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a b s t r a c t

Dimensionality reduction techniques, also called projections, are one of the main tools for visualizing
high-dimensional data. To compare such techniques, several quality metrics have been proposed.
However, such metrics may not capture the visual separation among groups/classes of samples in
a projection, i.e., having groups of similar (same label) points far from other (distinct label) groups
of points. For this, we propose a pseudo-labeling mechanism to assess visual separation using the
performance of a semi-supervised optimum-path forest classifier (OPFSemi), measured by Cohen’s
Kappa. We argue that lower label propagation errors by OPFSemi in projections are related to
higher data/visual separation. OPFSemi explores local and global information of data distribution
when computing optimum connectivity between samples in a projection for label propagation. It is
parameter-free, fast to compute, easy to implement, and generically handles any high-dimensional
quantitative labeled dataset and projection technique. We compare our approach with four commonly
used scalar metrics in the literature for 18 datasets and 39 projection techniques. Our results
consistently show that our proposed metric consistently scores values in line with the perceived visual
separation, surpassing existing projection-quality metrics in this respect.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Multidimensional data occurs in many fields as science, engi-
eering, medicine, and machine learning (ML). Visually inspect-
ng such data to find relevant patterns is challenging when the
umber of dimensions is high. Dimensionality reduction (DR)
lgorithms, also called projections, are methods of choice for this
ask. Projections aim to map the high-dimensional data to low-
imensional spaces (typically 2D or 3D) so that the main data
atterns are preserved and thus directly explorable.
Projection techniques have been used in ML to explore high di-

ensional data [1], comprehend and explain models [2,3], design
etter classifiers [4], and label data [4]. In most such tasks, data
eatures and class labels are supposed to be correlated, i.e., close
ata points typically have the same labels, so that the features of
he former can be used to predict the latter.

The success of these explorative tasks depends on the visual
eparation (VS) of the projection used to depict it. If a dataset
xhibits clear data separation (into samples of different classes),
hen analysts should be able to gauge this by seeing a corre-
ponding visual separation in the projection, in terms of densely-
acked, ideally non-overlapping, groups of points with the same
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label (within a given group). Conversely, if a dataset exhibits poor
separation, its projection should also show poor visual separation.
Assessing VS is useful, for example, to judge the ease of classifying
a dataset (or parts thereof) [2].

Many projection methods have been proposed, using different
underlying techniques as graphs, linear algebra, optimization, and
neural networks [5]. Such techniques generate a wide variety
of scatterplots for the same give dataset, especially when one
changes their various hyperparameters. Several metrics have been
proposed to quantify a projection’s quality. However, the most
used metrics in the DR literature – Trustworthiness (T ) [6], Con-
tinuity (C) [6], Normalized stress (S) [7], and Neighborhood hit
(N) [8] do not directly measure visual separation at a global pro-
jection level but rather more local properties (as discussed further
in Section 4.3). Table 1 shows this by a simple example of three
DR techniques (t-distributed stochastic neighbor embedding [t-
SNE] [9], stochastic proximity embedding [SPE] [10], and uniform
manifold approximation and projection [UMAP] [11]) and their T ,
C , S, and N metrics, all ranging between 0 (worst quality) and 1
(best quality). The SPE plot has high metric values but arguably
much poorer visual separation (of the 9 color-coded classes) into
distinct, same-color, point groups than the t-SNE plot which has
much lower metric values. UMAP and SPE have similar (high)
metric values but, we argue, visual separation is much stronger
in the UMAP than the SPE plot. All in all, this shows that these

four metrics do not capture visual separation well.
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Table 1
Values of T , C , S, and N (Section 4.3) and scatterplots of a dataset (cnae9,
ection 4.1) for three projection techniques (t-SNE, SPE, and UMAP, Section 4.2).
values are set as 1 − normalized stress for easy interpretation. We see that

the metrics do not correlate well with the perceived visual separation of the
label-colored points in the projection.

Projection T C S N Scatterplot

t-SNE 0.516584 0.649824 0.809278 0.256746

SPE 0.833158 0.937247 0.777273 0.839947

UMAP 0.798405 0.871780 0.762065 0.978571

Recent ML studies have explored the VS information of 2D pro-
ection spaces to assess data separation in high dimensions [1];
nderstand deep learning classifiers [2]; find misclassified sam-
les [5]; investigate decision boundaries of classifiers [12]; build
etter classifiers [13–15]; and investigate the correlation among
igh-dimensional separability, VS, and classifier performance [16].
ven though some studies have investigated 1-near-neighbor
lassifiers [9,17] and Gaussian mixture models [18] to estimate
he quality of clustering, they did not aim to specifically measure
he correlation between classes and clusters. To our knowledge,
L approaches were not directly used to measure this VS relation

n projections.
In this paper, we propose a new VS quality assessment ap-

roach based on ML techniques. We exploit earlier findings that
tudied VS in t-SNE projections to propagate labels, also called
seudo labeling. Projections with high VS (as assessed qualita-
ively by users) led to good label propagation results [16]. Our
ypothesis is that the converse is also true: If we measure a
ood label propagation score, then the projection will have a high
S. For label propagation, we use the semi-supervised optimum
ath forest algorithm (OPFSemi) [19] in the 2D projection space
rovided by DR methods. OPFSemi was shown to lead to very
ood label propagation accuracies in both high-dimensional and
ow-dimensional spaces [15,19] and as such is a good candidate
or this task. We evaluate the label propagation by computing the
oefficient of agreement of Cohen’s Kappa (κ) [20] between true
nd pseudo labels, a simple but fast and effective way to perform
his task which works well also for unbalanced labeled datasets.
e assess our proposal on 39 projection algorithms for 18 labeled
atasets and show that our method correlates with perceived VS
etter than well-known metrics for projection quality used in the
R literature. As such, we argue that our metric is an additional
seful way to characterize the quality of a projection, atop of
xisting projection quality metrics.
Summarizing, we propose a method to quantify VS separation

n projections which

(a) yields better global and local quantification of VS when
compared to four popular metrics in DR;

(b) generically handles any high-dimensional quantitative la-
beled dataset and any projection technique;

(c) is easy to use as it is parameter-free;

(d) is fast to compute and simple to implement.
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2. Related work

Let D = {xi, li} with xi ∈ Rn be a labeled dataset with labels
i ∈ {1, 2, . . . , g}. Each sample xi has a label li. A projection P takes
dataset D and produces a scatterplot P(D) = {yi = P(xi)|yi ∈
q
}, where typically q ∈ {2, 3}. In this work, we consider q = 2,

i.e., 2D scatterplots.

2.1. Classical quality metrics

Classical quality metrics include scalar metrics, point-pair
metrics, and local metrics [21]. Four scalar metrics frequently
used in DR literature [5] are described below. All these metrics
range between 0 (worst case) and 1 (best case).

Trustworthiness (T ) [6]: measures the fraction of points in D that
are also close in P(D) or how local visual patterns in a projection
truly represent actual data patterns. This is related to the so-
called false neighbors of a projected point [22]. In the definition of
T (Eq. (1)), U (K )

i is the set of points that are among the K nearest
neighbors of point i in 2D but not among the K nearest neighbors
of point i in D; and r(i, j) is the rank of the 2D point j in the
rdered-set of nearest neighbors of i in 2D.

(x, y) = 1 −
2

NK (2n − 3K − 1)

N∑
i=1

∑
j∈U (K )

i

(r(i, j), −K ) (1)

Continuity (C) [6]: measures the fraction of points in P(D) that
are also close in D. This is related to the missing neighbors of a
projected point [22]. In the definition of C (Eq. (2)), V (K )

i is the set
f points that are among the K nearest neighbors of point i in D
ut not among the K nearest neighbors in 2D; and r̂(i, j) is the
ank of the Rn point j in the ordered-set of nearest neighbors of
in D.

(x, y) = 1 −
2

NK (2n − 3K − 1)

N∑
i=1

∑
j∈V (K )

i

(r̂(i, j), −K ) (2)

ormalized stress (S) [7]: measures the preservation of point-
airwise distances from D to P(D) (see Eq. (3)). Euclidean distance

is commonly the most used.

S(x, y) =

∑
ij(∆

n(xi, xj) − ∆q(P(xi), P(xj)))2∑
ij ∆

n(xi, xj)2
(3)

Ideally, a projection should have S = 0. To ease comparison with
the other metrics, we next use instead 1 − S in our work.

Neighborhood hit (N) [8]: measures the fraction of the K neigh-
ors N (K )

i of a point i in P(D) that have the same label l as point
i, averaged over all points in P(D) (see Eq. (4)). This is related to
the labeled separation in a projection P(D).

N(y) =

N∑
i=1

|j ∈ N (K )
i : lj = li|
NK

(4)

Additional scalar metrics exist for measuring label separation in
projections — we discuss them in Section 2.2.

Scalar metrics characterize the quality of an entire projection
P(D) by a single value, so they are simple to interpret. However,
this inherently averages quality over different parts of P(D) and/or
D. Point-pair metrics, e.g. the Shepard diagram of pairwise point
distances [7], and local metrics, e.g. missing and false neigh-
bor plots [22] offer finer-grained quality characterizations. These
metrics are typically used to create visualizations of the quality
distribution over a projection and cannot be (easily) used to
numerically compare several projection algorithms. As such, we
do not consider them in our work.



B.C. Benato, A.X. Falcão and A.C. Telea Computers & Graphics 116 (2023) 287–297

2

t
a
e
c
2
s
s
d
l
m
c
h
p
t
c
a
m
m
o
a
2
m
b
e
b
t
m
o
S
s
g
c
a
w
i
d

e
v
d
d
F
o
3
T
d
c
c
h
c
d
a

2

p
v
v
c

p
c

T
t
D
V
O
r
1

3

(
p
i
g
(
l
a
p

n

3

D
r
B
o

.2. Visual perception metrics

Several metrics have been used to assess the visual percep-
ion of different patterns present in projections. Among them,
pproaches based on clustering, such as the Silhouette score,
xplore centroids and labels to assess group separation. Other
lustering-based approaches combine information from nD and
D spaces with labels to gauge visual perception [23]. Class con-
istency [24] and distance consistency [25] measures assess class
eparation via distances from defined centroids. Both combine
ensity functions and local neighborhoods to identify class over-
ap. Although pseudo labels can be used as a strategy with such
etrics, they still rely on suitably chosen and parameterized
lustering techniques and probability density models and can
ave difficulties detecting (and characterizing) clusters of com-
lex shapes — the Swiss roll dataset is a famous example. In [18],
he authors also explored Gaussian mixture models to measure
lustering in monochrome scatterplots, but without taking into
ccount labels. Sedlmair et al. [26] compared cluster separability
easures and human observations and concluded that grouping
easures might fail to capture multiple sub-groups and groups
f different sizes, shapes, and densities. In [27], fifteen metrics
nd user judgment were used to analyze visual separability in
D scatterplots. The authors found that the distance consistency
easure [25] led to the best agreement with human judgement,
ut can vary across synthetic and real-world data scenarios. They
valuated their results using only the AUC metric, which can
e affected by class unbalances. To circumvent problems related
o clustering-based approaches, solutions based on graphs and
inimum-spanning trees have been proposed. In [28,29], meth-
ds were proposed to find patterns in large scatter plot matrices.
eparately, [30] evaluated original and projected spaces for the
ame purpose. The benefits of such methods include covering
lobal and non-trivial shapes, being parameter-free, and fast to
ompute. However, these studies did not explore graph-based
pproaches in a pseudo labeling task to evaluate projections —
hich is our proposal. Also, they did not compare their methods

n a wide experimental setup with well-known projections and
atasets as we will be doing.
Human judgment has also been explored in user studies to

valuate the relation between the above-mentioned metrics and
isual perception. An important contribution of these studies is
esigning a method to conduct the experiments and avoid hun-
reds of scatterplots that have to be inspected by users [27,31,32].
or this, scatterplots are ranked from the best to the worst, and
nly the top three to five are offered for user inspection [31,
3]. We also use this ranking in our experiments (Section 5.2).
he above-mentioned studies do not use many combinations of
atasets and projections. Rather, many (dozens) of metrics are
ompared (or a new one is proposed) for a single [27,32] or a
ouple of datasets [31,33]. Additionally, the analyzed metrics still
ave the main issues that we outlined before (see also [33]). In
ontrast to the above, we aim to evaluate many (hundreds of)
ataset-projection technique combinations, both quantitatively
nd by a user study.

.3. Pseudo labeling in ML

In ML, pseudo labeling refers to assigning labels to data sam-
les to build accurate and large training sets. To do this, super-
ised samples propagate so-called pseudo-labels to the unsuper-
ised samples. Next, the ML model is trained with the dataset
ontaining both true (supervised) and pseudo-labeled samples.
For this pseudo labeling task, the OPFSemi method [19] was

roven to surpass many other semi-supervised methods. Autoen-
oders [13], convolutional neural networks [4,34], and contrastive
289
Fig. 1. Pseudo labeling as a measure of visual separation (see Section 3).

models [16] are used to support the label propagation ability
of OPFSemi in different learned feature spaces of different di-
mensions. In our work, we used OPFSemi in the 2D space. As
the algorithm explores a complete graph with all samples in a
given dataset (Section 3.2), we argue that OPFSemi can capture
local and global information of data distribution instead of local
information only — as the neighbor-based metrics T , C , and N
do. Other advantages of OPFSemi are that the method is free of
parameters and does not make assumptions about the shapes of
the classes [19].

2.4. Pseudo labeling, data separation, and visual separation

The success of pseudo labeling depends on how well the data
is separated into different groups of similar points, which we next
denote as data separability (DS). If the data consists of groups of
same-label points which are far away from other such groups
(high DS), then propagating labels works well. This leads to good
training sets which allow constructing good models, i.e., models
with a high classifier performance (CP). This is related to the well-
known fact in ML that a dataset with high DS allows training
models with a high CP.

Visual separability (VS) in a projection is related in many ways
to DS and CP. Projections can be used to assess DS (VS→DS, [9]).
hey can also be used to find misclassified samples and assess
he difficulty of classifying a dataset (VS→CP, [2,5]). Increasing
S in a dataset can be used to create projections with a higher
S (DS→VS, [35]). Closer to our work, Benato et al. found that
PFSemi’s pseudo labeling in 2D t-SNE projected spaces is supe-
ior to that in the original high-dimensional space (VS→CP, [4,
4,16,36]).

. Measuring visual separation by pseudo labeling

Our work builds atop of the observations from related work
Section 2.4) by hypothesizing that high performance in label
ropagation indicates a high separability of same-label groups
n the projection space. Fig. 1 illustrates this. Labels are propa-
ated from supervised samples (colored) to unsupervised samples
black). When there is poor VS in a given projection (a), pseudo
abels are wrongly assigned, something which we can measure
s described next in Section 3.3. When there is good VS in the
rojection (b), pseudo labels are accurately assigned.
Fig. 2 shows our VS measurement pipeline which is detailed

ext.

.1. Sample selection

We start with a 2D projection P(D) of some labeled dataset
, computed by any desired projection algorithm P . We next
andomly split P(D) into a ground-truth dataset A and test dataset
. In our experiments, we take 50% of the samples in P(D) in each
f A and B (different fractions can be considered).
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Fig. 2. Pipeline of our approach to assess VS in projections.

3.2. Using OPFSemi for pseudo labeling

We pseudo label the samples in B by propagating the true
abels from A using OPFSemi. The OPFSemi algorithm [19] maps
oth labeled and unlabeled samples to nodes of a complete graph,
ith edges weighted by the Euclidean distance between sam-
les in a given feature space (the projection space in our case).
he labeled samples are taken as prototypes to compete among
hemselves for the unlabeled ones. Each prototype conquers its
ost closely connected unlabeled samples by offering minimum-
ost paths and assigning its label to them. As a path-cost func-
ion, OPFSemi uses the maximal edge-weight along the path.
y that, OPFSemi computes a minimum-cost path forest rooted
t the prototype set. Its time complexity is O(m2) for m nodes,
ince the graph is complete, but it is possible to precompute a
inimum-spanning tree in O(m2) and perform label propagation

optimum-path forest computation) on this tree in O(m logm) for
ny randomly chosen set of prototypes in the case of our applica-
ion. As the process is calculated over a complete graph with all
amples in D, we argue that OPFSemi can capture local and global
nformation of data distribution, instead of local information only.

.3. Pseudo labeling effectiveness measurement

To assess the quality of pseudo labeling, we measure the
greement between the true labels (original labels of samples
n B) and the pseudo labels assigned to B by OPFSemi. This
greement could be measured by accuracy, f1 score, or AUC, for
xample. However, such metrics do not take into account the
umber of false positives and false negatives, which can highly
mpact the results for datasets having significant class imbalance.
arlier studies showed the advantage of using Cohen’s kappa
oefficient (κ) [20] over accuracy to measure the agreement in
pseudo labeling [16]. To account for unbalanced classes in P(D),
e use κ defined as

=
po − pe
1 − pe

, (5)

where po is the simple accuracy, i.e., the number of correctly
classified samples (true positives) over N samples, and

pe =
1
N2

∑
g

nα
g n

β
g , (6)

where g is the number of classes, N is the number of samples, and
nα
g and nβ

g are the predicted class g given by the true label α and
given label β , respectively. The κ coefficient is in a [−1, 1] range,
where κ ≤ 0 means no agreement and κ = 1 means complete
agreement between two classifiers α and β .

4. Experimental set-up

To evaluate our usage of OPFSemi to gauge visual separation,
we designed several experiments based on the projection-quality
benchmark proposed in [21] to our knowledge, the largest public
such benchmark for DR. All our results and code are openly
available [37].
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Table 2
The 18 datasets used in our evaluation and their characteristics.
Dataset Type Samples Dimensions Labels

bank [38] tables 2059 63 ordinal
cifar10 [39] images 3250 1024 categorical (10)
cnae9 [40] text 1080 856 categorical (9)
coil20 [41] images 1440 400 categorical (20)
epileptic [42] tables 5750 178 ordinal
fashion_mnist [43] images 3000 784 categorical (10)
fmd [44] images 997 1536 ordinal
har [45] tables 735 561 categorical (30)
hatespeech [46] text 3222 100 ordinal
hiva [47] tables 3076 1617 ordinal
imdb [48] text 3250 700 ordinal
orl [49] images 400 396 categorical (40)
secom [50] tables 1567 590 ordinal
seismic [51] tables 646 24 ordinal
sentiment [52] text 2748 200 ordinal
sms [53] text 836 500 ordinal
spambase [54] text 4601 57 ordinal
svhn [55] images 733 1024 categorical (9)

4.1. Datasets

From the benchmark, we chose 18 datasets which are often
used in many ML and DR evaluations. Importantly, they are all
labeled and, since they are used in ML benchmarks, we know
that labels and features are correlated. These datasets come from
different application domains and have different sample and di-
mension counts. Table 2 shows the type of data, sample count,
dimension count, and the type and number of labels for each
dataset (for more details, see [21]).

4.2. Projection algorithms

From the 44 projection techniques evaluated in [21], we used
39 techniques (see Table 3). The remaining 5 techniques were
excluded since their code, as provided in [21], was hard to un-
derstand and run. All these techniques are well known in the
DR literature and practice. Among them are examples of linear
and non-linear and global and local, projections. Also, we consider
projections that input the high-dimensional samples themselves
and projections which only require a similarity (distance) ma-
trix of the samples. We fixed the parameters of all projection
techniques to the default values proposed by each author. More
details about the chosen projection techniques and their default
parameter values can be found in [21].

4.3. Metrics

As we are proposing a new metric to evaluate visual sep-
aration (Section 3), an immediate question is how this metric
compares to well established metrics for measuring projection
quality. To assess this, we consider, for the latter, the four scalar
metrics T , C , N , and S described in Section 2. These are also among
the metrics considered by the projection benchmark in [21]. For
brevity, we next refer to these four metrics as ‘standard’ metrics.
We compute T , C , and N using K = 7 nearest neighbors (see Eqs.
(1), (2), and (4)), in line with [21].

4.4. Experimental design

We executed two types of evaluations, as follows:
(a) Quantitative analysis (Section 5.1):

(i) Correlation plots: We plot the correlation between our pro-
posed assessment of VS (κ) approach and each standard
metric. This yields one scatterplot for each of the four
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Table 3
The 39 projection techniques used in our evaluation. We list the linearity, input
type, and whether the technique is local or global.
Projection Linearity Input Local or global

DM [56] nonlinear samples local
FA [57] linear samples global
FMAP [58] nonlinear samples global
GPLVM [59] nonlinear samples global
F-ICA [60] linear distances global
IDMAP [61] nonlinear distances local
ISO [62] nonlinear distances local
L-ISO [63] nonlinear samples local
LAMP [7] nonlinear samples local
LE [64] nonlinear samples local
LLC [65] nonlinear samples local
LLE [66] nonlinear samples local
H-LLE [67] nonlinear distances local
M-LLE [68] nonlinear samples local
LPP [69] linear samples global
LSP [8] nonlinear samples local
LTSA [70] nonlinear samples local
L-LTSA [71] linear samples local
MC [72] nonlinear samples local
MDS [73] nonlinear samples global
L-MDS [74] nonlinear samples global
N-MDS [75] nonlinear samples global
L-MVU [76] nonlinear distances global
NMF [77] linear distances global
PBC [78] nonlinear samples local
PCA [57] linear samples global
I-PCA [79] linear samples global
K-PCA-P [80] nonlinear samples global
K-PCA-R [80] nonlinear samples global
K-PCA-S [80] nonlinear samples global
P-PCA [81] linear samples global
S-PCA [82] linear samples global
PLSP [83] nonlinear samples global
G-RP [84] nonlinear samples global
S-RP [84] nonlinear samples global
t-SNE [9] nonlinear samples local
SPE [10] nonlinear samples global
T-SVD [85] linear samples global
UMAP [11] nonlinear distances local

standard metrics. In such a plot, each point is a dataset pro-
jected by a projection technique, with all dataset-technique
combinations considered. The aim of this analysis is to see
whether our new metric correlates or not with existing
metrics. If so (which we will show it is not the case),
then our new metric does not bring any added value.
If not (which is the case), then they cannot both gauge
visual separation equally well — either our new metric or
the standard ones are better for this measurement, but
not both of them. We analyze this aspect further via our
qualitative analysis described below.

(ii) Statistical analysis: We present the main statistical infor-
mation for our new metric and the standard metrics (min-
imum, maximum, mean, standard deviation, median, and
mode).

b) Qualitative analysis (Section 5.2): We qualitatively study a
subset of such combinations, aiming to find out which metrics
– our new one and/or the standard ones – agrees with the
perceived visual separation in the projection scatterplots. For this,
we perform four qualitative analyses, as follows.

(i) Random analysis: We select 8 datasets randomly from the
18 studied ones. For each dataset, we analyze 3 scatterplots
of distinct projections and the respective correlation plots.

(ii) Ranked analysis: For each dataset, we rank the projections
by each quality metric. For the three best and worst pro-
jections in terms of this ranking, we study their visual
separation vs the computed metric values.
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(iii) Correlation plot and ranked analysis: We plot the same as in
(a,i), highlighting the best and worse cases in (b,ii) in terms
of good and poor visual separation, respectively.

(iv) User study: We ask 108 participants to rank a total of 2916
projections in terms of visual separation and compute the
correlation of their rankings with κ .

To use any quality metric in practice, one needs to interpret
its values. In our concrete case, all metrics range between 0
(worst case) and 1 (best case). Assuming that a given metric
encodes some quality aspect, it is clear that values very close
to 1 will indicate ‘good’ projections in that respect, whereas
values close to 0 will indicate ‘poor’ projections. To simplify the
analysis, we next proceed by binning the [0, 1] range in three
bins, as follows. Metric values above a superior boundary sb, i.e.,
in the range [sb, 1], are considered to indicate good projections.
Metric values below an inferior boundary (ib), i.e., in the range
[0, ib], are considered to indicate poor projections. Metric values
in the range [ib, sb] will indicate projections with average quality.
Setting these thresholds, thus, allows us to split the study of
projection quality in three categories. For T , C , S, and N , we
set ib = 0.4 and sb = 0.8, following earlier studies on how
these metrics capture a projection’s quality from the respective
four viewpoints [21]. For κ , which measures our proposed visual
separation, we set ib = 0.4 and sb = 0.7 based on our empirical
observation of visual separation in projections discussed next in
Section 5.

Practically put, this leads to the following automated workflow
for usage of κ in practice: For a given projection, a computational
pipeline measures κ following Section 3.3). If κ > sb, the pro-
jection has good visual separation — so, it can be further shown
to its intended users. If κ < ib, the projection has poor visual
separation, so it should not be offered for visual exploration to
the users. If κ ∈ [ib, sb], we cannot automatically determine if the
projection is ‘fit for visual consumption’ from the perspective of
visual separation, so other metrics or factors should be considered
in its assessment. This workflow can be used e.g. by a system that
computes many projections of a given dataset, e.g., using several
algorithms or hyperparameter grid-search, and uses κ to find the
best one to serve to its users.

5. Results

We next detail the results of our experiments and our obser-
vations in terms of how κ surpasses the standard metrics for VS
assessment in projections.

5.1. Quantitative analysis

Correlation plots: As outlined in Section 4.4, we have 18 ×

39 = 702 dataset-projection combinations, each assessed by
five metrics (T , C, S,N, κ). Analyzing this information in table
form is not very insightful. As such, we aggregate it in terms
of four correlation plots. Each plot compares the values of one
of the standard metrics with κ (Fig. 3a). In each plot, we set κ

on the x-axis and the standard metric on the y-axis. The plotted
points are the 702 dataset-projection combinations. Each red line
represents the trend of same-dataset points — there are thus
18 such lines. We see that, for all the four correlation plots in
Fig. 3a, blue points are concentrated in the middle-right regions of
the plots, indicating that all quality metrics score mostly average
or high values. More interestingly, we do not see any positive
(or negative) correlation between κ and the standard metrics.
Also, for T , C , and S, there are more horizontal red lines than
increasing or decreasing trend lines, while, for N , we see more
increasing trend lines. This suggests no clear correlation (strictly
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positive or negative) between κ and the standard metrics. For
example, if there was a strong pattern of increasing lines for all
datasets in one of the four plots, then κ and the standard metric
or that plot would agree, i.e., they would gauge visual separation
imilarly. Conversely, if there was a strong pattern of decreasing
ines, then κ and the standard metric for that plot would still
apture the same information — high values for one metric would
ell the same as low values for the other metric. In these cases, κ
ould not bring clear added value atop of the respective standard
etric. However, our plots do not show this. Since κ and the

standard metrics do not show a clear correlation, two situations
can happen:

• if the considered projections all have similar VS, then all
metrics are equally poor predictors, since their values vary
a lot while the actual VS is not;

• if the considered projections have different VS, then either κ

is correlated with it and the standard metrics are not (thus,
κ measures VS better than the standard metrics), or the
standard metrics are correlated with it and κ is not (thus,
the standard metrics measure VS better than κ).

Section 5.2 studies the above hypotheses in further detail by
onsidering the actual perceived VS in the projections.
Fig. 3(b) shows the binning of the metric ranges using the ib

nd sb thresholds introduced in Section 4.4). The nine cells are
olored to indicate the fraction of the total amount of projection-
ataset combinations that fall within each range. T , S, and N
resent medium-right regions with higher percentages of points
densely populated), while C presents right-medium regions with
igher percentages of points. This shows, in short, that inter-
reting κ is easier than the standard metrics because it has a
igher variance. The fact that the standard metrics have a low
ariance – thus small changes in their values – means that it is
arder to use their values in practice to determine the quality of a
rojection. This is also visible in the selected examples in Table 1.
ore interestingly, earlier work has observed that projections
ith very different visual separation yield standard metrics of
uite similar values [21,86]. We show next in Section 5.2 that κ ’s
ariance is connected to the perceived visual separation in the
rojections.

tatistical analysis: Table 4 refines these insights on the variance

f the compared metrics. We show here the minimum, maximum,

292
Table 4
Minimum, maximum, mean, standard deviation (std), median and mode values
for each metric. Values are calculated over all datasets and projection techniques
Metric Minimum Maximum Mean Std Median Mode

κ 0.120832 1.000000 0.541826 0.150 0.499891 0.696969
T 0.407621 0.998752 0.753015 0.145 0.762368 0.820627
C 0.087105 0.999063 0.833071 0.143 0.876587 0.940296
S 0.185023 1.000000 0.723541 0.128 0.729920 0.817838
N 0.203571 1.000000 0.653787 0.237 0.686142 0.914286

mean, standard deviation (std), median, and mode values for all
metrics computed for the 702 dataset-projection combinations.
Minimum and maximum values are similar for all metrics, except
for T , which shows a minimum value of 0.4. Mean and median
values are higher than 0.72 for T , C , and S. For N , mean and
median values are higher than 0.65 with the highest standard
deviation of all considered metrics. κ presents values between
0.49 and 0.55 for mean and median. Mode values are higher than
0.8 for T , C , S, and N , while around of 0.7 for κ . Summarizing,
T , C , S, and N mostly assign high values for projections, while
κ suggests a wider range of values. This supports our earlier
observation that κ may be easier to interpret than the standard
metrics. Interestingly, mean, median, and mode are in the same
range of the most densely populated regions highlighted in the
scatterplots of Fig. 3.

5.2. Qualitative analysis

Our quantitative analysis showed that κ is not correlated with
he standard metrics (Section 5.1). We further study if κ better
eflects visual separation by several qualitative analyses.

andom analysis: Since it is not practical to study all 702
rojection-dataset scatterplots, we first randomly select several
uch scatterplots to show the diversity of VS among different
rojection techniques (Fig. 4). For this, we first randomly choose
ight of the 18 datasets. For each standard metric T , C , S, and
, we next randomly select three different projection techniques
er dataset, yielding a total of 24 projection scatterplots con-
idered for each standard metric. We next show the correlation
lot between κ and each metric. In this correlation plot, the
oints associated to the three selected projection techniques are
ighlighted (blue). In each row of Fig. 4, projections are sorted
eft-to-right by decreasing κ .
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Several things are visible in this figure, as follows. We first
otice that dense correlation plots, i.e., datasets for which the pro-
ections have small ranges of both κ and the compared standard
etric, presented projections with poor VS — see, for example,

he projections for the imdb, secom, seismic, and svhn datasets.
he selected projections for these datasets have values of T , C ,
, and N higher than 0.8. For these projections, κ ranges from 0.3
o 0.5. Thus, here, the low κ agrees with the perceived poor visual
eparation, while the standard metrics do not. In the leftmost
olumns for each metric, we notice average visual separation
see e.g. the datasets bank, cnae9, and hatespeech. For these

ases, κ values exceed 0.6. The standard metrics for these cases
ange from very low (0.4) to very high (0.9). This is a second
ndication that κ reflects perceived visual separation better than
he standard metrics. Finally, we cannot see any projection with
verage or good visual separation in the third (rightmost) column
f each row. These are the scatterplots with the lowest κ among
he selected ones. This also shows a good agreement between κ
nd the perceived visual separation.

anked analysis: Fig. 5 shows projections ranked by each metric
or all 18 studied datasets. In each row (metric) per dataset,
e show the best three projections (three left columns in each
ataset, surrounded in green) and the worst three projections
three right columns in each dataset, surrounded in red). Within
ach group of three such projections, the projections are sorted
eft-to-right on decreasing values of the respective metric. A
arger version of Fig. 5 showing more details is given in the
upplementary material.
An immediate observation is that projections having the high-

st (respectively lowest) κ values are also the best, respectively
orst, in terms of perceived visual separation. We see many
rojections having similar VS that are ranked either best or worst
y the standard metrics, see e.g. the bank, cifar10, hiva, and imdb
atasets. So, standard metrics are not good predictors of VS.
rojections with average VS are ranked as worst by at least one
f the standard metrics — see e.g. the coil20, fashion_mnist, fmd,
nd har datasets. An interesting point concerns N: When both N
nd κ agree in the (first) best projection, the second-best N value
ctually has poor VS — see e.g. the cnae9, coil20, fashion_mnist,
md, hatespeech, and imdb datasets. This matches the fact that
shows more increasing trend lines for some datasets in the

orrelation plots (Section 5.2) compared to the other standard
293
etrics. Hence, N is also not a good predictor of VS. Also, we see
hat one of the best three projections in terms of κ is seen as
he worst projection by the standard metrics for the cnae9, coil20,
md, har, hiva, and sentiment datasets. All in all, we consistently
see that κ has high values for high perceived VS and low values
for poor perceived VS, while the standard metrics do not correlate
with VS.

Correlation plot and ranked analysis: Fig. 3 showed that there is
no correlation of κ with the standard quality metrics (Section 5.1).
However, this figure did not show whether there is a correlation
between κ and the perceived visual separation. To do this, we
select, from the best three ranked projections by κ in Fig. 5, those
with convincingly good visual separation as perceived by our-
selves. These are UMAP (bank, cnae9, coil20, fashion_mnist, fmd,
har, hatespeech, imdb, seismic, sentiment, spambase); t-SNE (cnae9,
coil20, fashion_mnist); Projection by Clustering (PBC) [78] (coil20,
fashion_mnist); and Interactive Document Maps (IDMAP) [61]
(sms). Note that, for some datasets, we did not find any projection
with a convincingly good visual separation. Separately, we take
all the worst-three-ranked projections by κ in Fig. 5 which we
visually confirm that have a very poor visual separation.

Fig. 6 shows the correlation plots between κ and the standard
metrics — same as Fig. 3, but with the projections selected as best,
respectively worst, marked in green, respectively red. We see that
the green and red points are far apart from each other along
the vertical (κ) axis. The green points clearly at the top, above
κ = 0.7. The red points are nearly all below κ = 0.4, with and all
below κ = 0.5. Hence, κ correlates very well with our perception
of visual separation. However, we see that both green and red
points spread quite uniformly along the entire range of the co-
plotted standard metric (horizontal axis). For example, there are
many red points with κ < 0.4 which have standard metric values
above 0.8 and even close to 1; and there are also many green
points with standard metric values below 0.7. All in all, this shows
that the standard metrics do not correlate in any significant way
with the perceived visual separation.

User study: We further check the correlation of κ with perceived
visual separation by a user study. We recruited S = 108 par-
ticipants (37 female, 64 male, 7 other/undisclosed) via an online
questionnaire. The participants are first shown a few examples
of projections with good, average, and poor separation (gauged
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Fig. 6. Correlation plots of κ with the standard metrics with points denoting projections with good perceived VS in green and poor perceived VS in red, respectively.
e see that perceived VS correlates very well with κ but not with any of the standard metrics.
y us) so as to understand the idea of scoring visual separation.
ext, they are asked each to rank T = 27 projection scatterplots
n a 5-point Likert scale ranging from very poor to very good,
ithout being given a time limit. The T projections are computed,

or each user, by random sampling from the distribution of κ

alues over all 702 projection-dataset scatterplots we computed
294
previously (Section 5.1). This ensures that we (a) show to users
projections with all obtained κ values; (b) show relatively more
projections for the more frequent κ values; and (c) users get
different projections to score.

Fig. 7 plots the users’ recorded scores vs the κ values for the
P · T = 2916 evaluated projection scatterplots. To reduce visual
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Fig. 7. Correlation plot of measured κ with perceived visual separation scores
measured by 108 users on 2916 projections).

lutter, we averaged scores computed over the same scatterplot
y multiple users. The Pearson correlation of visual separation
cores with κ is 0.55. Moreover, if we leave out the projections
ith κ ≤ 0.2 – that is projections with an extremely poor
stimated visual separation (which are also very hard to assess
y users), we get a correlation score of 0.64. While, as expected,
e see some spread of the user scores for the same κ value
and conversely), Fig. 7 and the computed correlation factors
entioned above tell us that κ is in good agreement with the
erceived visual separation.

. Discussion

We next discuss our main findings.

ssessing VS by existing metrics: Our experiments show that the
, C , S, and N projection-quality metrics cannot be (easily) used
o predict visual separation of same-label clusters in projections.
ur statistical analysis indicates that these metrics have high
ean, median, and mode values — they tend to assign values
bove 0.8 to many projections of many datasets. Hence, even high
alues of these metrics can lead to poor or indistinct VS. Our
ualitative analysis shows that projections which have narrow
anges of these metrics have poor or indistinct VS. Also, for a
iven dataset projected by several methods, the one having the
est VS does not necessarily have the highest value of all (or
ome) of the standard metrics. Conversely, we see cases in which
he highest metric value leads to one of the worst-VS projections
or a given dataset projected by several methods.

ur approach to assess VS: Using κ to gauge OPFSemi’s per-
ormance in label propagation on projected spaces — was con-
istently shown to better capture VS of projections than the
forementioned four metrics. Our statistical analysis indicates
hat κ shows reasonable values for mean and median when
considering all compared datasets. A mean and mode around
0.5 and 0.7, respectively, suggests that our approach evaluated
a large number of projections with values around 0.7, but also
a significant amount of low values to compensate the mean.
Our qualitative analysis shows that κ values can better capture
he extreme cases: Values of κ roughly above 0.7 all have good
erceived VS; values of κ below 0.4 correspond to projections

where no discernible VS is present. Values of κ in the range
[0.4, 0.7] indicate projections with an average amount of VS.

In our analysis, UMAP, t-SNE, and PBC consistently score high
VS values for all datasets. These were also the best techniques
found by the independent study of Espadoto et al. [21] which
295
used the average of T , C , S, and N . Importantly, this does not mean
that the said average can be used to measure visual separation.
As shown in Table 1 and Fig. 6 projections can have high T , C ,
S, and N values and still poor VS. The said four metrics measure
how well a projection captures data patterns (neighborhoods and
distances); our κ measures how well a projection is visually sep-
arated into different same-label groups. Hence, a good projection
should have ideally high values of all T , C , S, N , and κ . Our κ is an
additional quality factor that complements, but does not replace,
existing quality metrics.

Computational cost to assess VS: Measuring VS by our method is
fast and requires no parameter settings. For example, for the hiva
dataset – N = 3076 samples, n = 1617 dimensions, the largest
among the evaluated datasets (Section 4.1) – computing κ took
only 0.1216 s on a consumer-grade laptop on average for all the
considered 39 projections (0.1149 s to run OPFSemi; 0.0067 s to
compute Cohen’s Kappa). In contrast, assessing the four standard
metrics requires an expensive grid-search procedure to factor
out their hyperparameter values and is quite slow to compute
(minutes per dataset [21]).

Limitations: We measure OPFSemi’s performance by propagating
labels from 50% of the samples in a dataset to the remaining ones.
It is not currently clear how our results – and the ability of κ

to measure visual separation – depends on this data split. Yet,
earlier work has shown that OPFSemi has consistent performance
even when using far fewer labels [13–15]. Using this fraction
as a parameter is interesting to consider as this would define a
multiscale visual separation metric. We aim to study this aspect in
future work, together with a comparison of our kappa score with
Silhouette coefficient based metrics computed for a wide range
of clustering methods and clustering hyperparameter settings.

A separate aspect relates to the interpretation of visual separa-
tion. A projection having poor visual separation is not necessarily
a ‘bad’ one – the labels may be intrinsically mixed up in the
high-dimensional space, in which case it is hard to assume that
a projection can separate them well. Conversely, if we know
that a projection is poor in terms of its T , C , S, and N quality
metrics, the fact that it has (or not) a good visual separation is
of little relevance to its actual usefulness for data exploration
tasks – in general, one should not further use such a projection
since it does not represent well the data structure. However, for
datasets where we know that labels are well separated in the
data and we know that the projection has high data-structure-
preserving quality, we expect the projection to keep this aspect.
In these cases, we can use our approach to gauge the quality
of the projection. As such, visual separation should be used in
conjunction with other information to judge the suitability of a
projection for visual exploration tasks — a conclusion drawn from
different viewpoints also by earlier authors [5].

Lastly, while our user study (Section 5.2) shows that κ corre-
lates with perceived visual separation, extra analysis is needed to
show how this depends on projection techniques, datasets, and
user experience. We aim to cover this in future work.

7. Conclusion

We proposed a novel approach to assess the visual separation
quality of 2D projections. Our approach is based on assessing
the performance of a graph-based semi-supervised classifier in
propagating labels in the projection (2D) space. If high label
propagation performance is achieved, i.e., few wrongly labels
are assigned then the projected space is well separated into
distinct groups of same-label samples. To evaluate our proposal,
we executed both quantitative and qualitative analyses using 18

datasets and 39 projection techniques in line with the benchmark
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f [21]. We showed that our proposed approach can better gauge
isual separation in projections than common projection-quality
etrics. Up to our knowledge, this is the first time that the visual
eparation quality of 2D projections is assessed through label
ropagation task for many projection techniques.
We next aim to evaluate the impact of different amounts

f labels in the classifier to assess visual separation in projec-
ions. Also, we aim to explore the OPFSemi classifier to evaluate
rojection quality in reducing the high-dimensional space while
reserving patterns of the original data, by combining optimum
ath forests computed in both high and low dimensional spaces.
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