
Computers & Graphics (2024)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Interactive Tools for Explaining Multidimensional Projections for High-Dimensional
Tabular Data

Julian Thijssen, Zonglin Tian, Alexandru Telea∗

Department of Information and Computing Science, Utrecht University, Utrecht, 3584CC, The Netherlands

A R T I C L E I N F O

Article history:
Received July 4, 2024

Keywords: Multidimensional projections,
Explanatory visualizations, User evalua-
tions

A B S T R A C T

We present a set of interactive visual analysis techniques aiming at explaining data
patterns in multidimensional projections. Our novel techniques include a global value-
based encoding that highlights point groups having outlier values in any dimension as
well as several local tools that provide details on the statistics of all dimensions for a user-
selected projection area. Our techniques generically apply to any projection algorithm
and scale computationally well to hundreds of thousands of points and hundreds of
dimensions. We describe a user study that shows that our visual tools can be quickly
learned and applied by users to obtain non-trivial insights in real-world multidimensional
datasets. We also show how our techniques can help understanding a real-world dataset
containing quantitative, ordinal, and categorical attributes.
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1. Introduction1

High-dimensional data is present in many science and engi-2

neering fields and, thus, a key target for information visualization3

techniques. A main challenge in this respect is scalability, that4

is, how to visually depict datasets having hundreds of thousands5

of observations and tens to hundreds of dimensions. Dimen-6

sionality reduction, also called projection, techniques are one7

of the solutions of choice in this area [1, 2]. Compared to other8

high-dimensional visualizations such as table lenses [3], paral-9

lel coordinate plots [4], and scatterplot matrices [5], projections10

scale well on both sample and dimension counts. As such, pro-11

jections have become the main technique for visualizing such12

data in e.g. biology, astronomy, chemistry, and machine learning.13

A raw projection is, however, just a scatterplot which does14

not further help solving problems. As such, several methods15

have been proposed to explain the visual patterns present in16
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projections. Simple brushing and color-coding allow one to see 17

all dimensions of a single point, respectively one dimension 18

over all points. Projections can also be explained globally by 19

techniques such as biplot axes [6, 7, 8] and axis legends [9]. 20

More recently, Da Silva et al. [10] proposed global explanations 21

that encode how neighboring points in a projection are related 22

to each other in terms of their dimension values. Neighborhood- 23

based explanations are easy to interpret (as they use the original 24

dimension names, color-coded in the projection), work with any 25

projection technique, and provide information over all projected 26

points. Yet, they also have important limitations [11]: They (1) 27

do not scale to more than roughly 10-15 dimensions; and (2) do 28

not explain what the patterns in the projection mean. 29

Recently, Thijssen et al. [12] extended the Da Silva et al. 30

approach by observing that, for over roughly 10 dimensions, 31

providing global explanations for an entire projection will not 32

work – there are simply too many dimensions to color-code in 33

the projection. They provided several mechanisms to overcome 34

the above two problems (1,2) while keeping the computational 35

scalability and genericity of Da Silva et al. More concretely, 36
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they proposed to (1) globally explain projection patterns by1

the values of their contained points and (2) several interactive2

techniques that allow scaling explanations to tens of dimensions3

locally. They also presented preliminary evidence from a user4

study showing the effectiveness of their methods.5

In this paper, we extend the work of Thijssen et al. in several6

directions:7

• We present mechanisms that refine the explanatory capabil-8

ities of the original approach;9

• We present a detailed analysis of a user study demonstrat-10

ing the added-value of the aforementioned refinements for11

answering complex questions on tabular data;12

• We show the added-value of our proposal by exploring a13

complex real-world dataset containing quantitative, ordinal,14

and categorical attributes.15

We structure our paper as follows. Section 2 reviews re-16

lated work on projection explanations. Sections 3 and 4 outline17

our explanation extensions. Section 5 details our study on the18

added value of our proposed mechanisms. Section 6 applies our19

techniques for the analysis of a real-world, complex, dataset.20

Section 7 discusses our proposal. Section 8 concludes our paper.21

2. Related work22

Let D = {pi}, 1 ≤ i ≤ N, pi = (p1
i , . . . pn

i ) ∈ Rn be a high-23

dimensional dataset with samples pi. The values (pk
i |1 ≤ i ≤ N),24

for 1 ≤ k ≤ n, form the dataset’s k dimensions. We call D25

tabular when its n dimensions have well-understood semantics,26

e.g., they represent the measurement of a specific property that27

D’s analysts can reason about. Such datasets typically have a a28

few tens of dimensions [13].29

A projection, or dimensionality reduction (DR) technique30

P, maps n-dimensional samples to q-dimensional ones, where31

q � n. When q ∈ {2, 3}, the projection of a dataset D, denoted32

DP = {qi = P(pi)|pi ∈ D}, can be visualized as a scatterplot. If33

DP preserves several aspects of D such as point relative distances34

or neighborhoods, then one can retrieve such data structure of D35

by assessing the visual structure of DP. Several quality metrics36

have been proposed to gauge projection quality, such as trust-37

worthiness and continuity [14], false and missing neighbors [15],38

normalized stress and Shepard correlation [16], neighborhood39

hit [17], and distance and class consistency [18, 19]. A recent40

survey [20] details how to measure and interpret such metrics.41

A projection with high quelity-metric values is not sufficient to42

actually understand the projected data. Indeed, a ‘raw’ projection43

is just a scatterplot. Figure 1a shows this for a dataset containing44

N = 6500 wine samples, each having 11 measured physicochem-45

ical attributes and one additional dependent attribute (perceived46

quality) [21]. The dataset D is projected to 2D using the LAMP47

technique [16]. We see some structure in this projection; what48

this actually means, is yet unclear.49

Projection explanations help users to assign meaning to pat-50

terns in a projection. The simplest such tool is color-coding51

points by the values of a given dimension. Figure 1b color codes52
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Fig. 1. Wine dataset projection (a) explained by color-coding (b). See Sec. 2.

the Wine projection by its total sulfur dioxide dimension, show- 53

ing that the bottom-right projection area has relatively higher 54

values of this dimension. This simple explanation however can- 55

not consider multiple dimensions. 56

Several other explanatory techniques exist such as biplot 57

axes [6, 7, 8], axis legends [9, 8], and error views [22, 23, 24, 58

15, 25, 26]. These techniques work globally – that is, the ex- 59

planations they provide aim to characterize all points in a pro- 60

jection. This is challenging for local-and-nonlinear projection 61

techniques [27], such as t-SNE [28] or UMAP [29], which ex- 62

hibit strong variations between how they map different data-point 63

nehighborhoods in D, meaning, they can hardly provide global, 64

accurate, explanations anchored to the visual (2D) space. A dif- 65

ferent direction in explaining projection is given by RadViz [30] 66

and related techniques [31]. These techniques force the projec- 67

tion to obey a given (typically circular) layout so one can relate 68

samples to dimension values. Yet, issues concerning ordering of 69

the dimensions and the global nature of the explanations persist 70

with such methods. 71

Stahnke et al. [26] combined and extended several of the 72

above techniques. They provided an interactive tool to explore 73

projection errors, similar to [22, 24, 15], though using a different 74

visual encoding. They also explained attribute values shared by a 75

user-selected point set (similar to [10] and follow-ups, described 76

below). However, they require users to specifically select a point 77

set for explanation, whereas [10] and followers do the same for 78

all projection points. Our local explanation techniques (Sec. 4) 79

share many similarities with the selection-based mechanisms in 80

Stahnke et al., in particular our differential analysis tool, with 81

the key difference that we show how the selected samples relate 82

to the entire dataset, not just their local distribution. Pagliosa 83

et al. [32] propose a related approach. Given a point set in the 84

projection (via user interaction or data clustering), they show 85

statistics that differentiate this set from the rest of the projection. 86

Similar to [10], they consider variance of the selected attributes 87

vs the rest for explanation; differently, and as in Stahnke et al., 88

the selection of the projection points to explain is done manually, 89

so this approach cannot explain all points in a projection. 90

Joia et al. [33] proposed a strategy for text document projec- 91

tions. The projection is split into clusters of points having similar 92

data values. Next, each cluster is labeled by a tag cloud formed 93

by the most relevant keywords of the documents it contains. In 94

contrast to Stahnke et al., and similar to the approach of Da 95
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Silva et al. (discussed below), this method explains an entire1

projection without requiring the user to select a subset of interest.2

However, setting clustering parameters to partition a projection3

into groups that next allow effective explanations can be tricky.4

Da Silva et al. [10] explained projections by finding (and next5

color-coding) dimensions that contribute most to the similarity of6

neighbor points. In contrast to global explanations, this method7

adapts itself locally to show different dimensions that explain8

different point neighborhoods. Also, in contrast to Joia et al., no9

explicit partitioning (clustering) of the projection is needed. Pro-10

posed explanations include dimension variance [10], local data11

dimensionality [34], strongest correlated dimensions [34, 11],12

and dimension values [12]. All these methods address the spe-13

cific case of so-called tabular data, where the individual dimen-14

sions are (a) not too numerous and (b) hold specific semantics15

for the involved users. Yet, as Sec. 1 mentions, only very limited16

evidence is presented on how, and whether, such explanations17

work for real-world datasets and users. We address this in the18

remainder of this paper (specifically, Secs. 5 and 6).19

3. Extending global explanations20

Variance explanation: We first recall the variance-based expla-21

nation of Da Silva [10] which forms the basis of our extension.22

Following the notations introduced in Sec. 2, let νP
i = {q ∈

DP|‖qi−q‖ ≤ ρ} be a neighborhood of radius ρ around projected
point qi ∈ DP. Points in νP

i come from the projection of a
neighborhood νi = {p ∈ P|P(p) ∈ νP

i } in the dataset D. They key
idea of Da Silva’s explanation – which we take over – is that
close points have similar data values, so they can be explained
in terms of such data similarities. For a projected point qi, one
first computes the local variance of every dimension 1 ≤ d ≤ n
over νi as

LVd
i =

1
|νi|

∑
p∈νi

pd −
1
|νi|

∑
p∈νi

pd

2 . (1)

Next, a ranking of all n dimensions {ξd
i }, 1 ≤ d ≤ n, is computed

over νi as

ξd
i =

LVd
i /GVd∑n

j=1 LV j
i /GV j

, (2)

where GVd is the global variance of dimension d over the entire
dataset D computed as

GVd
i =

1
|D|

∑
p∈νi

pd −
1
|D|

∑
p∈νi

pd

2 . (3)

Intuitively, Eqn. 2 aims to capture how the variance of a dimen-23

sion over a neighborhood differs from the global variance of that24

dimension. Intuitively put, low values ξd
i indicate dimensions25

d which vary very little over νi (as compared to their variance26

over D), and thus are a good way to explain why points in νi27

are similar. The normalization by GV in Eqn. 2 accounts for28

dimensions with different variances over D so that low-variance29

dimensions do not get a higher ranking than high-variance ones.30

The lowest-rank dimension λi = arg min1≤d≤n ξ
d
i is picked to

explain point qi. The C most-frequent such lowest-ranks λi over

the whole projection DP are mapped to a categorical colormap
with C colors; Less-frequent ranks are mapped to a separate
‘other dimensions’ color. In our work, we use the C = 20
colormap of Kelly [35], excluding black and white. Finally, a
confidence value Cd

i is computed for each qi and each d, telling
how well the chosen dimension λi explains point qi, as

Cd
i =

1∑
q j∈νi

ξd
j

∑
q j∈νi

ξd
j , if d is top ranked for q j

0, otherwise
, (4)

that is, the rank values ξd
j are summed up over all points p j ∈ ν

P
i 31

having the same top-ranked dimension as qi, and the result is 32

normalized by the ranks ξd
j summed over the entire νP

i . The con- 33

fidence Cλi
i for the lowest-rank dimension λi (color-mapped to 34

explain point qi) is encoded in the point’s luminance. So, bright 35

areas show cases where the color-coded dimension explains well 36

many points in those areas; and conversely for dark areas. 37
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Fig. 2. Variance and value explanation of a projection. (a,b) Per-
explanation coloring; (c,d) Consistent coloring; (e,f) Explanations in (c,d)
using the Da Silva confidence.

Value explanation: Like for variance explanation, we also com-
pute ranks of all dimensions {ξd

i }, 1 ≤ d ≤ n, over each neighbor-
hood νi. The key idea behind value ranking is to find dimensions
which have outlier values over such neighborhoods. For this, we
first compute the local average

LAd
i =

1
|νi|

∑
p∈νi

pd (5)

of dimension d over νi. We next compute the value ranking of
dimension d as

ξd
i =

(LAd
i −GAd)/GRd∑n

j=1 |LA j
i −GA j|/GR j

, (6)
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where GAd is the global average of dimension d over D as

GAd
i =

1
|D|

∑
p∈D

pd (7)

and GRd = max1≤i≤N pd
i −min1≤i≤N pd

i is the range of dimension1

d over D. Note how GR in Eqn. 6 has a similar normalization2

goal to GV in Eqn. 2. Dimensions d with positive ranks ξd
i are3

unusually high in neighborhood νi; dimensions with negative4

ranks are unusually low, respectively. The higher or lower the5

rank values are, the more unusual the dimension values are in a6

neighborhood as compared to their averages over D. Depending7

on the application, one can choose whether to highlight unusu-8

ally high (or low) dimensions, or both. For simplicity, we next9

consider unusually high dimension values – that is, we pick the10

highest-rank dimension λi = arg max1≤ j≤n ξ
j
i to explain point qi.11

We color map these dimensions to show their identity, as for12

variance ranking.13

Robust confidence: When the ranks ξd
j of a top-dimension are14

zero over an entire neighborhood, computing Cd
i will yield a15

division by zero (see Eqn. 4). Moreover, due to the summing of16

ranks in Eqn. 4, confidences are skewed in different directions17

based on the exact distribution of ranks in a neighborhood. Da18

Silva et al. [10] and subsequent work [34, 11] fixed these issues19

by evaluating Eqn. 4 on a neighborhood of larger radius ρC > ρ20

than the radius ρ of the neighborhood νi used to compute ranks21

in Eqn. 2. The neighborhoods ρC work as a smoothing filter on22

the results of Eqn. 4 – this lowers, but does not fully remove,23

the chances of division-by-zero and skewness. Moreover, this24

additional parameter ρC brings extra complexity for users.25

We remove these problems by computing the confidence as

Cd,robust
i =

1
|νi|

∑
q j∈νi

1, if d is top ranked for q j

0, otherwise
. (8)

Simply put, Cd,robust
i tells how often a given top-ranked dimen-26

sion d occurs over all points in a neighborhood νi, and has the27

same interpretation as Da Silva’s original Cd
j . Our computa-28

tion avoids the aforementioned division-by-zero and skewness29

problems.30

Figure 2a shows the variance explanation on the Wine dataset31

introduced in Sec. 2. Variance ranking helps explaining why32

certain projection points are close to each other – for example, all33

red points have similar values of the chlorides dimension. Dark34

areas, close to the borders of same-color (same-explanation)35

regions, indicate points where the single-dimension explanation36

is less confident. However, the variance explanation does not tell37

us what close points represent. The value explanation addresses38

this (see Fig. 2b). We see, for instance, that most red points39

in the variance-explanation (a), i.e., wines with similar volatile40

acidity values, are now yellow, i.e., are wines with unusually41

high total sulfur dioxide values.42

In the above scenario, the projection was recolored when43

switching explanations from variance to value. Recoloring also44

happens when any explanation is recomputed due to parameter45

changes, e.g. the radius value ρ used to compute the rankings in46

Eqns. 2 and 6. Recoloring can be confusing since the same color47

can be assigned different subsequent meanings. We solve this by 48

keeping the color allocation as consistent as possible throughout 49

such changes. At the start of the exploration, we compute an 50

initial color allocation based on the ranking mode that is in effect 51

(variance or value). Whenever the exploration triggers an update 52

of the dimension ranks, we compute a new color allocation, but 53

keep dimensions that were also part of the previous explanation 54

assigned to their earlier colors. Newly-appearing dimensions in 55

the new explanation get assigned the remaining available colors 56

based on their frequency of being top-ranked as before. 57

Figure 2c,d show this process for the variance and value ex- 58

planations depicted in Fig. 2a,b. When switching from variance 59

to value explanation (or conversely), colors are now kept com- 60

pletely consistent. For example, the aforementioned volatile 61

acidity dimension, which was red in the variance explanation 62

(a), respectively light blue in the value explanation (b), is now 63

consistently mapped to a purple color in both explanations (c,d). 64

In Figures 2a-d, brightness encodes our robust confidence 65

Cd,robust
i . Figures 2e,f show the same dataset with brightness 66

encoding the original Da Silva confidence Cd
i . Given that the 67

results are practically identical, and the earlier-mentioned advan- 68

tages of Cd,robust
i , we use our Cd,robust

i further in this paper. 69

4. Local explanations addressing high dimension counts 70

Global explanations (Sec. 3) are limited by the size C of the 71

categorical colormap used. That is, even if we can compute 72

explanations for many dimensions via Eqns 2 and 6, we can 73

only depict C of these simultaneously. Moreover, explaining 74

projection patterns by a single dimension λi (whether via vari- 75

ance or values) only tells a small part of the full story. Indeed, 76

in typical projections, close points are placed so because of mul- 77

tiple dimensions. Consider N different clusters of points in a 78

projection. Barring any projection errors, this generally means 79

that the dimension profiles, i.e., the values that dimensions take 80

on in those clusters, are sufficiently different from each other, 81

otherwise their points would form a single cluster. Each such 82

profile with D dimensions requires D colors to be explained. To 83

fully explain the projection, all such N distinct dimension pro- 84

files would need to be explained simultaneously. As N increases, 85

the number of dimensions that need to be explained increases. 86

We address these limitations by several mechanisms that ex- 87

plain the projection locally. As these points, selected for local 88

explanation, are close in the projection, they are relatively simi- 89

lar in data values (assuming the projection is of good quality). 90

Hence, the likelihood that they can be explained by a small 91

number of dimensions increases. Moreover, by explaining fewer 92

points, we can provide more details on these. 93

Figure 3 shows our local explanations, which we discuss next. 94

Lens brushing: We select all projection points S in a given 95

radius (adjustable via a GUI control) to the mouse pointer to be 96

the focus of the detailed (local) explanations, see next. For these 97

selected points, we compute the variance and value rankings as 98

for the global explanations (Eqns. 2 and 6) by substituting νi 99

with the user selection S. Since S is fixed, in contrast to νi which 100

are different for every projection point i, we now thus compute a 101

single variance and value ranking for all points in S – that is, we 102
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d: local
mean

a: global min b: global max
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A) Color by variance

B) C)
legend

Fig. 3. Local explanation of lensed points (Sec. 4). A: Details of the expla-
nation, including legend, for variance mode. B,C: Instances of the explana-
tion for the variance, respectively value, modes.

explain the entire selection at once, rather than explaining every1

point i in the projection separately, as done earlier. Users can2

interactively switch between the variance explanation (which3

tells why points in S are close in the projection) and the value4

explanation (which tells what these points are, data-wise).5

Local analysis: We display detailed explanations of the lensed6

points S in a widget right to the projection. Figure 3 shows7

this widget for a simple 3D axis-aligned cube dataset projected8

using PCA. The widget is structured as a table with one row9

per dataset dimension. For each dimension, we show its name,10

assigned color (by variance or value ranking, cf images (b) and11

(c)), and a set of statistics for that dimension, drawn right to12

the dimension name, described further below. In variance mode13

(Fig. 3B), dimensions are sorted top-to-bottom from lowest rank14

(lowest ratio of variance in the selected points S vs the whole15

projection) to highest rank (highest ratio of variance). In contrast16

to the Da Silva variance explanation (Eqn. 2), we not only show17

the least varying dimension (the one at the top) by color coding18

it in the projection, but all dimensions, sorted on variance over S.19

In value mode (Fig. 3C), we sort dimensions top-to-bottom from20

highest mean value in S vs mean value over the whole projection21

to lowest mean value. In contrast to the global value explanation,22

this shows not only the most outlier-like dimension (at top, also23

color-coded in the projection), but all dimensions, sorted on their24

outlierness. In both modes (variance and value), we thus explain25

the lensed points not only by a single (color-coded) dimension,26

but by all dimensions, sorted top-to-bottom on how important27

they are for the chosen explanation mode.28

Dimension statistics: The dimension sorting described above29

helps one find the most salient dimensions (in variance or value)30

but does not explain how much these contribute to the lensed31

points S. That is, the sorting itself does not say much about32

the dimension variance or values themselves. For instance, a 33

dimension listed at the top of the value ranking may have a 34

relatively high value, or it may have a low value, as long as all 35

other dimensions have even lower values. Hence, it is useful to 36

show the values of the dimensions for the selected points. 37

We address this by showing both local and global statistics for 38

each dimension d in the widget. We illustrate this next for the 39

variance mode (Fig. 3A) – the same holds for the value mode. A 40

range line (same categorical color as the dimension) indicates 41

the full extent GRd of dimension d over all projection points 42

from the global minimum (Fig. 3a) to the global maximum 43

(Fig. 3b). A large grey tick shows the dimension’s global mean 44∑
1≤i≤N pd

i /N (Fig. 3c). A similar red tick shows the dimension’s 45

local mean over the lensed points
∑

qi∈S
pd

i /|S | (Fig. 3d) When 46

the local mean is greater than the global mean, we draw a green 47

bar between the two means to indicate a dimension having higher 48

than usual (average) values over the lensed points. Similarly, 49

when the local mean is smaller than the global mean, we draw a 50

red bar between the two means, indicating a dimension having 51

lower than usual values over the lensed points. The above visuals 52

show the average value of a dimension but say nothing about 53

how its values are spread. This spread is important as it tells 54

whether the dimension has a big influence on the points being 55

close together in the projection or not. Low-variance dimensions 56

for a point set result in those points having small distances 57

in the high-dimensional space and thus, typically, also small 58

distances in the low-dimensional embedding (projection). To 59

convey this, we show the standard deviation of each dimension 60

overSwith white whiskers drawn left and right of the local mean 61

(Fig. 3e). Close whiskers indicate that the lensed points vary 62

little over the analyzed dimension, thus the respective dimension 63

is important for why the points are close in the projection. This 64

is the same information as the top-to-bottom sorting in variance 65

mode. However, in value mode, whiskers add the variance 66

information which is not present in that mode. Note that, while 67

our visualization is similar to a boxplot, it shows very different 68

data: (1) our whiskers show a standard deviation, and not the 69

minimum or maximum values or quartiles; (2) the (green or red) 70

box we draw shows the difference between the global and local 71

means of a dimension, and not quartile-related information, as 72

in typical box plots [36]. 73

Color by value

S
1

S
2

alcohol
quality

density

Fig. 4. Differential analysis of sets of points (Sec. 4).
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Parallel coordinates plot: All statistics discussed above are1

aggregates over the selected points. This can be deceiving. For2

example, dimensions that have the same local mean over the3

selected points might have quite different value distributions4

over the samples in S. The standard deviation whiskers show5

such differences but still work at an aggregated level and thus6

cannot convey skewed distributions or distributions with discrete7

value clusters. Figure 5 shows an example. The selected (red)8

points have two dimensions with the same local mean. If we9

showed only this mean (a), it would be unclear if the actual10

distributions of the dimension values over the red points are the11

same.12

a)

b)

c)

very low values, not spread out high values, 

quite spread

out

average values, quite spread outd)

Fig. 5. Parallel coordinate plots for the selected points (Sec. 4).

We convey more detailed information over the selected points13

by drawing a PCP of all lensed points S atop of the horizontal14

range lines of all dimensions. To limit visual clutter, we draw15

the PCP half-transparent (see Fig. 5b). We now see that, while16

the local means of the two dimensions are the same, their value17

distributions are very different. Figure 5d shows the PCP lines18

in action for a selection of points on the already-explained cube19

projection (c). The x dimension (orange) shows near-zero values20

for all selected points – this is the dimension orthogonal to the21

cube’s orange face. The y and z dimensions show, in contrast,22

high, respectively average, values, which are more spread out –23

these are the dimensions tangent to the orange face, over which24

the selected points have more variation and larger values.25

Differential analysis: While local explanations show detailed26

information over a selected projection detail, one inherently27

needs to explore several such details in a sequence to understand28

a projection. This puts a certain burden on the user’s memory.29

We alleviate this by offering a way to compare two different30

such user-selected details, as follows. The user selects a set of31

points S1, then presses a modifier key and selects a different set32

S2. The statistics that are normally shown in the analysis widget33

are now replaced by statistics showing the differences between34

S1 and S2. Figure 4 shows this for the Wine dataset using the35

value-ranking mode. The widget shows that the two top-most36

dimensions (alcohol, pink in the projection; and quality, dark37

purple in the projection) have long green bars, while the bottom-38

most dimension (density, dark green in the projection) has a red39

bar. This tells that wines in S2 have much higher alcohol and40

quality, but lower density, than wines in S1.41

Dimension exclusion: Local analysis allows handling higher-42

dimensional data than global analysis as it shows details of all43

dimensions over a selected data subset. Still, datasets can con-44

Color by value Color by value

a) b)

Fig. 6. Selective dimension disabling (Sec. 4).

tain dimensions that do not convey much information for a given 45

analysis. These can take up valuable colors from our limited 46

C = 20 categorical colormap and also clutter the explanation 47

widget. Excluding them upfront from the entire analysis is unde- 48

sirable as users may wish to examine different dimension sets 49

– and keep the same projection – depending how the analysis 50

unfolds. To address this, we allow users to click on dimensions 51

in the widget to temporarily exclude them from the generated 52

explanations. Doing so reassigns colors to the remaining dimen- 53

sions and instantly re-creates the global and local explanations. 54

Clicking on an excluded dimension adds it back to the generated 55

explanations. Figure 6 illustrates this. In image (a), about half 56

of the projection points are explained by unusual high values of 57

the diagnosis dimension (yellow, top-most in the rank-by-value 58

widget). To get more insight on what else makes these points dif- 59

ferent, we click on this dimension and disable it. The dimension 60

turns white in the widget and moves to the bottom to indicate 61

disabling. The regenerated explanation (Fig. 6b) splits the big 62

yellow blob into differently-colored groups that provide more 63

insights of how these points differ. 64

Scalability: Our explanation system, implemented in C++ in 65

the ManiVault framework [37], scales computationally well. It 66

computes global explanations of datasets of hundreds of thou- 67

sands of points and hundreds of dimensions in tens of seconds, 68

and next interacts with these in real-time, on a commodity PC, 69

and is openly available [38]. Figure 7 illustrates the visual scala- 70

bility in sample (a) and dimension (b) counts. Image (a) shows 71

a dataset consisting of 22 registered images of the same brain- 72

cortex tissue patch, each image mapping a gene. Pixel bright- 73

nesses encode where in the tissue the gene is expressed. We treat 74

each pixel as a sample having 22 dimensions, one from each im- 75

age. This yields 115K 22-dimensional samples which we project 76

with t-SNE [28] and next explain the projection. In Fig 7a, the 77

global value explanation shows us how the projection is split 78

into clearly separated point groups. We next lens over several 79

points in the orange region, which corresponds to the Cux2 gene. 80

The local explanation in the widget tells us that Cux2 is, indeed, 81

unusually high in this region (see long green bar top of widget) 82

and that only a few other dimensions have outlier values here (all 83

other bars in widget are quite short). Figure 7b shows another 84

dataset [39] of gene expressions in the brain cortex. This dataset 85

has 2400 samples (cells from the analyzed brain region) each 86

with 314 dimensions (gene expressions). The projection shows 87

the spatial layout of these cells. Even though the dataset has 88

hundreds of dimensions, the global value-ranking explanation is 89

able to assign colors to unravel a salient band-like structure in 90
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the projection. Using the lens, we selected points in the purple1

band (bottom in the projection). The widget tells us that these2

have an unusually high expression of the Foxp2 gene (top-most3

bar in the widget), as well as showing other genes having high4

expressions in this area.5

a) N = 115K samples

    n  = 22 dimensions

b) N = 2400 samples

    n  = 314 dimensions

Fig. 7. Scalability of explanations in number of samples (a) and dimensions
(b) (see Sec. 4).

5. Evaluation study6

To evaluate the effectiveness and ease of use of our interactive7

system for projection explanations, we conducted a user study,8

which we describe next (see also Fig. 8).9

5.1. Participants10

We invited about 60 people to take part in the study (and/or11

further spread the invitation). Of these, 23 completed the study.12

Participation was fully anonymous, i.e., we did not collect nor13

trace the participants’ identities. Participants self-reported (at14

the end of the study) experience with multidimensional data15

between none and several years (see also Fig. 10a).16

5.2. Study set-up17

The participants were next asked to install our tool (Windows18

or Linux) and follow a tutorial (about 15 minutes) covering load-19

ing data, switching between variance and value explanations,20

and understanding the lens and local-explanation widget. Next,21

the participants were asked to analyze three multidimensional22

datasets and report answers via Google Forms. These datasets,23

all from the UCI repository [40] and well-known in projection24

evaluation literature, had increasing dimensionalities to test our25

system’s scalability in this respect. The Wine dataset was de-26

scribed already in Sec. 2. The Cancer dataset (N = 569, n = 31)27

has 10 attributes describing the mean, max, and standard devia- 28

tion of the size, shape, and texture values of cell nuclei in a lung 29

tissue. The 10th attribute tells whether the cells are benign or 30

malignant. The Spam dataset (N = 4601, n = 57) contains fre- 31

quencies of selected words aiming at classifying mails as spam 32

or not, and also the classification result. The datasets were pro- 33

jected using LAMP [16] (Wine) and t-SNE [28] (Cancer, Spam). 34

5.3. Questions 35

For each dataset, participants had to answer four control (C) 36

and three live exploration (LE) questions, as follows. 37

Control questions: The C questions involved studying screen- 38

shots of the application (produced by us) to select one of four 39

multiple-choice answers. Answers were designed so that there 40

was a single correct one. In each screenshot, different projec- 41

tion points were selected by the lens; images of both global 42

and local explanations were also provided. The goal of the C 43

questions was to see if the participants understood how to read 44

a pre-computed visualization (without interaction), explained 45

by the value mode, to come to a correct conclusion. Figure 9 46

shows the screenshots we provided for three such questions, one 47

per studied dataset. The first question (a) shows a selection of 48

points down in the projection; we tell users that, for this dataset, 49

we know that higher attribute values mean a higher chance of 50

malignancy, and conversely. Users are next told that the selected 51

points are (obviously) malignant, as they have very high levels 52

of the diagnosis attribute; we see this since (1) the points are 53

yellow and (2) the yellow-labeled attribute in the widget, called 54

diagnosis, shows a green bar. This means that diagnosis has 55

higher values in the selection than the dataset’s average. Next, 56

users are asked which other attributes of the selected points 57

suggest that the points are benign. The correct answer is one 58

of the two fractal dimension attributes; these show red bars in 59

the widget, so they have lower values in the selection than the 60

dataset average. All other attributes are larger on average in the 61

selection than in the dataset (see their green bars in the widget). 62

The second question (Fig. 9b) shows a selection in the Spam 63

dataset. Users are told that the selected mails are mostly spam 64

(see also the long green bar in the spam attribute, top in widget). 65

They are asked to tell which of the topics are likely the content 66

of these spam mail; answers include making money, advertising 67

a product, improving credit scores, or none of the above. The 68

correct answer is making money. Indeed, the widget shows that, 69

for the above four attributes, only money (second-from-top in 70

widget) has a significant green bar, i.e., this attribute has higher 71

values in the selection than overall in the dataset. 72

The third question (Fig. 9c) shows a selection in the Wines 73

dataset. Users are told that the selected wines have unusually 74

high levels of chloride (the points are red, which maps the chlo- 75

ride attribute; and this attribute, top in the widget, has a long 76

green bar). Next, they are asked what can be said about the 77

quality of the selected wines – if this is higher than average, 78

lower than average, or nothing can be said about it. The correct 79

answer is lower than average, since the quality attribute in the 80

widget (third from bottom) has a sizeable red bar. 81

Live exploration questions: We asked participants to analyze 82

the datasets interactively using the tool on their machines and 83
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Participants
invitation

Tool
installation

Tutorial
execution

• load & show data
• global explanations
• lens brushing

Control
questions

Live
exploration

Dataset 1: Wines

Dataset 2: Cancer
Dataset 3: Spam

Questionnaire
filling

• Windows
• Linux

• 60 invited

• 23 completed
• multiple
  choice,
  single
  answer
  (Q1..Q4)

• multiple
  choice,
  multiple
  answer
  (Q1..Q3)

• PCP plots
• differential
  analysis
• disabling
  dimensions

Analysis
of results

Fig. 8. Structure of the evaluation study (Sec. 5).

c) Wines (Q2)

a) Breast cancer (Q4) b) Spam mails (Q4)

selected points mostly malignant

...but have significantly lower 
than-average fractal dimensions

selected points mostly spam

..and strongly reflect the money topic

selected points have high chloride levels

...and have lower than average quality

Fig. 9. Three control questions for the three studied datasets (see Sec. 5.4).

select one or more multiple-choice answers for several LE ques-1

tions. We designed these questions to be harder and less clear-cut2

than the C ones. This, and the users’ freedom to explore the3

visualization unconstrained, means that it is far harder to judge if4

an answer was 100% right or wrong. Hence, after having studied5

the respective datasets in depth, we ranked the LE questions’6

answers on an 4-point ordinal scale (very likely, likely, unlikely,7

very unlikely) telling how likely we ourselves would give that8

answer. Separately, we analyzed the coherence of the users’9

answers. High values tell that different people using our tool10

arrive at similar insights. When this occurs, we believe that the11

answer is likely correct since the chance that many users arrive12

at the same wrong answer is small, given their full freedom to13

explore the dataset.14

no experience

<2 years

2-5 years

>5 years

Wine
CancerCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCancncncncncncncncncncncncncncncncncncncncncererererererererererererererererererererer

Cancer Spam

a) Self-reported
experience

b) Control question

     answer correctness

Fig. 10. Users’ experience (a) and control question answering (b).

5.4. Results 15

The 12 control (C) questions were overwhelmingly correctly 16

answered (Fig. 10b), suggesting that users were able to learn to 17

correctly use our tool to perform low-to-medium difficulty tasks. 18

For the more complex live exploration (LE) questions, Fig. 11 19

shows the agreement scores. Long-and-bright bars in this figure 20

tell consensus between users and also with our own assessment. 21

Long and dark bars would indicate that many users would select 22

an answer that we consider unlikely. As Fig. 11 shows, we 23

see the former bars but not the latter, which indicates a strong 24

agreement among users and with our assessment too. We detail 25

these results next, grouping questions in terms of the type of 26

analyses they implied. For all questions, we provide our own 27

answers obtained using our tool (see Fig. 12). 28

Single cluster (Q1, Wine): This relatively simple analysis asks 29

users to find very-low-density wines in the projection and find 30

which other attribute is also out-of-proportion and thus likely 31

causes the low density. This question can be easily answered 32

using the lens and the value-ranking. Most subjects (52.2%) 33

answered alcohol, which is also our pick. Yet, 30.4% of the 34

subjects answered here fixed acidity. This is potentially due to 35
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Single cluster (Q1, Wine) 

Multiple clusters (Q1, Spam)

Multiple attributes (Q3, Cancer)

Differential analysis (Q3, Wine)

Dimension disabling (Q1, Cancer)

For low-density wines, tick which other attribute is 
out-of-proportion and likely the cause of low density 

Looking at points with a malignant sample,
which statement is likely true?

Larger malignant cells are more 

concave than smaller malignant cells

Larger malignant cells are less

compact than smaller malignant cells

Malignant cells with a larger

perimeter tend to have a larger area

None of the above is likely true

4 (17.4%)

14 (60.9%)

0 (0.0%)

Use the differential analysis tool to find which attributes
most differ between the red and white wines (max 4)

Find subclusters within malignant points, select attributes
with high relative values that characterize them (max 3)

For non-spam mails, find which words occur more
often than usual (max 3)

Our assessment of the answers very likely likely unlikely very unlikely

Multiple clusters (Q2, Spam)

Tick which words occur more often than usual in
mails classified as spam (max 3)

Dimension importance (Q2, Wine)

Find the highest-quality wines, select the attributes that
seem to be most important for predicting quality (max 3)

Differential analysis (Q3, Spam)

For mails with higest frequency of word ‘will’, which 
attributes differentiate between mail being spam or not

Dimension disabling (Q2, Cancer)

For malignant subclusters, which attributes characterize
them due to their high relative values (max 3)

21 (91.3%)

Fig. 11. Inter-user agreement (and our assessment of correctness likelihood) for answers of the 9 live exploration questions Q1-Q3 for all three datasets.

ambiguous phrasing of the question, which could be interpreted1

as having to find a dimension which deviates from the global2

mean in the same proportion as the density dimension. Fig-3

ure 12a shows our analysis for this question. We see that, indeed,4

alcohol is significantly higher for the selected low-density points5

than all other points in the dataset.6

Multiple clusters (Q1-Q2, Spam): Users were asked to find7

which words occurred more often in non-spam than in spam8

mails – thus, study at least 2 different clusters. This involved9

finding point clusters with spam, respectively non-spam, mails,10

via e.g. the variance global explanation, and then lensing in11

value-ranking mode to see which of the 6 words occurred there12

more often than elsewhere. Participants yielded very similar13

answers – and also similar to our own findings. Participants14

were v ery close to unanimous in their answers; answers with15

majority votes correspond exactly with our answers. On Q1, one16

answer (addresses) also has several votes. This is potentially17

due to confusion caused by the words ‘addresses’ and ‘address’18

being dimensions in the dataset, the latter of which has unusually19

high values in the non-spam e-mails, whereas the first does not.20

Multiple attributes (Q3, Cancer): This question – arguably21

the most complex we had – involved analyzing several attributes22

per point cluster. This requires interactively finding projection23

areas having low/high values of one attribute and then analyzing24

the other attributes in these areas. Again, we see strong inter-user25

agreement and also agreement with our own findings.26

Differential analysis (Q3, Wine; Q3, Spam): Users were27

asked to tick up to four attributes that are most different be-28

tween red and white wines. To answer this, they had to find29

both red and white wines using the global explanation, select30

points of these two types, and next use the differential analy-31

sis to find which attributes differ between these selections. We 32

see again a strong agreement between users and also with our- 33

selves. Figure 12c shows our own explanation for this question. 34

We see that both volatile acidity and total sulfur dioxide have 35

the largest differences followed by fixed acidity and pH. These 36

results completely align with the responses of the participants. 37

Dimension disabling (Q1-Q2, Cancer): Questions 1 and 2 of 38

the Breast Cancer dataset asked the participants to find point 39

clusters in the projection where particular attributes had higher 40

values than all other attributes, and to note down which attributes 41

these were. Such clusters had to be found for points that were 42

completely dominated by a malignant diagnosis (high value) 43

in the diagnosis dimension, meaning all points were assigned 44

the same color (of the diagnosis dimension, see Fig. 12 d1). In 45

our analysis, we found three major distinct subclusters within 46

the point cluster with a malignant diagnosis. These were char- 47

acterized by high values of the radius, concave points, and 48

compactness dimensions. 49

As Fig. 11 shows, participants most commonly answered 50

concave points (87.0%), radius (78.3%), and then compactness 51

(43.5%), which matches our analysis. Before going to Q2, par- 52

ticipants were briefed on how they can disable and re-enable 53

dimensions and were told to disable the diagnosis dimension, 54

thereby uncovering the colors of the subclusters (see Fig. 12 d2, 55

color: value mode). We see that the compactness cluster is quite 56

small and was thus harder to find for Q1. Q2 then next asked 57

participants to repeat the task of Q1 with the newly revealed 58

colour groups. In this second task, we expected participants to 59

have an easier time finding the specific clusters as the assigned 60

point colors are indicating them. Given the relative small size of 61

the compactness cluster, making it hard to find in the first task 62
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a) Single cluster (Q1, Wine) b) Dimension importance (Q2, Wine) 

c) Differential analysis (Q3, Wine) d) Dimension disabling (Q1-Q2, Cancer)

d1) d2)

Fig. 12. Our analysis supporting the answers of the live exploration (LE) questions. See Sec. 5.4.

without being able to see the colors, we expected it to be found1

much more often in the second task, as well as a lesser increase2

in the other cluster attributes. Participant responses (Fig. 11)3

show the compactness dimension increased from selected ticked4

by 43.5% of participants to 60.9% between Q2 an Q3 for the5

Cancer dataset, which matches our expectations.6

Fig. 13. Tool mechanisms used to answer Q2, Wine. See Sec. 5.4.

Dimension importance (Q2, Wine): A common scenario in the7

analysis of real-world datasets is finding variables influencing8

a dependent variable. Question 2 of the Wine dataset asks the9

subjects to perform such an analysis by finding the region in10

the projection with the highest-quality wines and ticking the11

dimensions they believe to influence quality. Figure 11 shows12

the recorded answers. Again, we see a good agreement of the13

users with our own explanation (large light bar for dimension14

alcohol). Figure 12b shows our own answer for this question.15

From the dimensions ranking, we see that chlorides has the least16

variance for the selected high-quality wines (since it is the top17

dimension in variance mode), telling that having this particular18

value of chlorides may be important for the high quality of the19

wines. Next in the ranking comes alcohol, and then total sulphur20

dioxide and density. These four dimensions are given the most21

votes by participants.22

Compared to the other LE questions, this question is open up23

to interpretation and personal judgement – finding how variables24

influence each other can be interpreted quite broadly. As such,25

we asked a follow-up question to find out how participants used26

our tool to reach their conclusion. Participants could report the27

usage of any of six predefined solutions (selected by us) or addi-28

tionally report a different solution via free text. Figure 13 shows29

the recorded answers. Interestingly, no ‘other’ solution was re- 30

ported apart of our six options. We see the most users answered 31

the question by moving the lens over the projection and keeping 32

track of the local mean shown for the quality dimension. Once 33

they found some high-quality wines, most users indicated next 34

that they ticked the dimensions that had very low variances. Our 35

own solution to answer this question was practically identical. 36

Summarizing the above, we found that participants who used 37

our tool independently and not supervised by us arrived at very 38

similar answers of the posed questions. We deem these an- 39

swers to be correct, given our own independent analysis of the 40

same datasets. While not a formal proof, we argue that this is 41

evidence that our tool can help obtaining valuable insights in 42

high-dimensional data in a predictable way. 43

5.5. Overall feedback 44

Figure 14 shows extra details from the participants’ feedback. 45

Image (a) shows the opinions on the variance ranking. The top 46

three bars show the answers to our questions on the usefulness 47

of this explanation (see figure for questions). Most users found 48

the variance ranking useful for finding important dimensions and 49

clusters to further explore. Yet, 13% of them found the variance 50

ranking of no extra value. The free answers provided by the 51

users mentioned various issues such as the ranking yielding 52

‘nice’ visualizations and structure to the projection; and being 53

overall interesting to explore. 54

Image (b) shows opinions on the value ranking. As for vari- 55

ance ranking, most users found this mode useful to find impor- 56

tant dimensions, clusters to explore, and extremal values. Only 57

one user stated that this mode has no extra value; none found the 58

red-green and standard deviations bars (Sec. 4) confusing. Free 59

answers mentioned that this mode brings additional insights; one 60

user said they would confuse this mode with variance ranking. 61

Image (c) shows opinions on the PCP plot. Most users found 62

the plot useful to help them gauge the distribution of values 63

in the selection and, overall, providing additional explanatory 64

value. Yet, 2 users found the plot having no extra value and 4 65
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users that the plot makes the explanatory widget more confusing.1

Free answers mentioned that the PCP plot provides ‘faint’ but2

useful cues of the data distribution; one user, though, mentioned3

he/she ‘hates’ this plot (but did not further explain why).4

Images (d-g) show how users evaluated the usefulness of5

all our proposed mechanisms – variance ranking, value rank-6

ing, differential analysis, and disabling dimensions, on a 7-7

point Likert scale ranging from not very useful to very use-8

ful. Most users found overall all mechanisms useful. On the9

above-mentioned Likert scale, we have variance mode: mean10

score 4.83 (SD=1.63); value mode: mean score 6.52 (SD=0.77);11

differential analysis: mean score 5.74 (SD=1.03); dimension12

exclusion: mean score 5.74 (SD=1.42).13

6. Evaluation on Real-World Data14

To bring more insights in the added-value of the proposed15

projection exploratory techniques, we use them next to analyze16

a more complex real-world dataset.17

Dataset: The European Values Study (EVS) dataset was created18

following a large-scale, cross-national and longitudinal survey,19

which includes a large number of questions on moral, religious,20

social, political, occupational, and family values that have been21

replicated since the early eighties [41]. The survey goals are22

to measure how groups of people in Europe have similar (or23

different) so-called value systems and thereby better understand24

which aspects unite, respectively divide, people. This can help25

decisional factors at various levels to devise policy instruments26

to foster convergence along desirable values. The survey has27

111 main questions (some with sub-questions) leading to 282 an-28

swers per participant. The survey which we used in our analysis29

was answered by 56491 citizens from 34 European countries.30

Scalability-wise, projections can easily handle this dataset31

(N = 56491 samples, n = 282 dimensions). Yet, preprocessing32

all 282 dimensions to make them ‘compatible’ for dimensionality33

reduction is in itself a challenge, since the dimensions are of34

different types (quantitative, ordinal, categorical using many35

different category scales); some questions allow multiple-choice36

answers and others not; and several questions exhibit a high37

frequency of missing answers. Separately, interpreting such38

projections – even with our explanatory techniques – would be39

very challenging since the 111 questions address widely different40

topics – religion, welfare, politics, role of the state, elections,41

education, EU enlargement, living standards, economy, and42

more. As mentioned earlier, our explanatory mechanisms are43

designed to handle tens, but not hundreds, of dimensions.44

As such, we chose the less ambitious but more focused goal45

of studying only one aspect of the EVS dataset, namely ques-46

tions about religious beliefs. Table 1 shows the 21 questions on47

this topic and their possible answers (for full details, see [41]).48

From the N = 56491 samples, we kept to further project the49

N′ = 22532 ones which contain no missing (NA) values for50

any of the selected 21 dimensions. We refrained from standard51

techniques for imputing missing values (e.g. based on averages52

or most-frequent values) as domain specialists involved with this53

dataset advised us against such options which, in their experi-54

ence, could introduce significant biases. However, for question55

v53 (’Did you ever belong to a religious denomination?’), we 56

also kept samples having NA answers since this indicates peo- 57

ple who do not describe themselves as belonging to a religious 58

denomination. Next, we converted categorical data to numerical 59

data via one-hot encoding [42]. Finally, we normalized all quan- 60

titative variables to the range [0, 1] by standardization (subtract 61

the mean, divide by standard deviation); and weighed the sets of 62

one-hot-encodings that map one categorical variable by 1/
√

2, 63

so they have a proportional contribution to the total similarity 64

function as the quantitative variables. 65

Results: Figure 15 shows the t-SNE projection of the EVS 66

dataset colored by variance. Image (a) shows the overview. The 67

projection consists of well-separated point clusters which sug- 68

gest a clear grouping of the respondents based on their religion- 69

related answers. We see some coarse-level structure: Several 70

central groups (light blue) indicate people with no religious de- 71

nomination. We also see several light-purple groups at different 72

places on the outskirts the projection. These are people who 73

answered similarly to v9 (are you in a church/religious organi- 74

zation?) Since there are several such groups, the answers to v9 75

are different (some are and some are not in such organizations) 76

and/or other factors exist that differentiate them. 77

To get more insight in the projection, we select a few groups 78

for further analysis. Image (b, red points) shows such a group to 79

the bottom. The widget tells us that these are, compared to the 80

dataset’s average, people more present in church organizations, 81

who more often believe in God, heaven, hell, and the afterlife, 82

and go to church more often. Interestingly, they have a wide 83

spectrum of beliefs concerning the form God takes (v62). We 84

can cautiously describe them as ‘institutionally religious’ people. 85

Image (c) selects a cluster top-left in the projection. Its widget, 86

and the earlier-observed purple color in image (a), tell us that 87

these are also people in religious organizations. Yet, the top 88

green bars in the widget show that, compared to the dataset 89

average, they don’t believe in afterlife, God, heaven, and hell, 90

but strongly believe children should have religious faith and 91

overall believe God is important. We can describe such people 92

as formally non-religious but supporting the ethical importance 93

of religion. Finally, image (d) explores a cluster just right to 94

the one in image (c). Comparing its widget with that of (c) we 95

see that the second bar from the top (believe in reincarnation, 96

v61) changes a lot: These are people who do not believe in 97

reincarnation, while those selected in (c) did, with all their other 98

attributes being roughly similar. 99

Figure 16 shows the projection explained by outlier values. 100

Image (a) uses the same colormap as Fig. 15a. We get more 101

insights into the projection structure: The right yellow groups 102

share outlier answers to v6 (whether religion is important). The 103

middle purple groups, overlapping many of the light-blue groups 104

in Fig. 15a, have outlier answers to v9 (whether in a religious 105

organization). Bottom-left, brown groups have outlier answers 106

to prayer frequency outside religious services (v64). Finally, the 107

top-left green groups have outlier answers to whether religious 108

faith is desirable for children (v93). 109

Let us re-examine the same selected groups as in Fig. 15b-d 110

via outlier values. Figure 16b shows that people in the bottom 111

group pray (outside of religious services) significantly less, and 112
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a) Variance ranking assessment b) Value ranking assessment

c) PCP plot assessment

Helps find important dimensions

Helps find clusters to explore

No extra value

Helps find important dimensions

Helps find clusters to explore

Helps find very high values
Helps find very low values

Helps gauge distr. of values
Provides extra expl. value
No extra value
Makes widget more confusing

not very useful very useful

{ {

{

free answers

free answers

free answers

Red/green bars ar confusing

Stddev bars are confusing
No extra value

d) Usefulness of variance ranking

e) Usefulness of value ranking f) Usefulness of differential analysis g) Usefulness of disabling dimensions

not very useful very usefulnot very useful very useful not very useful very useful

Fig. 14. Details of our user evaluation concerning questions about our techniques’ overall perceived added-value. See Sec. 5.5.

Table 1. Questions and representations of answers of 21 religion-related opinions from the EVS dataset. See Sec. 6.
No. Summary of questions in the EVS survey Answer values Meaning of the answer values
v6 How about the importance of religion in your life? [1,2,3,4], [8,9] [very, quite, not, not at all], [don’t know (DK), no answer (NA)]
v9 Do you belong to a religious or church organization? [1,2], [8,9] [yes, no], [DK, NA]
v36 How much do you trust people from another religion? [1,2], [8,9] [completely, somewhat, very much, trust at all], [DK, NA]
v51 Do you belong to a religious denomination? [1,2], [8,9] [yes, no], [DK, NA]
v52 Which denomination do you belong to? [1-17], [88,99,77] [a set of 17 denominations], [DK, NA, not applicable]
v53 Did you ever belong to a religious denomination? [1,2], [8,9] [yes, no], [DK, NA]
v54 How often do you attend religious services these days? [1-7], [8,9] [7 degrees from more than once a week to never], [DK, NA]
v55 How often did you attend religious services when you were 12 years old? [1-7], [8,9] [7 degrees from more than once a week to never], [DK, NA]
v56 Would you say you are a ... person? (read out) [1,2,3], [8,9] [religious, not religious, convinced atheist], [DK, NA]
v57 Do you believe in God? [1,2], [8,9] [yes, no], [DK, NA]
v58 Do you believe in Life after death? [1,2], [8,9] [yes, no], [DK, NA]
v59 Do you believe in Hell? [1,2], [8,9] [yes, no], [DK, NA]
v60 Do you believe in Heaven? [1,2], [8,9] [yes, no], [DK, NA]
v61 Do you believe in reincarnation? [1,2], [8,9] [yes, no], [DK, NA]
v62 Which form do you think God takes? [1,2,3,4], [8,9] [person, sort of spirit, think nothing, no God], [DK, NA]
v63 How important is God in your life? [1-10], [88,99] [10 degrees from not at all to very important], [DK, NA]
v64 How often do you pray outside of religious services? (read out) [1-7], [8,9] [7 degrees from everyday to never], [DK, NA]
v93 Do you think religious faith is desirable for a child to have? [1,2], [8,9] [yes, no], [DK, NA]
v115 How much confidence do you have in the Church? [1,2,3,4], [8,9] [great, quiet a lot, not very much, none at all], [DK, NA]
v134 Democracy needs that religious authorities ultimately interpret the law. [0,1-10], [8,9] [against democracy, 10 degrees from not at all to essential], [DK, NA]
v196 To be a Christian is important for being an European person. [1,2,3,4], [8,9] [4 degrees from very important to not at all important],[DK, NA]

believe in spirits significantly less, than the dataset average. This1

matches well our earlier description of ‘institutionally religious’2

people. Figure 16c confirms our earlier findings from Fig. 15c.3

The bars in the widgets of these two figures are the same. What4

differs is the sorting order: In variance mode (Fig. 15c), bars are5

sorted from low to high variance, allowing us to find the least6

varying, thus most homogeneous, dimensions over a selection;7

in value mode (Fig. 16c), bars are sorted from high to low out-8

lierness, allowing us to find dimensions having unusually high9

(or low) values in a selection. The added-value of the two modes10

becomes clear when we examine Fig. 16d, where we selected11

the same group as in Fig. 15d: As explained earlier, the differ-12

ence of this group and the one left of it is immediate when we13

compare the widgets in Figs. 16c,d – the variance sort shows the14

belief in reincarnation (orange dimension, second-top) changes15

a lot between the two widgets, telling what makes the groups16

different. In value mode, this dimension is the one-but-last in 17

Fig. 16c but pops second-to-top in Fig. 16d. Hence, variance 18

sort helps more to explain the differences of these two groups. 19

The scenarios involving images (c,d) in Figs. 15 and 16 aim to 20

find what differentiates two point groups. We can complete this 21

task also by the differential analysis tool (Sec. 4). Consider the 22

three small groups selected in red at the center of Fig. 16e. The 23

widget tells us that these are people not in church organizations 24

(long green bar at top) but who, interestingly, do believe in hell 25

and reincarnation much more than the dataset average (long 26

red bars at the bottom). What differentiates these three groups 27

from each other? To answer this, we select first the top two 28

groups (A and B) and use the differential tool (Fig. 16f). The 29

widget now shows a single long red bar at the bottom, telling 30

that group B has people who believe far more in heaven than 31

the ones in group A. All other bars are relatively short, so this 32
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belief in heaven is the main differentiator of these two groups.1

Next, we select groups B and C and use again the differential2

tool (Fig. 16g). The widget shows a long green and a long red3

bar, telling that people in cluster C believe far less in the afterlife,4

but believe far more often in heaven, than people in group B.5

Finding such differentiators between point groups would have6

been significantly harder without the differential tool that shows7

what makes them, pair-wise, different.8

Assessment: We ran our findings with an expert who has a9

strong background in both infovis and the social sciences domain10

from which the dataset emerges, and was not involved in the11

development or testing of our tool. Our questions were (a)12

whether our explanatory techniques have the potential to show13

currently-unknown insights on these data; and (b) whether our14

visualization (projection plus interactive explanations) do make15

sense and are superior to the common tools known by experts16

in their domain. The answers to both questions were clearly17

positive: (a) The findings we highlighted earlier in this section18

were unknown to researchers in the field and were also deemed19

interesting and worthy of further analysis; (b) there were no20

similar tools known in the expert’s domain which could allow21

researchers to explore the EVS data in the way we did – the22

closest tool they would know of is a (t-SNE) projection annotated23

by the values of a single dimension selected by users (which, as24

shown in Sec. 2 and Fig. 1, clearly does not scale to more than25

a few dimensions). While this evidence is not enough to draw26

strong conclusions, we believe it offers sufficient ground to assert27

that our proposal is of potential added-value to scientists aiming28

to explore high-dimensional datasets via explained projections.29

7. Discussion30

We next discuss several key aspects of our proposal.31

Genericity: Our proposed explanatory methods are generic –32

they work for any projection technique P and high-dimensional33

dataset D, including data having quantitative, ordinal, and cate-34

gorical attributes (see Sec. 6), as long as one has a (good quality)35

projection of the data to explore.36

Scalability: Our explanatory methods only require the compu-37

tation of variance-and-value metrics over relatively small point38

neighborhoods in the projection (Eqns. 1 and 5). These are39

O(κNn) for N dataset points having n dimensions and κ points40

in the local neighborhood of radius ρ in a projection (see Sec. 3)41

– and trivially to parallelize in a SIMD manner.42

Ease of use: Using our explanatory techniques is easy as out-43

lined by the presented study in Sec. 5. All our users, having quite44

diverse backgrounds, were able to understand our techniques45

and apply them to find correct results on three relatively complex46

datasets and questions in several tens of minutes.47

Limitations: Our proposal has several limitations. First, as48

stated in Secs. 1 and 2, we only address tabular data, which49

contains a limited number of dimensions n (roughly, tens) that50

all have clear semantics for the user. If dimensions do not have a51

clear meaning for users, using them to explain a projection does52

not make much sense. A related limitation is that we cannot53

handle data with missing values. This can significantly decrease54

the applicability of our method to the full extent of informa- 55

tion present in real-world datasets (see Sec. 6). While we can 56

argue that handling missing values is out of the scope of our 57

explanatory techniques for projections, it is definitely interest- 58

ing to think how one could meaningfully ‘insert’ such values 59

into a projection or, alternatively, complete the statistics shown 60

by our explanatory widgets by all valid attributes present in a 61

dataset. Secondly, our local explanations (Sec. 4) are also lim- 62

ited in showing statistics over the brushed selection – averages, 63

ranges, standard deviations, and parallel coordinate plots. These 64

simple to interpret signals are by no means exhaustive. Find- 65

ing more involved (summarized) descriptions of what makes a 66

neighborhood ‘particular’ is an open research topic. Finally, our 67

differential tool allows comparing two neighborhoods at a time 68

(Sec. 4). It is definitely interesting to extend this to compare 69

multiple such neighborhoods. 70

8. Conclusion 71

We have presented a set of interactive visual techniques for 72

the exploration and explanation of multidimensional projections. 73

Our techniques include local and global value-based explana- 74

tions, detailed statistics on all dimensions, comparing projection 75

regions, and dimension filtering. Our techniques can generically 76

handle any projection algorithm and scale computationally and 77

visually to datasets of over 100K samples and over 300 dimen- 78

sions. A user study showed that our techniques can be quickly 79

learned, are found useful, and can be applied to answer non- 80

trivial questions involving real-world multidimensional datasets, 81

and lead to similar findings from different users for the same 82

datasets and questions. We also showed that our techniques can 83

be applied to complex, real-world, datasets containing attributes 84

of mixed type – ordinal, categorical, and quantitative – to unravel 85

hitherto unknown insights from the respective datasets. 86

Several directions can be explored next. Global explanations, 87

although useful, are still limited as they inherently show a single 88

dimension. Further studying the original idea proposed – but not 89

elaborated – by Da Silva [10] to use dimension-sets, possibly 90

complemented by dimension-value-ranges, has strong potential 91

to improve the added value of such explanations. Separately, we 92

could incorporate knowledge on the specific projection method 93

used to make the explanatory metrics more insightful than using 94

generic variance and outlier-value computations. Also, both 95

our global and local analyses can be enhanced to support more 96

targeted queries, e.g. ‘show me other projection regions similar 97

to this selected one’. Finally, deploying our tool in a long-term 98

analysis scenario involving a real use-case and domain experts 99

would bring additional evidence for its practical value. 100
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a) b) 

c) d) 

Fig. 15. Variance explanation of the EVS dataset. (a) Overview showing the main variables that explain the projection clusters. (b-d) Details for three
selected clusters. See Sec. 6.

a) b) 

c) d) 

e) f) g) 

A C

B B

Fig. 16. Value explanation of the EVS dataset. (a) Overview showing the main variables that explain the projection clusters. (b-d) Details for three selected
clusters. (e-g) Differential analysis of three small clusters in the center. Insets right of each projection show our local explanation widgets. See Sec. 6.
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