 b,c show
�

 computed by the (slow) streamline method and the (fast) seed

ethod for the fandisk shape in Fig. 7 b. The two methods yield

ractically identical results, but the seed method removes slightly

ore noise sheets (blue), which is good. In contrast, σ cannot dis-

onnect the noise sheets from the core skeleton ( Fig. 6 a), just like

n the case of the cube model discussed earlier ( Fig. 5 ). 

To quantitatively compare how well σ 
 vs σ remove edge-

rossing noise, we designed an experiment similar to the one in
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Table 2 

Comparison of detectors σ and σ 
 for removing curvilinear noise. 

σ σ 
 (streamlines) σ 
 (seed propagation) 

ν( S ˜ �, S �) ε( S ˜ �, S �) ν( S ˜ �, S �) ε( S ˜ �, S �) ν( S ˜ �, S �) ε( S ˜ �, S �) 

bear 0.0139 0.6362 0.0136 0.6393 0.0137 0.6370 

bunny 0.0197 0.6201 0.0192 0.6219 0.0194 0.6203 

cat 0.0185 0.6268 0.0175 0.6337 0.0180 0.6281 

chair 0.1228 0.1911 0.1181 0.2213 0.1181 0.1859 

fandisk 0.0327 0.4538 0.0330 0.4556 0.0319 0.4563 

cube 0.1174 0.1264 0.1176 0.1258 0.1152 0.1233 

pot 0.0085 0.6791 0.0084 0.6797 0.0084 0.6794 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Removing reconstruction ripples by postprocessing either the skeleton (c) or 

the distance transform (d). See Section 3.3 . 
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Section 3.1 . We added curvilinear noise to several 3D shapes – the

idea behind is that such noise has a much higher chance to in-

tersect shape edges than the zero-dimensional point-like noise in

Fig. 4 b, and creates precisely the challenges shown in Fig. 2 b. To

synthesize noise, at p randomly selected points on the shape sur-

face ∂�, we define a random tangent direction d , and trace a curve

C of length l voxels on ∂� in direction d . During tracing, we jitter

d in the tangent plane to ∂�. Finally, we deform ∂� by convolv-

ing C with a 3D ellipsoid-kernel filter of radius r in the tangent

plane to ∂� and height h in normal-to-surface direction. For our

experiments, we set p = 0 . 001 | ∂�| , r = 3 , h = 3 , and l = 50 (all in

voxels). 

We compare σ 
 , computed both by streamline tracing and the

seed-based propagation method, with σ by computing the errors ν
and ε ( Eqs. (5) , ( 6 )) to measure how well the ground-truth (noise-

free) shape can be recovered. Table 2 shows the results. The σ 
 

detector, computed by seed propagation, is the most accurate with

respect to ground-truth for roughly half the shapes. For the other

half, σ 
 is below one percent less accurate than σ or σ 
 com-

puted by streamline tracing. Denoising using σ has barely any ef-

fects here (images not shown for space constraints), since most

noise intersects the shape edges. In contrast, denoising using σ 
 

removes almost all the curvilinear noise (see results further in

Fig. 11 ). Hence, we next use σ 
 as our regularization metric in the

remainder of this paper. 

3.3. Problem C: Removing reconstruction ripples 

As explained in Section 2.3 , noise added to a shape perturbs

both its skeleton and its distance transform. To achieve a bet-

ter reconstruction, we could (a) either postprocess the (regular-

ized) noisy skeleton § ˜ � so it gets closer to the skeleton S � of the

clean shape �, or (b) postprocess the distance transform DT ˜ � so

it gets closer to DT �. To study which option yields better results,

we take a ground-truth (noise-free) cube shape � and create a

noised version 

˜ � by adding noise with p = 0 . 02 | ∂�| , r = 2 , and

l = 5 , following the model described in Section 3.2 . Next, we re-

construct smoothed shapes from the MAT combinations (S �, DT ˜ �)

and (S ˜ �, DT �) respectively. The first MAT corresponds to situation

(a) in which we would be able to postprocess the noisy S ˜ � to per-

fectly recover the clean S �. The second MAT corresponds to situa-

tion (b) in which we would be able to postprocess the noisy DT ˜ � to

perfectly recover the clean DT �. Fig. 8 shows the results. Option (b)

yields a far closer result to the ground truth. Also, since postpro-

cessing a surface skeleton consisting of many complex 3D sheets

is technically much more complex than postprocessing a distance

transform voxel-volume, we next settle for option (a). 

We postprocess the noisy DT ˜ � by computing K({ DT ˜ �(y ) | y ∈
� ∧ ‖ y − x ‖ ≤ r} ) , i.e. , convolving it with a kernel K of radius r . We

tested four kernels: mean ( K E ), median ( K med ), constrained open-

ing ( K sup (K in f ) , where K sup and K in f are the supremum, respec-
ively infimum kernels), and minification, defined by 

 min f (x ) = 

{
K in f (x ) + r, if DT ˜ �(x ) ≤ r 
K in f (x ) , otherwise 

(7)

All kernels can be applied implicitly , i.e. , on the entire 3D vol-

me �, or explicitly , i.e., using only the distance transform values

f points in the regularized skeleton. Table 3 compares the recon-

truction error between a noise-free shape � and the smoothed

hape � obtained from a noised version of �, computed as

(�, �) = 1 − | � ∩ �| / | � ∪ �| , for all four kernels, implicit and

xplicit versions, all with a radius r = 3 voxels. Noise is gener-

ted using p = 0 . 014 | ∂�| , r = 2 . 1 , h = 3 , and l = 1 , following the

odel in Section 3.2 . We use here a zero-dimensional (point-like,

 = 1 ) noise so as to remove edge-crossing effects, which were han-

led separately in Section 3.2 . Table 3 shows that, except K min f , all

ernels are almost always more accurate in their explicit versions.

his is explained by the fact that only regularized skeleton points

ontribute to filtering, thereby excluding ligature sheets, which are

aused by the added noise. In contrast, K min f gets better results in

ts implicit version as it evaluates more neighbor points (not only

hose on the skeleton), so it has a better chance in finding a mini-

um value. 

Reconstruction errors are quite similar for different filters.

here does not seem to be a best filter for all models. To get

ore insight, we visually examine the filters’ effects. Fig. 9 shows

he reconstruction results using the explicit version of K E , K med ,

 sup (K in f ) , and the implicit version of K min f , selected as such
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Table 3 

Comparison of four distance-transform smoothing kernels, implicit and explicit versions. The smallest reconstruction error (implicit 

vs explicit) for each kernel is in bold. The smallest reconstruction error for a model, all kernels, is in italic. 

K E K min f K sup (K in f ) K med 

implicit explicit implicit explicit implicit explicit implicit explicit 

bear 0.0325 0.0129 0.0758 0.1151 0.0481 0.0145 0.0359 0.0134 

bunny 0.0272 0.0161 0.0702 0.1032 0.0366 0.0154 0.0305 0.0171 

cat 0.0479 0.0268 0.0862 0.1162 0.0749 0.0294 0.0509 0.0276 

chair 0.0516 0.0489 0.0132 0.1906 0.1015 0.0453 0.0736 0.0499 

fandisk 0.0184 0.0183 0.0216 0.0955 0.0305 0.0151 0.0245 0.0190 

hammer 0.0734 0.0329 0.0557 0.1835 0.1314 0.0279 0.0856 0.0368 

cube 0.0076 0.0171 0.0008 0.0715 0.0002 0.0141 0.0242 0.0170 

pot 0.0097 0.0047 0.0277 0.0306 0.0100 0.0043 0.0130 0.0047 

Fig. 9. Comparison of different filters K for distance transform smoothing. See Section 3.3 . 
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iven the earlier findings from Table 3 . We see that all filters K
mprove upon the filter-less reconstruction ( Fig. 9 b). K min f yields

he visually smoothest result, with noticeably cleaner surfaces,

ven though it yields a slightly higher reconstruction error than

 sup (K in f ) ( Table 3 ). Hence, we choose K min f as our filter of choice

o use next. 

. Implementation 

We implemented our method in C++ using OpenGL point-based

endering of ∂� with radial splat kernels for fast display of binary

oxel models (see Fig, 10 for the full pipeline) and the following

omponents: 

Skeletonization: We tested several methods for computing the

AT ( S �, DT �) and feature transform FT �: mass advection [54] ,

ultiscale skeletons [50] , the method of Reniers et al. [52] , and the

nteger Medial Axis (IMA) [46] . Among these, IMA is the simplest

o implement, and of complexity O (| �|), which is in practice over

ne order of magnitude faster than the other methods. IMA deliv-

rs noisier skeletons than the other methods. This is not a problem

ince we anyways regularize the skeleton next. Hence, we choose

MA to compute S , DT ) and FT ( Fig. 10 , step 1). Several other
� � �
esh-based methods for computing surface skeletons exist – that

s, which represent both � and S � as a mesh rather than in voxel

pace [53,66] . We cannot easily use such mesh-based methods as

everal steps of our framework are designed to work in a voxel set-

ing, i.e., computing σ 
 by the flood fill method ( Section 3.2 ) and

ostprocessing DT � to remove ripples ( Section 3.3 ); and since not

ll these methods deliver the feature transform FT �. Moreover, as

tated in the introduction, our focus is feature-preserving smooth-

ng of voxel shapes. As such, we considered only voxel-based 3D

keletonization methods, of which IMA is our choice. 

Importance metric: Following [50,52] , we define ρ as the

eodesic distance between a skeleton’s feature points. We compute

following the Dijkstra shortest-path search method on the voxel

onnectivity graph of the ∂� voxels ( Fig. 10 , step 1). For details

nd source code, we refer to [52] . 

Salience: We next compute the vector field v needed to eval-

ate σ ( Fig. 10 , step 2) using one of the four methods described

n Section 3.1 . As explained there, these methods offer differ-

nt trade-offs between implementation simplicity and accuracy,

hich one can choose from. Following this, we compute the global

alience σ 
 ( Fig. 10 , step 4) following the simple flood-fill process

xplained in Section 3.2 . The simplified skeleton S � is then trivially
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Fig. 10. Pipeline of the proposed feature-preserving smoothing method. See Section 4 . 

Fig. 11. Noisy models (a) with raw skeletons (b), regularized skeletons colored by distance transform (c) and saliency metric σ 
 (d), and final smoothed shapes where salient 

shape features such as flat areas and edges are recovered from the noise (e). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 12. Comparison of our method with other shape denoising techniques. See 

Section 5 . 
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btained by selecting all voxels of S � where σ 
 is above the user-

hosen smoothing level ( Fig. 10 , step 5), whose setting is discussed

ext in Section 6 . 

Reconstruction: We compute the filtered distance transform

T � ∗ K min f ( Fig. 10 , step 6), and finally reconstruct the smoothed

hape � as the union-of-balls centered on the regularized skeleton

 � having as radii the We use for this the fast reverse Euclidean

istance transform implementation in [67] which is O (| �|). 

. Results 

Fig. 11 shows our method applied on a mix of synthetic shapes

ith smooth surfaces separated by sharp edges ( fandisk , pot , chair )

nd organic shapes having more curved surfaces separated by

ess sharp edges ( bear , dolphin , bunny , cat ). The shapes also fea-

ure thick parts (all except chair ), tubular thin parts ( cat , chair )

nd slab-like parts ( dolphin , chair ). For each model, we show the

oised shape �, its raw skeleton S �, the skeleton S � regularized

y σ 
 , and the smoothed shape �. The latter is computed using a

moothing threshold σ0 = 18 , experimentally chosen by increasing

0 until all noise is visually gone. 

Noise model: We use here denser, and more challenging, noise

han in all examples shown so far, given by the parameters p =
 . 02 | ∂�| , r = 2 . 5 , h = 3 , l = 6 (see Section 3.2 ). This creates mul-

iscale noise of quite high amplitude, densely covering the shape

urface, which is challenging to remove. The use of synthetic

oise in testing denoising methods is known in the literature, see

.g. [68] and [69] ; for instance, the noised fandisk in Fig. 11 is very

imilar to Fig. 12 in [68] . Such noise is stronger (denser and/or

igher-amplitude) than typical scanning noise, and it is hard to

nd real-world scans exhibiting this noise level. Moreover, for voxel

odels, scanning noise only shows up at high resolutions, roughly

0 0 0 3 voxels or higher; to demonstrate our method’s denoising

bilities on voxel models of lower resolutions, we need to gener-

te noise synthetically. 

The smoothed shapes produced by our method are virtually

verall noise-free and recover the underlying edges, flat surfaces,

urved surfaces, and tubular parts well. We also see that the sur-

ace skeletons extracted by the IMA method are quite complex for

ll models ( Fig. 11 b). This is not an issue in our context, in con-

rast to other applications of skeletons, e.g. segmentation [14] or

lassification [64] . As explained, our method does not need a clean

keleton, since its regularization (done by upper thresholding σ 
 )

s sufficient for the union-of-ball reconstruction for smoothing pur-

oses. Fig. 11 c,d show the regularized skeletons S � colored by the

istance transform DT �, respectively the salience σ 
 . We see how

he regularization removes the noise and ligature sheets of the raw

keletons so as to deliver the desired feature-preserving smooth-

ng. Also, we see that the distance transform has low values on

arge portions of the surface skeleton such as the bear’s muzzle

nd paws, shark’s fins, fandisk edges, pot lid rim, bunny’s ears, and

at’s paws and tail (blue in Fig. 11 c). These skeleton parts, close to

he shape’s surface, would have been removed by naively thresh-

lding the importance ρ , resulting in unwanted loss or smoothing

f the corresponding shape features. In contrast, the σ 
 metric has

igh values in these areas (warmer colors in Fig. 11 d), so the corre-

ponding shape salient features are kept after smoothing, as visible

n Fig. 11 e. Running times for our method on a Linux desktop PC

t 3.2 GHz with 16 GB RAM are shown in Table 4 b. 

Comparison with mesh-based methods: We further compare our

ethod with six well-known techniques for 3D shape smoothing:

urface-preserving Laplacian smoothing [59] , two-step smooth-

ng [7] , algebraic point-set surfaces (APSS) [8] , robust improved

oving least squares (RIMLS) [11] , Wei et al.’s kernel low-rank re-

overy [69] , and the rolling guidance normal filter (RGN) [68] . The

rst four methods are readily available in MeshLab [70] , which fa-
ors comparison replicability. For the method of Wei et al. [69] , we

id not have the implementation, but provided the noised meshes

o the authors who delivered us the results they obtained from

hem. RGN iteratively applies a joint bilateral filter to face normals

t a specified scale, which empirically smooths small-scale geomet-

ic features while preserving large-scale ones. We used the pub-

ic RGN implementation on the website of the first author of [68] .

able 4 a lists the parameter values for the compared methods that
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Table 4 

(a) Parameters of compared methods. (b) Our method’s processing time for different shapes. 

Method Parameters (other than default) Shape Resolution Time (s) 

Laplacian max. normal deviation 60 ◦ shark 420 3 52.3 

Two-step smoothing steps 40 bear 276 3 63.7 

method degree 60 bunny 216 3 98.09 

normal smoothing steps 20 cat 420 3 108.7 

vertex fitting steps 20 chair 420 3 173.1 

APSS scale 15 fandisk 276 3 481.7 

RIMLS scale 15 hammer 520 3 39.2 

Wei et al. σS = 0 . 45 , n 1 = 30 , n 2 = 20 cube 148 3 31.7 

WLOP scale 7..15 pot 276 3 203.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Comparison of our method (d) with naive skeleton pruning (b) and 

salience-based denoising [19] (c) for a 2D binary pixel shape (a). Insets show 

distance-transform ripples (red in (c)) that our method can remove. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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we had to change from the MeshLab defaults so as to obtain the

best feature-preserving smoothing for each method. For Wei et al.,

the authors provided the optimal parameters σ S , n 1 , n 2 themselves

after experimentation (for explanations of these, we refer to [69] ).

For RGN, we used the parameter values σs = 5 , σr = 0 . 8 , and n = 5

iterations. 

To make the task more challenging, we noised the input shapes

using dense and high-amplitude curvilinear noise with parame-

ters p = 0 . 01 | ∂�| , r = 2 . 1 , h = 7 , and l = 4 , following the rationale

outlined at the beginning of this section. Since all above methods

are mesh-based, we converted our voxel shapes to meshes using

isosurfacing. Our method recovers the original shapes significantly

better than the other tested methods ( Fig. 12 ). Note that the wavy

artifacts in Fig. 12 f are due to the isosurface extraction from the

limited-resolution voxel models. The method of Wei et al. only

removed a very small amount of the present noise from all the

tested models. 

Comparison with point-cloud methods: We also compare our

method with two point-cloud denoising methods: WLOP consoli-

dation [71] and deep points consolidation (DPC) [72] . WLOP uses

a weighted locally-optimal projection operator to produce a set of

denoised points over the original point cloud, trying to improve

normal estimates through local PCA. These normal estimates are

further consolidated by an iterative, priority-driven, normal prop-

agation step. DPC improves upon WLOP by augmenting each sur-

face point by an inner point that resides on the so-called meso-

skeleton. The strength of this representation is that it combines

both local and non-local geometric information. Both WLOP and

DPC take as input the point cloud given by the vertices of the noisy

meshes which we generated from our noisy voxel models via iso-

surfacing. Since both methods redistribute consolidated points over

the original point cloud, we downsampled the input point cloud to

about 30K points. For both methods, we used the code available

on the website of the first author of [72] , with default parameters,

except the WLOP scale. For each model, we set the WLOP scale

to values between 7 and 15 to strike a tradeoff between feature

preservation and outlier removal. Withe these settings, WLOP took

between 120 to 340 s, while DPC took between 221 and 430 s.

Similar to the mesh methods, WLOP and RPC succeed in removing

almost all noise, but also smooth out salient edges and corners. 

Several observations emerge from the above comparison. We

see that both mesh-based and point-cloud-based methods have

some issues in removing noise and preserving salient edges or

corners. Depending on the method and model, there are areas

in which either noise is not removed, or salient features are

smoothed out. This is explained by the nature of the noise present

in these shapes (strong and multiscale) – it is hard to find param-

eters that separate such noise from features since they both occur

on a range of scales. Our method succeeds in doing this separation

better since its operation is driven by the shape’s surface skeleton

and global saliency σ 
 , which, as explained, are both global and

multiscale descriptors: The classification of a surface voxel in noise

vs feature depends on its corresponding skeleton voxel and the σ 
 
alue thereof, which both in turn are computed from non-local

hape properties. Actually, σ 
 is computed globally from the entire

hape via the importance analysis ( Section 3.2 , see again Fig. 4 ). 

. Discussion 

We next discuss several aspects of our method: 

Generality: Our method can remove noise of any type and from

ny kind of voxelized models. 

Parameters: We have a single free parameter: the saliency σ 
 to

hreshold to remove the noise ( Section 3.2 ). As explained there, σ 
 

as the same dimensionality as the importance ρ , which in turn

quals the length, in voxels, of the shortest-path on ∂� between a

keleton’s feature points. Hence, to remove a noise bump of base

hickness 2 r and height h created by our noise model ( Section 3.2 ),

e can set σ 
 = 2 rh . This explains the values used for σ 
 in this

aper. 

Implementation: Our method is simple to implement, needing

nly the IMA method for the raw skeleton S � [46] and Dijkstra’s

hortest-path tracing on ∂� for ρ [52] . While its performance

s still slower than mesh-based denoising alternatives ( Table 4 a),

assive speed-ups can be obtained by computing the skeleton,

istance, and feature transforms on the GPU as shown in [73] . For

eplication purposes, the source code of the method is available

t [74] . 

Comparison to 2D: Our method shares goals, and technical

oints, with its 2D precursor [19] , so it is useful to compare these

ethods for denoising 2D binary pixel shapes. Fig. 13 does this for

he original noisy shape in [19] . Naive skeleton pruning based on

he importance ρ eliminates noise bur also rounds off salient cor-

ers (b). Saliency-based pruning of the 2D skeleton removes noise

nd keeps salient corners, but also creates some unwanted ripples
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marked red in Fig. 13 c). Our method removes these ( Fig. 13 c). In

etail, our method proposes mechanisms to handle three problems

A, B, C, see Section 3 ): Problem A is far less visible for 2D shapes,

ince the small-scale noise referred to in Section 3.1 ) are quite hard

o see in 2D binary images; in contrast, due to the shading typi-

ally used when viewing 3D shapes, such small-scale noise is much

asier to spot. Problem B is inherent to the 3D case, and does not

ccur in 2D shapes – there is no equivalent 2D configuration to

he ‘noise crossing edges’ situation depicted in Fig. 2 (1b). Prob-

em C is similar to A – the small-scale ripples due to the distance

ransform (see Section 3.3 ) are easier to spot for 3D shapes due to

heir shading than in 2D shapes – compare, for example, the rip-

les in Fig. 2 (4c) with the red insets in Fig. 13 c. Concluding, our

D method can be applied to denoise 2D binary pixel shapes, but

ts improvements vs the original method in [19] are quite small,

hich, we believe, do not justify the added implementation com-

lexity. The main added value of our method is for 3D binary

hape denoising, a case where the naive application of [19] yields

oor results ( Fig. 2 ). 

Limitations: The smoothing quality of our method is influenced

y the precision (centeredness) of the computed surface skeleton,

hich is in turn determined by the voxelization resolution. Higher-

esolution models have skeletons that capture more surface de-

ails, thus allow to better detect and remove noise, but need more

emory and processing time. More importantly, our method can-

ot distinguish between detail surface perturbations which are lo-

ated far away from the salient shape edges and actual noise, and

ill remove the former while preserving the latter. However, we

rgue that this is an intrinsic problem of all smoothing methods –

ithout additional context-specific information, such noise cannot

e distinguished from actual details. 

. Conclusion 

We have presented a new method for feature-preserving de-

oising of 3D volumetric models using surface skeletons. For this,

e identify skeletal sheets created by undesired noise using an

xtension of the salience metric earlier proposed in [19] for 2D

hapes. Following simple threshold-based removal of these sheets,

e reconstruct noise-free models using a modified Euclidean dis-

ance transform to remove low-frequency ripples. To our knowl-

dge, our method is the first one demonstrating the added value

f 3D surface skeletons for shape denoising. Our method has a sin-

le free parameter denoting the geometric scale of noise to be re-

oved. In contrast to local denoising methods, our method fully

reserves salient shape features such as edges and corners, as cap-

ured by the surface skeleton. We demonstrate our method for a

ariety of 3D shapes contaminated by significant amounts of noise

nd show that we can achieve better denoising than known alter-

ative techniques. 

All steps our method are amenable to SIMD parallelization, so

xploiting architectures such as GPUs can lead to significant perfor-

ance gains. Secondly, we consider adapting our method to han-

le mesh-based shape representations and their surface skeletons

sing recent GPU-accelerated mesh skeletonization methods [53] .

inally, we plan to extend our comparison with additional feature-

reserving denoising methods. 
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