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For classification tasks, several strategies aim to tackle the problem of not having sufficient labeled data, usually
by automatic labeling or by fully passing this task to a user. Automatic labeling is simple to apply but can fail
handling complex situations where human insights may be required to decide the correct labels. Conversely,
manual labeling leverages the expertise of specialists but may waste precious effort which could be handled by
automatic methods. More specifically, automatic solutions could be improved by combining an active learning
loop with manual labeling assisted by visual depictions of a classifier’s behavior. We propose to include the
human in the labeling loop by using manual labeling in feature spaces produced by a deep feature annotation
(DeepFA) technique. To assist manual labeling, we provide users with visual insights on the classifier’s decision
boundaries. Finally, we use the manual and automatically computed labels jointly to retrain the classifier in
an active learning (AL) loop scheme. Experiments using a toy and a real-world application dataset show that
our proposed combination of manual labeling supported by visualization of decision boundaries and automatic

labeling can yield a significant increase in classifier performance with a quite limited user effort.

1. Introduction

Data acquisition has been massively favored by many applications.
Yet, getting a good amount of labeled data is crucial when training su-
pervised classifiers, especially for deep neural networks (DNNs) [1,2].
While label acquisition is reasonably cheap for some applications, this
can be costly for image data, particularly when specialists, e.g. from
Medicine or Biology, need to carefully study each image.

Several strategies aim to tackle the problem of insufficient labeled
data (a) automatically, (b) interactively, or (c) by combining (a) and
(b). We concern ourselves with cases where we have only a few
supervised image samples and also need to label unsupervised samples.
As such, few-shot-learning solutions [3] are out of our scope.

a. Automatic labeling: Semi-supervised learning (SSL) [3] and pseudo
labeling [4] are well-known methods in this class. SSL extracts label
information from a few supervised samples while capturing additional
information on data distribution from many unsupervised samples [3].
As such, SSL can both improve the performance of a DNN and increase
the number of labeled samples. Deep learning approaches [5-8] have
been used to propagate labels from a few supervised samples to many
unsupervised ones by exploiting their feature-space distribution. The

scarce label information is effectively ‘propagated’ over the training
set, leading to pseudo labels — i.e., labels that are not assigned by
users but are used exactly as true labels for training. If we assume
that the training set accurately captures the data distribution for the
problem at hand, then such information can be enough to train high-
performance classifier models. Yet, SSL and pseudo-labeling techniques
still need hundreds to thousands of supervised samples for training
and/or hyperparameter optimization [6-8]. Aiming to solve such prob-
lems, a deep feature annotation (DeepFA) [9,10] technique allows
both learning deep features and labeling them using only dozens of
supervised samples. DeepFA combines graph-based pseudo labeling and
non-linear projection techniques to iteratively improve feature spaces.
Although this approach allows users to visually inspect the (pseudo
labeled) data by a projection, the user is not actively involved in the
labeling.

b. Manual labeling: Crowdsource labeling is a popular way to in-
volve users with labeling [11], but works well only for applications
where specific knowledge is not important for the labeling task. Active
learning (AL) [12] and visual-interactive machine learning [13-16]
techniques play an important role in this context. In AL, a deep-learned
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model selects a few samples based on some criteria and gives them
to users to label [17]; the model is retrained with the user-labeled
samples; and the loop repeats. The pseudo-labeled samples are expected
to boost classifier performance after a few iterations. While AL-based
deep learning solutions do include visual interactive labeling [17],
these do not consider iterated user interaction. Overall, AL and visual-
interactive labeling have been compared in the literature [14], but they
have not been explored together.

c. Combined labeling: To amend the above issues, some methods
combine automatic and interactive approaches. The human ability to
surpass automatic pseudo-labeling techniques was first assessed in [18].
Later, combined manual and automatic labeling was proposed [19],
using AL concepts of sample informativeness [12] to do automatic
labeling in high-confidence areas, leaving low-confidence areas for
manual labeling. Yet, an AL loop that incorporates user input was not
considered.

Given these gaps, we propose in this work to include the human
in the loop by (i) considering manual labeling in feature spaces pro-
duced by DeepFA, (ii) helping user labeling by visualizing the trained
model’s behavior, and (iii) using manual labels to retrain a classifier in
an AL looping scheme. Specifically, we use Decision Boundary Maps
(DBMs) [20] and direct-and-inverse projection errors [20] as visual
aids to help users decide where, in a projection, to concentrate their
manual labeling efforts. We present a controlled experiment that shows
that our combination of automatic and manual labeling, supported
by DBMs, allows users to improve classification performance by non-
negligible factors, for both a simple and a challenging, real-world,
dataset, and with very limited user effort. To our knowledge, this is
the first application that measures how DBMs can be effectively used
to improve classifier performance with only a few supervised samples,
complex datasets, and combining manual and automatic labeling.

2. Related work

Preliminaries. Let D = {x;}, ]| <i < N be a dataset of N samples, in
which x = (x!,x2,...,x"), x¥' € R" and 1 < i < n, a n-dimensional (nD)
real sample. We call the values x/, 1 < i < n, the dimensions (attributes,
variables, or features) of sample x.

We call D supervised if there is a pair (x;,¢;) € D x C for all x; in
D, where ¢; is called the label of sample x;. In a supervised D, labels
¢; are known as true labels and are manually assigned by a human or
come from other trusted data sources. In an unsupervised dataset D,
¢; is unknown. A label ¢; € C can be assigned to a sample x; by a
labeling process. For classification problems, C is a categorical domain,
and labels ¢ € C are also known as classes. A classifier for D is a
function f : D — C that maps samples to class labels in a supervised
way.

Direct and inverse projections. Dimensionality reduction (DR) meth-
ods, also called projections, take a dataset D to create a scatterplot (or
embedding) P(D) = {y; = P(x;)ly; € R”}, where typically v € {2,3}.
Without generality loss, we next consider v = 2, i.e., we project data to
2D.

An inverse projection P~! : R’ — R" is a function that aims
to ‘revert’ the effect of a given projection P. More formally, given
a projection P(D) of a dataset D, its inverse is a function P!
RY — R” that minimizes the cost ) ., d(P~(P(x;)) — x;) for a given
metric d (typically, MAE or MSE); and smoothly varies as the input
of P~! changes over R’. Several techniques have been proposed to
construct inverse projections. Early on, autoencoders (AEs) minimized
a reconstruction error [21] - the encoder part of the AE computes
P, while the decoder part computes P!, iLAMP [22] explored local
affine mappings to compute P~! for the direct projection LAMP [23].
The NNP technique [24] used deep learning to train a regressor to
produce P(D) for any given dataset D and projection technique P.
NNInv [25] swapped the roles of D and P(D) — given a 2D scatterplot
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P(D), NNP regresses it to the corresponding dataset D. Improvements
of NNInv include Self-Supervised Neural Projection (SSNP, [26]), which
learns both P and P~! with strong cluster separation based on data
(pseudo)labeling; and Shape-Regularized Multidimensional Projection
(ShaRP, [27]), which does the same using a variational autoencoder
design to constrain the shapes of the obtained point clusters in P(D).
Compared to iLAMP, deep-learning inverse projections (AE, SSNP,
NNInv, ShaRP) are much faster and are parameter-free.

Active learning. Classical AL pipelines work as follows: An algorithm
selects a set of samples based on specified criteria and passes them to a
user for labeling or inspection. The user-provided information is given
to the learner so the learner can improve itself by it [12]. The process
iterates until some pre-established stopping criteria are reached, e.g., a
desired classification performance or a maximal user effort being spent.

Modern classifiers use mainly deep learning techniques such as
deep CNNs [28,29], deep restricted Boltzmann machines [30], Bayesian
CNNs [31], and DBNs [32,33] for the AL task. Additionally, some stud-
ies explored incremental CNN learning [28] and incremental dictionary
learning [33] with few layers. Given our interest in labeling image data,
we focus next on studies that consider AL and deep CNNs.

Given that AL strategies require many supervised samples for train-
ing the deep model in the first iteration [17], solutions have considered
user interaction using projected spaces. A recent study [34] aimed to
simulate user labeling in AL looping, using an improved semi-supervised
extension of the t-SNE [35] projection, where t-SNE plays the role
of user labeling. Yet, this work did not actually involve users in the
looping.

Iwata et al. [13] proposed an interactive visual analytics (VA) AL
framework which selects objects for the user to relocate to obtain a
desired visualization. The main goal was to obtain better visualizations
using AL rather than create labeled datasets to train classifiers. Bernard
et al. [16] presented a systematic quantitative analysis of 10 different
user strategies (called computational building blocks) commonly used
for selecting samples to label using projections. These user strategies in-
clude labeling outliers, density regions, or cluster borders first (among
other similar ones). The performance of such strategies is analyzed
and compared with 7 AL strategies through experiments using different
datasets. Later, Bernard et al. [14] compared the performance of the
above-mentioned 10 visual-interactive and other 16 AL labeling strate-
gies, including single and multiple classifiers. Their findings suggest
that visual-interactive labeling can outperform AL when class distribu-
tions are well separated in projections. While such studies compared AL
and visual-interactive labeling, they did not combine these techniques.
In contrast, on our work we perform precisely this combination by
first performing automatic labeling and next enabling the user to refine
these labels using a set of visual depictions of a classifier’s behavior
which go beyond the raw projection of labeled samples used in Bernard
et al.’s work. Finally, all above-mentioned studies only used relatively
simple datasets. Real-world complex datasets provide more complex
feature spaces which are more challenging to handle via AL (with
or without VA-based techniques). In our work, we consider both a
relatively simple dataset, and a complex, real-world, one.

Pseudo labeling. Being a special case of self-training, pseudo label-
ing was first proposed to fine-tune a pre-trained model [4]. Still,
label propagation errors can negatively affect the classification perfor-
mance of models trained with pseudo labels [18,36]. The confidence
of the apprentice model was included in the loss function to miti-
gate such problems [5,37]. Recently, pseudo labeling approaches [4,7,
8] essentially adopt the semi-supervised strategy with the apprentice
model assigning uncertain (pseudo) labels to unsupervised samples.
Such approaches have been also combined with different strategies,
e.g., self-supervised methods [38,39]. For the same goal, meta-pseudo-
labeling [8] uses an auxiliary model (teacher) to generate pseudo labels
to train the primary model (student). Yet, to get reasonable label prop-
agation accuracy, such deep-learning-based methods require a training
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set with hundreds of supervised samples per class and a validation set
with additional supervised samples for parameter optimization [4,6—
8]. When only a few supervised samples (e.g., dozens per class) are
available, this requirement is a clear blocker for using such methods.

Recently, Embedded Pseudo Labeling (EPL) [18] proposed pseudo
labeling starting from only dozens of supervised samples, without
needing validation sets with more supervised samples. EPL projects the
data D to 2D the latent feature space extracted from a deep neural net-
work (DNN) using autoencoders [19] and pre-trained architectures [9].
Pseudo labels are next propagated in the 2D projection from supervised
to unsupervised samples using the OPFSemi [40] method. OPFSemi’s
value for pseudo labeling was studied in [18,41,42], showing that it
can surpasses many other similar methods. In brief, OPFSemi considers
each sample as a node of a complete graph, weighted by a distance
function (usually Euclidean) between samples. It defines the cost of
a path connecting two nodes as the maximum arc weight along the
path. From the training nodes, the supervised ones are used as seeds to
compute a minimum-cost path forest, such that each seed defines a tree
and assigns its label to the most closely connected unsupervised nodes
of its tree. For additional details, we refer the reader again to the full
description in [40].

Deep feature annotation. The quality of the pseudo labels produced
by EPL is constrained by the initial feature space. If the feature learn-
ing step produces a feature space with poor visual separation, then
pseudo labeling will fail. Deep feature annotation (DeepFA) [9,10]
circumvented this problem by improving feature learning over EPL
iterations, using only 1% of all supervised samples. In DeepFA, the
teacher (OPFSemi, a semi-supervised classifier) uses modifications of a
given latent feature space of the student (a DNN) along with iterations
of a 2D projection (t-SNE [43]) for pseudo-labeling. At each itera-
tion, pseudo labeled samples are used to retrain the DNN, modifying
its latent feature space. A few iterations of the training loop with
truly-and-artificially-labeled samples improve the DNN’s generalization
performance. Yet, this approach does not consider user manual labeling
to improve its pseudo labels.

Decision Boundary Maps (DBMs). DBMs construct a dense visual
representation of the behavior of a trained ML model f, allowing
users to inspect f’s behavior outside of some limited training or test
set. Given a dataset D (which can be f’s training set, test set, or a
combination of both), a projection P(D) is created. Next, an inverse
projection P~! is computed from D and P(D), using any of the methods
described earlier. The 2D space in which P(D) lives is discretized in a
pixel grid G. For every pixel y € G, its inverse projection P~!(y) is
computed, and y is colored to show the inferred label f(P~!(y)). Fig. 1
(right) shows a DBM for the classifier f and projection P(D) depicted
in the 2D scatterplot in the left image. Same-color regions in the DBM
show the decision zones of the classifier, i.e., samples for which f infers
the same label. Neighboring pixels having different colors in the DBM
show the decision boundaries, i.e., samples where f changes value.
Several techniques were proposed to compute DBMs. Early on,
DeepView [44] (and next [45]) used UMAP to compute both P and P~!,
extrapolating P~! to all DBM points by minimizing a Kullback-Leibler
(KL) divergence that models similarity probabilities in both 2D and
data space. DeepView yields smooth DBMs but is orders of magnitude
slower than other DBM methods [46]. Rodrigues et al. [20] used t-
SNE and LAMP for P and iLAMP for P~!. Yet, their method creates
many ‘spurious islands’, i.e., small areas in a DBM image that appear as
different decision zones from their surroundings. Such areas are highly
improbable given the smooth nature of most classifiers. This method
was refined by removing points in P(D) with high projection errors,
which lead to spurious islands; and by encoding the confidence of the
classifier f in the DBM brightness [47]. Supervised Decision Boundary
Maps (SDBM, [48]) used the SSNP projection [26] to construct DBMs
with far smoother decision boundaries than [20], which are thus easier
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Fig. 1. Left: Projection scatterplot colored by labels inferred by a classifier f. Right:
Decision map shows how f operates on additional points. Same-color areas are f’s
decision zones. Neighboring pixels of different colors show f’s decision boundaries.
Source: Image adapted from [20].
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Fig. 2. Pipeline of the proposed interactive approach.

to explore visually. A recent study compared DBM methods on their
ability to accurately display the behavior of a given classifier [46].

DBMs have been used to explain, but not improve, classifiers. The
only exception we know [49] explored user interaction with DBMs in
an AL looping to label samples. The author combined 2D projections
and DBMs to manually label samples and improve a classifier over
active learning iterations. Evaluation was performed on three synthetic
datasets containing two and three classes, and a subset with four
and ten classes of Fashion MNIST, respectively. Only one user did
the evaluation using only one set/split dataset. In short, this work
(1) computes classification performance over validation and test sets,
which requires many supervised samples (as already explained); (2)
does not consider combining automatic and manual labeling; (3) was
tested only on relatively simple classification problems, and without
a formal measurement of user effort. Our work next improves on all
these aspects as follows. We propose to (1) compute classification
performance over the labeled set — the one labeled by DeepFA and given
as input in the first iteration — without the need for extra supervised
samples for validation; (2) combine automatic and manual labeling,
which saves the user significant time as one only needs to focus on a
small subset of points to manually label; (3) validate our approach on a
significantly more challenging, unbalanced, real-world dataset coming
from biology; and (4) combine different sources of visual information
to help the user with manual labeling.

3. Proposed method

We next detail our proposed pipeline that combines DBM techniques
and manual labeling in an active learning loop to improve classifier
training. The steps of our pipeline are as follows (see also Fig. 2).

(1) DeepFA: We start with a dataset having only a few true labels.
We want to get a fully labeled dataset in the end, with minimal user
labeling effort, so we use DeepFA (see Section 2) to create pseudo
labels, with only 1% of supervised samples. We use these pseudo labels
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to train the classifier in step 5. For selecting these 1% samples, we
used a stratified random approach. Other (AL) approaches for this
sample selection could be used, e.g., based on entropy, uncertainty,
and diversity. Given the space constraints, we consider such additional
experiments as part of future work.

(2) Direct projection: To embed data in 2D, we evaluated several dif-
ferent techniques: autoencoders [21], PCA [50], t-SNE [35], SSNP [26],
and UMAP [51].

(3) Inverse projection: To compute a DBM, we need an inverse
projection to map 2D points to data space (see Section 2). For this, we
evaluated autoencoders [21], SSNP [26], and NNinv [25].

(4) Visualization errors: We use the data points, their projections, and
the computed inverse projection function to measure errors of both P
and P! (Sections 3.1 and 3.2).

(5) Classifier training: We train a classifier with 70% of samples
(including pseudo labels created by DeepFA), keeping 30% to compute
classification performance metrics. We can handle any classifier as our
pipeline treats it as a black box f : D — C; in our experiments, we use
a deep neural network for f (Section 4).

(6) DBM computation: We visualize the trained classifier using the
DBM techniques discussed earlier in Section 2.

(7) Manual labeling: Users can inspect the projection of the input
dataset, the direct and inverse projection errors (computed at step
4), and the DBM of the trained classifier (computed at step 6) to
decide which samples to manually label (Section 3.3). We use these
newly-created pseudo labels to re-train the classifier — i.e., the pipeline
re-starts at step 5. Steps 5-7 are thus our active learning loop. Looping
ends when the classifier has achieved a desired target performance or
when the user decides that enough manual labeling effort has been put
in the process.

3.1. Direct projection errors

Showing local projection errors can help users decide where to put
their labeling effort. Assume a group of projection points is marked
as having high errors. Then, the information shown in that area —
class labels; decision zones and decision boundaries shown by a DBM
- can be misleading. Let us refine these cases. Consider an area in a
projection P(D) showing inferred labels by color coding. Such an area
can contain a mix of many colors — see Fig. 1 (left). This can lead users
to believe that the classifier behaves poorly in that area. Yet, this color
mix can be an artifact of P - the classifier may perfectly work in that
area. The same is true for DBMs: An area in a DBM can show tortuous
decision boundaries or many small-scale islands — see Fig. 1 (right).
Such artifacts can be caused by P or P~! errors rather than actual
classifier problems.

To understand such cases, we compute the projection error metrics
trustworthiness 7' [52] and continuity C [52] locally — that is, for every
point y € P(D). To simplify the user’s task in assessing errors, we next
combine these into

e =1 -TE)+1-CyN /2 M

Ranging in [0, 1], ¢ is easy to interpret: ¢ close to 1 tells that P is poor
close to point y; e close to 0 imply a good P close to y.

To visualize e, we could simply color the projection points y by its
values. Yet, this would make it hard to see regions of points which
have high, respectively low, error values, especially in the presence
of potential overplotting. A slightly better solution is to extrapolate ¢
up to a small, fixed, distance p from the points y, using radial basis
functions, as done in [53,54]. Yet, controlling p is tricky — too small
p values yield large empty areas in the projection; too large p values
yield overestimated error values.
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Fig. 3. Left: 2D projection for the MNIST dataset, points colored by class. Projection
errors ¢ are encoded into brightness (dark=low, bright=high). Right: Inverse projection
errors for the MNIST dataset (dark=low, bright=high).

We avoid such issues as follows. For a pixel y € R?, its correspond-
ing data sample is x = P~!(y). For both x and y, we find their respective
k-nearest neighbors in R?, respectively R”. With this, we can directly
evaluate T and C and thus e(y) at every pixel y. Fig. 3(left) shows the
combined projection error ¢ for the MNIST [55] dataset, with values
mapped to brightness (high e: bright; low e: dark). As visible, projection
errors are low close to most of the projection points. This is expected, as
the projection technique used here (t-SNE) is known to have low errors
everywhere on the MNIST dataset. As we go further from the projected
points, we see how errors increase.

3.2. Inverse projection errors

Besides direct projection errors, also the inverse projection P!
errors can adversely influence the insights users get from a DBM. Since
all existing DBM methods use some P~! method (Section 2), errors of
P~! will create errors in the DBM. We measure locally the quality of
inverse projections using the gradient map technique in [25]. In detail,
let y be a pixel in a DBM image, and y, and y, its right, respectively
bottom, neighbors. The gradient map method computes the value

6y = \IP-1y,) = P IR + 1P v - P IR, @

which is the finite-difference approximation of the gradient norm of
P~ ! aty. Interpreting G is simple: Low G values indicate low P~ errors.
Indeed, small changes in y correspond to small changes in the data
space, which we expect from a well-behaved P~!. High G values show
errors in P~! — small ‘moves’ in the image correspond to ‘jumps’ in the
data space.? Fig. 3(right) shows the inverse projection error G for the
same dataset and projection as in Fig. 3(left), encoded by brightness.
We see that most image areas have low G values, except some thin
‘bands’ where G increases a lot.

3.3. VA tool for active learning

We next present the Visual Analytics (VA) tool that we constructed
to assist users to interactively label samples to improve the training of
a given classifier (Fig. 2, large gray box). Throughout the explanation
of our tool’s workflow, we refer to the steps (1)-(7) of the pipeline in
Fig. 2.

Pre-labeling: Our tool starts with a fully labeled dataset D. If we
have ground-truth for D, they can be directly used. If not, i.e., when
only a small fraction of D have supervised labels, we use DeepFA to

2 More precisely, large values of the gradient of G, i.e. discontinuities in the
G signal, show P~! problems. In practice, we have seen that G consists of large
low-G areas separated by thin ‘bands’ of high-G values. As such, we consider
that high G values are a reliable indicator for the mentioned problems.
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compute pseudolabels for the remaining points (1), using 1% of the
supervised samples in D. This pre-labeling process is done only once,
before our tool is started. After pre-labeling, the user uploads the pre-
labeled dataset and the classifier to train and chooses general settings,
e.g., techniques to use for the DBM generation (explained next).

Interactive labeling: This is the main operation supported by our tool.
It starts with displaying a DBM image for the classifier and labeled
dataset provided at tool start-up. The DBM, (labeled) samples, P and
P~! error metrics, and tooltips showing details about specific samples,
can be interactively explored in a labeling window.

Fig. 4 shows the labeling window. In the left part, the window
shows the 2D projection of the loaded dataset (using the user-selected
P method). Training and test points are shown in white, respectively
black. The DBM for the classifier trained by the labeled set loaded by
the tool (before any manual labeling), computed by a user-selected
P~! method, is also shown under the projection. We allow users to
combine three additional metrics to show the DBM — the direct-
projection error (Eq. (1)); the inverse projection error (Eq. (2)); and
the confidence of the trained model [25,48]. Since all these measures
share the same scale [0, 1], we combine them by multiplication and map
this combination to the DBM image’s saturation. Fig. 4 (left) illustrates
this by showing the classifier confidence mapped to saturation. We see
that DBM areas close to decision boundaries have a lower classification
confidence, as expected.

Hovering a pixel y in the DBM shows P~!(y) in a tooltip image.
This allows users to inspect both actual samples (from the dataset D
loaded by the tool) or inferred points corresponding to areas in the
DBM outside P(D). This helps next deciding how to manually label
data samples. Top right in the window, we show the accuracy and
Cohen’s k value for the current classifier, i.e., trained with the current
set of labeled points, including those the user has manually labeled so
far. We also show the evolution of the classifier accuracy and x over
labeling iterations in a 2D line chart. This shows users whether their
manual labeling actions have increased, or decreased, the classifier
performance, and take corrective actions (more on this below).

Users can now start their first manual labeling iteration. Using
the tooltip, currently-labeled samples in P(D), DBM, confidence, and
direct/inverse projection errors, they decide on a set of unlabeled
points to which they want to assign one of the labels in C. This is not
a deterministic process — if it were, we would not need the user’s help
but would automate labeling using e.g. techniques discussed earlier in
Section 2. Rather, our claim is that, by studying all abovementioned
information (scatterplot, DBM, confidence, errors), users can spot pat-
terns in the data structure which help adding manual labels to increase
the classifier’s performance. We show this next in Sections 4 and 5.

At each iteration, users use a circle tool to select any set of points
in the projection P(D) to label (see Fig. 5a-c). When satisfied with the
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labeling, the user confirms this by an apply labels button. At this point,
and at each iteration, the tool stores (i) the classifier accuracy and «
score, (ii) the labeled samples, and (iii) a screenshot of the labeling
window. This data is used next to support undoing manual labeling
changes and also to compute manual labeling performance, as discussed
next.

Classifier re-training: After an iteration is completed, the classifier is
re-trained to use the newly assigned pseudo labels, along the existing
pseudo labels assigned by DeepFA. The training progress is shown in
the tool (see Fig. 4) so users can spot possible problems. After re-
training completes, the labeling window is updated to show the DBM
of the newly-trained classifier. Note that position of points in the
projection P(D) does not change since users can only change labels of
the data samples, but not the dataset D itself.

Fig. 5 shows the labeling window (d) before and (e) after a manual
labeling iteration. Here, for illustration, the user manually selected a
large set of points in the blue decision zone (marked by the black
circle) and assigned them label 3 (red). Image (e) shows how the
re-trained classifier has a large red decision zone that includes most
points labeled by the user as red. Due to this ‘brutal’ re-labeling,
the classifier’s performance decreases significantly — accuracy drops
from 0.8793 to 0.7927; k drops from 0.8685 to 0.7689. This is, of
course, expected, since the user has basically forced the disappearance
of roughly the whole blue decision zone. In practice, manual labeling
will select significantly fewer samples to label during an iteration.

If the classifier performance decreased (shown in the tool’s inter-
face) compared to the previous iteration, the user can decide to undo
the last-performed labeling. The labeling window then changes to show
the values (DBM, classifier performance, k) before this iteration. The
process continues until the user decides to stop it, either because of
time constraints or because the desired classifier performance has been
reached.

3.4. Implementation details

We next provide implementation details of our VA tool.

DeepFA: As explained, we create pseudo-labels for all the dataset
samples, using only 1% of supervised samples and 5 DeepFA iterations.
All other technical details concerning DeepFA follow the ones described
in [9].

Direct projection methods: Our tool supports PCA [50], vanilla au-
toencoders (encoder part) [21], t-SNE [35], UMAP [51], and SSNP
(encoder part) [26]. t-SNE and PCA use Scikit-learn [56]. UMAP uses
the default implementation [57]. All parameters are set to their default
values, except the perplexity of t-SNE, which we set to 30.

Inverse projection methods: Our tool supports vanilla autoencoders
(decoder part), NNinv [25], and SSNP (decoder part). For NNinv, we
use a fully connected neural network with architecture 2-32-64-128-
512-a. We use a = 784 for MNIST and a = 5000 for P.cysts, respectively.
Hidden layers use ReLU activation, except the last one which uses a
sigmoid activation. The first layer uses an L, regularization penalty
with constant set to 0.0002. Weights are initialized using the HeUni-
form kernel with bias set to 0.01. We train NNInv for 300 epochs (with
early stopping) and mean squared error (MSE) as loss function. The
decoder part of the autoencoder match the NNInv architecture and
use the same activation functions and weight initializer. The encoder
architecture is the decoder one, but flipped. We train our autoencoder
for 300 epochs with MSE as loss function. SSNP uses an identical
architecture to the autoencoder with the main difference of adding
a data-dependent clustering layer — that is, its output has as many
classes as the treated dataset has, e.g., C = 10 for MNIST. The clustering
layer uses the softmax activation function. SSNP uses two loss functions
— MSE for data decoding (as the autoencoder) and sparse categorical
cross-entropy loss (for data clustering). In the total loss, these two
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Fig. 5. Labeling procedure, MNIST dataset (a) Users can see the tooltip image for each point. (b) User selects a set of points in the green decision zone to label by drawing a
circle with the mouse. Selected points (of any class) are colored blue by default to distinguish them from not selected ones. (c) Next, the user assigns label 2 (green) to these
points. (d,e) Classifier retraining and DBM recalculation. (d) Initial state (classifier accuracy: 0.8793, k: 0.8685). User selects a set of points in the blue decision zone and assigns
them label 3 (red). (e) Situation after classifier retraining with the new manually added labels (classifier accuracy: 0.7927; x: 0.7689).

Table 1
Combinations of direct P and inverse projection P~' methods provided by our VA tool.

P P!

Supported in our tool

t-SNE

UMAP NNinv yes

PCA

Autoencoder (encoder) Aut.o encoder (decoder) yes
NNinv no

SSNP (encoder) SSI\fP (decoder) yes
NNinv no

functions contribute with weights of 1, respectively 0.125. For further
details, we refer to the original SSNP paper [26].

Direct and inverse projection combination: As outlined above, we
have a total of 5 direct projections P (PCA, autoencoders, t-SNE, UMAP,
SSNP) and 3 inverse projections P! (autoencoders, NNInv, SSNP), i.e.
a total of 15 (P, P~!) combinations. We deem some combinations to be
less practical and/or useful than others. For instance, it has little sense
to use SSNP as P~! with a different P than the one SSNP provides, since
SSNP jointly trains for P and P~!. The same holds for autoencoders.
Table 1 lists all (P, P~!) that our VA tool supports.

DBM: We generate decision map using NNInv [47] and SSNP [26] at a
resolution of 256 x 256 pixels.

Source code: Our VA tool, implemented in Python using scikit.learn,
TensorFlow, and Keras is publicly available [58]. A short demo of
the tool usage and 2d data generated in our experiments are also
available [59].

4. User evaluation

We evaluated the efficiency and effectiveness of our VA tool for
manual labeling by two user experiments. In these, we used our tool
described as above, with two key constraints: (1) a labeling iteration
can last max 3 min; (2) we allow a maximum of 5 iterations. Users can
commit their manually assigned labels in an iteration at any time before
3 min. When this time elapses, no more manual labeling is allowed.
We introduced these constraints to limit the total (and per-iteration)
effort that users can put in manual labeling. While allowing a larger
user effort could lead to better results, we argue that showing that our
VA tool is effective under time constraints makes our claims of added
value stronger — that is, we show that measurable improvement can
be achieved by limited effort.

We next describe the classifier, datasets, and participants involved
in our user evaluation.

4.1. Classifier
The classifier we use in our experiments is a neural network con-

sisting of a flattening layer (having the input size), followed by a
dense layer with a softmax activation function (with the unit count

equal to the number of classes C in the considered dataset). We use 20
epochs for training and re-fitting. We chose, on purpose, a very simple
classifier architecture, so as to offer the possibility for the classifier to
generate sufficient errors, which next can be reduced by our VA-assisted
labeling.

4.2. Datasets

Our evaluation comprises two experiments. In the first one, we use
a ‘toy’ dataset and classification problem, to calibrate various settings
of our tool. Next, we use a significantly more challenging, real-world,
dataset to measure our tool’s effectiveness and efficiency. We next
describe the two datasets.

4.2.1. Toy dataset: MNIST

We use a small subset of MNIST [55] (N = 3500, C = 10) to
fine-tune our tool along two directions, as follows.

First, we note that the training-set size can affect the performance of
a classifier, thus, also out tool’s perceived efficiency: A small training-
set likely yields a poor classifier; then, our tool can quickly increase
this poor performance; a large training-set will likely yield a high(er)
classifier performance; further improving this performance by our VA
tool is potentially hard. We analyze this effect of the training-set size
using 5 such sets with 20%, 40%, 60%, 80%, and 100% of D’s samples
(randomly selected), called next D,, Dy4, Dyg, Dys, and D .

Secondly, our VA tool allows for five combinations of (P, P~') —
namely (t-SNE, NNinv); (UMAP, NNinv); (PCA, NNinv); (autoencoder,
autoencoder); and (SSNP, SSNP) (see Section 3.4, Table 1). For brevity,
we next denote by (autoencoder), resp. (SSNP), the combinations where
the same technique is used for both P and P~!'. To select the best
combination of (P, P~!) to use next with our tool, we next test our five
training subsets D; using all (P, P~!) combinations.

4.2.2. Real-world dataset: P.cysts

We now use the best combination of (P, P~!) found by the MNIST
experiment to manually label a more challenging dataset. This dataset,
called P.cysts [60], contains N = 2696 color microscopy images (200°
pixels) of C = 6 species of human intestinal parasites in Brazil,
responsible for public health problems. Classes and samples/class are
given next: E. coli = 719, E.histolytica = 78, E.nana = 724, Giardia =
641, Lbutschlii = 1501, and B.hominis = 189. P.cysts’ dimensionality
is far higher than MNIST’s (200 vs 28> pixels), so we cannot directly
feed P.cysts to a projection P and expect to obtain good results. Hence,
we reduce P.cysts to a lower dimensionality n = 512 using a standard
autoencoder approach, as done earlier in [18]. Next, we use this 512-
dimensional dataset along the same manual labeling workflow as for
MNIST.

4.2.3. Training, testing, and performance evaluation

In all our experiments, we split, randomly and in a stratified man-
ner, the given input dataset D into D,,,;, and D,,,, with a proportion of
80% to 20% respectively. This allows the computation of classification
accuracy and «. Importantly, we compute classification accuracy and
Kk over assigned pseudo-labels as if they were true labels — that is, we
use no true labels in this computation.
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Table 2

MNIST baseline. For different training sample counts D;, we show DeepFA labeling
performance (lower bound), classifier performance using pseudo labels, and classifier
performance using true labels (upper bound).

Metric Dy, Dy 4 Dy g Dy D,
# of samples |D| 700 1400 2100 2800 3500
labeling performance acc 0.7757 0.7607 0.7723 0.7728 0.7737
classifier performance acc 0.7507 0.7780 0.7987 0.7893 0.7540
(pseudo labels) K 0.7226 0.7531 0.7761 0.7658 0.7266
classifier performance acc 0.8347 0.8807 0.8960 0.9000 0.8947
(true labels) K 0.8161 0.8673 0.8844 0.8888 0.8829

4.3. Participants

For both experiments, two users (denoted U1 and U2) are asked to
perform manual labeling. U1 was closely involved in developing the
VA tool, but has no prior knowledge on the real-world dataset P.cysts
and its classification challenges. Conversely, U2 has detailed knowledge
on P.cysts but was not involved in developing the VA tool. Both users
have a good understanding of MNIST. This means that, for the first
experiment (MNIST dataset), we can assume that U1 has some relative
advantage over U2. For the second experiment (P.cysts dataset), we see
no clear advantage of any of the users. Apart from the above, both users
have quite similar profiles in terms of age and experience with machine
learning and data visualization.

During both experiments, users were not able to exchange any in-
formation concerning their way of working and/or intermediate results,
to avoid cross-learning or bias effects.

5. Experimental results
We next present the results of our two experiments.
5.1. Toy dataset: MNIST

5.1.1. Defining a performance baseline

We start by defining a baseline for our experiments. The classifier
performance’s upper bound for a given dataset is reached when training
it using all true labels. Conversely, the performance lower bound is
reached when training it using the DeepFA-generated pseudo labels,
i.e., those our tool takes as input (Fig. 2 (1)). This is the range we
compare our VA tool’s labeling with. We cannot expect that our tool
can ‘magically’ perform some manual labeling that exceeds the upper
bound performance; however, for our tool to be useful, it should yield
a performance exceeding the lower bound as much as possible.

Table 2 shows the DeepFA labeling performance and classifier per-
formance using DeepFA pseudo labels resp. all true labels, for all five
subsets D; of MNIST (see Section 4.2.1). We see that the labeling and
classifier performance (with DeepFA pseudo labels) are around 0.77,
largely independent of the used D; subset. Also, we see that, when using
true labels, accuracy and « increase with the sample count.

5.1.2. Comparison among different techniques and users

Table 3 shows the classification accuracy and « for pseudo labels
generated by manual labeling using our VA tool, for both users, all five
subsets D, of MNIST considered, and all five combinations (P, P~!) in
Table 1, after five labeling iterations.

We see only small differences between U1 and U2 for the same
dataset D; and combination (P, P~') — both users yielded similar perfor-
mance when given the same conditions. Hence, we next focus on the
trends of performance vs dataset size |D;| and combination (P, P~!).
We notice that all projection techniques using only 20% of samples
(Dy,, 700 samples) achieve a similar (poor) result. This small sample
count was not sufficient for the projections to provide a good visual
representation for manual labeling. Separately, we see that not all
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(P, P!) combinations show a performance increase with the size of
D;. For instance, (PCA, NNinv) show poorer results in D, compared
to Dy ,. In contrast, (t-SNE, NNinv) and (UMAP, NNinv) show a perfor-
mance increase with the sample count. This suggests that these last two
combinations are more suitable to generate visualizations for manual
labeling.

Figs. 6 and 7 detail the performance values in Table 3 by showing
accuracy and x over all 5 labeling iterations. Blue curves show the
classifier performance trained with user-assigned labels over iterations.
Green, orange, and red curves show linear, logarithmic, and exponen-
tial trends, for interpretation ease: A blue curve close to the green line
tells the user got a (roughly) linear increase of classifier performance
over labeling iterations; a blue curve close to the orange curve shows
that the user did better in early labeling iterations than in latter ones;
a blue curve close to the red curve shows the user has difficulties in
early labeling iterations but got better in latter ones.

Figs. 6 and 7 show similar trends for both users. While (tSNE,
NNinv) and (UMAP, NNinv) show a more logarithmic trend - i.e., user
labeling was more effective in early iterations —, (autoencoder), (SSNP),
and (PCA, NNinv) show an exponential trend - i.e., the user performed
better in latter iterations. This result may be caused by the visualization
generated by the (P, P~!) combination used. For the exponential trend
case, the user might have done some significant wrong labeling in the
first iterations, possibly because of the unintuitive DBMs generated by
the (P, P~!) combination used, but managed to correct this in latter
ones. Importantly, since not all (P, P~!) combinations show exponential
trends, we cannot say that the key difficulty of users was in learning
how to use the VA tool.

5.1.3. Added value of manual labeling

Let us analyze the added value of manual labeling compared to the
baseline (Table 2). For this, we show in Table 4 the gain (difference)
of classification performance obtained by manual labeling (Table 3) vs
using DeepFA pseudo labels (Table 2). Positive values here tell that
manual labeling exceeds the lower bound (DeepFA); negative values
tell the opposite.

We see that (SSNP) and (PCA, NNInv) yielded the lowest gain for
both users, while (autoencoder) yielded lower gains for U 1. The highest
gain was reached by (tSNE, NNinv) and (UMAP, NNinv) for both users,
with (tSNE, NNinv) yielding 0.1 more in accuracy and x as compared
to (UMAP, NNInv).

We conclude that, for specific (P, P~!) combinations, manual la-
beling can surpass the performance of DeepFA labeling, even when
users are offered little time (15 min) to visually explore and label
the data. The (P, P~') combinations can be roughly grouped in two
classes — those which help manual labeling, i.e., (tSNE, NNinv) and
(UMAP, NNinv); and the remaining ones. Among the ‘good’ combina-
tions, (tSNE, NNinv) consistently showed the best-added value for all
considered dataset sizes and for both users.

5.2. Evaluation in a real-world problem: P.cysts

For the more complex P.cysts dataset, we only considered the (tSNE,
NNinv) combination, which showed the best results when manual
labeling the MNIST dataset (see Section 5.1.3).

5.2.1. Defining a performance baseline

As for MNIST, we first compute a baseline giving the lower and
upper bound performances, reached by DeepFA labeling, respectively
by using all true labels. In contrast to the MNIST experiments, we now
use the full set of | D| = 2696 samples, due to the larger difficulty of the
P.cysts dataset, and also given our earlier finding that too few samples
can create problems for manual labeling (Section 5.1.2).

Table 5 shows this baseline and also the DeepFA labeling perfor-
mance. We see that the difference between the upper and lower bounds
is 0.0225 and 0.0334 for accuracy and «, respectively. That is, DeepFA
already yields a quite good result, leaving only a small range for manual
labeling to improve.
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MNIST dataset. Results of classification accuracy and « for classifiers trained with pseudo labels generated by manual labeling using our VA
tool after 5 iterations, for two users, and different combinations of direct (P) and inverse (P~') projections.

P, P! user Dy, Dy 4 Dy Dyg Dy
acc K acc K acc K acc K acc K
autoencoder Ul 0.8167 0.7961 0.8287 0.8094 0.8353 0.8169 0.8307 0.8117 0.8140 0.7932
U2 0.8180 0.7976 0.7980 0.7754 0.8160 0.7954 0.8240 0.8043 0.8140 0.7932
SSNP Ul 0.8180 0.7976 0.8167 0.7961 0.8280 0.8087 0.8007 0.7784 0.7860 0.7621
U2 0.7893 0.7657 0.7840 0.7598 0.7900 0.7664 0.7920 0.7687 0.7973 0.7746
-SNE. NNinv Ul 0.8207 0.8005 0.8487 0.8317 0.8627 0.8473 0.8827 0.8695 0.8867 0.8740
? U2 0.8400 0.8221 0.8513 0.8348 0.8480 0.8310 0.8613 0.8458 0.8600 0.8443
UMAP. NNinv U1l 0.8167 0.7962 0.8727 0.8584 0.8667 0.8517 0.8887 0.8762 0.8633 0.8481
’ U2 0.8333 0.8147 0.8460 0.8288 0.8260 0.8065 0.8473 0.8303 0.8487 0.8318
PCA. NNinv U1l 0.8127 0.7917 0.8120 0.7909 0.8260 0.8065 0.8127 0.7917 0.7620 0.7355
? U2 0.7673 0.7413 0.7720 0.7465 0.7867 0.7628 0.7673 0.7413 0.7333 0.7034
Table 4
MNIST dataset. Gain in classification performance obtained by manual labeling vs DeepFA pseudo labels, for two different
users, different amounts of training samples D, and different combinations of direct (P) and inverse (P~!) projections.
p.p! user Dy, Dy, Dy Dy D,
acc K acc K acc K acc K acc K
autoencoder U1l 0.0660 0.0735 0.0507 0.0563 0.0366 0.0408 0.0414 0.0459 0.0600 0.0666
U2 0.0640 0.0710 0.0440 0.0488 0.0620 0.0688 0.0700 0.0777 0.0600  0.0666
SSNP Ul 0.0673 0.0750 0.0387 0.0430 0.0293 0.0326 0.0144 0.0126  0.0320  0.0355
U2 0.0386 0.0431 0.0060 0.0067 -0.0087 —0.0097 0.0027 0.0029 0.0433 0.0480
+-SNE. NNinv Ul 0.0700 0.0779 0.0707 0.0786 0.0640 0.0712 0.0934 0.1037 0.1327 0.1474
? U2 0.0893 0.0995 0.0733 0.0817 0.0493 0.0549 0.0720 0.0800 0.1060 0.1177
UMAP. NNinv Ul 0.0600 0.0736 0.0947 0.1053 0.0680 0.0756  0.0994 0.1104 0.1093 0.1215
’ U2 0.0826 0.0921 0.0680 0.0757 0.0273  0.0304 0.0580 0.0645 0.0947 0.1052
PCA. NNinv Ul 0.0620 0.0691 0.0340 0.0378 0.0273 0.0304 0.0234 0.0259  0.0080  0.0089
’ U2 0.0166 0.0187 -0.0060 -0.0066 -0.0120 -0.0133 -0.0220 -0.0245 -0.0207 -0.0232
Table 5 Table 6

P.cysts baseline. Performance of DeepFA labeling,
classification using the DeepFA pseudolabels (lower
bound), and classification using all true labels (upper

P.cysts dataset. Classification accuracy and « for classifiers
trained with pseudo labels generated by manual labeling using
our VA tool after 5 iterations, two different users (U1, U2).

bound).

Metric Value
# of samples |D| 2696
labeling performance acc 0.8560
classifier performance acc 0.8564
(pseudo labels) K 0.8043
classifier performance acc 0.8789
(true labels) K 0.8377

Iteration acc K
U1 U2 U1 U2

0 0.8564 0.8043

1 0.8538 0.8521 0.8019 0.7987
2 0.8581 0.8728 0.8096 0.8279
3 0.8590 0.8763 0.8107 0.8322
4 0.8616 0.8763 0.8131 0.8321
5 0.8676 0.8737 0.8211 0.8292

5.2.2. Added value of manual labeling

Table 6 shows the classification accuracy and x values obtained af-
ter manual labeling by both users U1 and U2. Both users start from the
same baseline value, i.e., that offered by the DeepFA pseudolabeling.
We see that both succeeded in using our VA tool to increase classifi-
cation performance over the five available iterations — U1 increased
accuracy by 0.0112 and « by 0.0168; U2 increased accuracy by 0.0173
and « by 0.0249. This shows that our VA tool offers added value even
for more complex, and real-world, datasets.

Fig. 8 details the aggregated results in Table 6 over our 5 labeling
iterations. We see trends similar to MNIST (Figs. 6, 7) — that is, expo-
nential, respectively logarithmic, performance increase over iterations.
These trends are now not related to different (P, P~!) combinations,
but to the two different users. For comparison ease, the last row of
Fig. 8 shows the accuracy and « trends for the two users (U1: blue;
U2: orange) superimposed. The difference in these trends matches our
knowledge about the users: U2 was familiar with the P.cysts dataset,
which explains the quick gains obtained in early iterations and, likely
that, at the end, U2 gets a slightly higher performance than U 1. Results
for U1 are more interesting: Even if this user had zero prior knowledge

of the P.cysts dataset, U1 managed to get an almost as high performance
as U2 with the same effort (time).

6. Discussion

We next discuss the key advantages and limitations of our proposed
VA-based approach for manual labeling.

Genericity. Our approach can be applied to any dataset and classifier
in a black-box manner — we require no details of the internal operation
of the classifier. However, if the data dimensionality is too large —
roughly, over a few thousand dimensions — directly using the tool’s
projection technique (t-SNE) to construct the DBM can be problematic.
As the number of dimensions increases, so does the approximation
of the dimensionality reduction technique. The amount of projection
errors may also increase in this case. Our experiments include datasets
with different numbers of dimensions to consider that. The point of our
proposed solution is that approximation errors can be inspected by the
user via the projection errors in our visualizations (Section 3.1). When
these are too high, the dataset can be reduced to a smaller number of
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Fig. 6. Results of Ul for classification accuracy (top) and x (bottom) over five iterations, using different direct and inverse projection techniques (P, P~') and input dataset
fractions (D).

features using e.g. autoencoders prior to its use in the VA tool, as we classifiers with a higher performance than what can be obtained by au-
did for P.cysts (see Section 4.2.2). tomatic pseudolabeling algorithms such as DeepFA. This is, we believe,
Effectiveness. While of limited extent (two datasets and two users the strongest contribution of our work as it underlies that a combi-

only), we have shown evidence that our VA tool helps constructing nation of automatic techniques and human insight is optimal for ML
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Fig. 7. Results of U2 for classification accuracy (top) and x (bottom) over five iterations, using different direct and inverse projection techniques (P, P~') and input dataset

fractions (D).

engineering problems. Yet, three main limitations exist here. First, our
increase of effectiveness — the so-called gain that manual labeling offers
vs automatic labeling — is quite small (a few percent points). Secondly,
it is not clear how generalizable this gain is, i.e., if it can be consistently
observed for a wide spectrum of users, classifiers, and datasets. Thirdly,

10

this gain may be reduced by the user errors, i.e., the user may be prone
to incorporate projection errors and assign wrong labels to samples
when performing the task. Indeed, this is something we cannot avoid,
mainly when dealing with solutions that involve human interaction
and abstraction. Yet, we believe that our limited validation brings
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Fig. 8. P.cysts dataset. Comparing classification performance increase over five labeling
iterations between two users.

sufficient evidence in support of our claims of usefulness of our VA tool
for assisting with non-trivial classifier engineering: Our second dataset
(P.cysts, Section 4.2.2) poses a very challenging classification problem
due to the imbalance and similarities between impurities and parasite
species — more so than when aiming to design classifiers for other real-
world datasets where classes are better defined (no overlap between
groups of different classes). Our experiments also bring evidence that
even when prone to make mistakes and assign wrong labels, the user
can learn during the process and still take advantage of the provided
VA tools. Additionally, we used a cross-validation scheme with training
and test sets for different sample counts in the dataset D: 20%, 40%,
60%, 80%, and 100%. By this, we consistently showed classification
improvements for distinct subsets of our datasets. To strengthen these
promising first results, we acknowledge that applying our VA tool
and approach to additional datasets coming from different domains is
needed.

Workflow. So far, our VA tool does not provide a specific way to
‘instruct’ users on how they can best do manual labeling, apart from
the general interpretation of the visualizations described in Section 3
—i.e., direct and inverse projection errors, confidence-annotated DBMs,
and sample tooltips. Users learn to use our tool via trial-and-error, i.e.,
select a few samples to label and monitor the change in DBMs and
classifier performance that the new labels create. For this to work, we
need a very fast execution of the label-retrain-visualize loop, so that one
can do many such iterations quickly, including undo operations when
negative effects are observed. In our current implementation, this loop
takes a few up to ten seconds, depending on the used hardware (a mid-
range PC) and dataset size. Recent DBM acceleration techniques [61]
can reduce this time by one order of magnitude — an avenue we surely
want to explore.

Besides a fast label-retrain-visualize loop, a second key potential
improvement relates to explaining the DBM and its error maps. We
have (anecdotally) noticed that users use the direct and inverse error
maps mainly to ignore samples that fall in high-error areas. Still, com-
pletely skipping samples in such areas may miss high-potential labeling
opportunities. We believe that additional interactive tools can help
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users to interpret error maps, thereby making users more comfortable
with labeling additional samples, thus making our VA proposal more
efficient and/or effective. Such tools can include e.g. tooltips showing
which are the true nearest-neighbors, in data space, of a (set of) point(s)
in the projection; or tooltips that show the actual distance to the closest
decision boundary of every DBM point [47].

A final improvement point concerns the treatment of true labels.
Currently, our VA tool does not distinguish between such labels and
those pre-assigned by the DeepFA pseudo labeling step executed at the
start of the VA workflow. As such, users may, during manual labeling,
inadvertently change such true labels, thus unnecessarily decrease the
performance of the training. A simple fix could prevent this issue from
taking place.

Limitations. Earlier, we detailed specific limitations of our solution.
We discussed the approximation errors of a projection technique
(Genericity). We considered the restricted number of datasets and users,
the gain in classification and labeling, and the human-added errors
(Effectiveness). We discussed the trial-and-error way of labeling and
the lack of a guideline to instruct users to perform the best manual
labeling possible (Workflow).

Apart from them, we next consider some other limitations. Con-
cerning the user experiments, we fixed the number of iterations and
interaction time to measure and compare the labeling process properly.
However, given that the user learns how to label while labeling, it
would be interesting not to limit the number of iterations or interaction
time and record user actions to be able to understand better the labeling
process, challenges, and points to be improved. From that, we may
provide a practical guideline to achieve the best labeling result possible.
Additionally, we did not evaluate the impact of approximation errors
in our approach. We argued that direct and inverse projection errors
might impact visualization and, then, the user actions and labeling, but
we did not actually measure how much these errors impact our results.
We could compare our results with the user labeling in the projection
error zones.

Another limitation is related to the application. We evaluated our
approach when labeling samples for classification purposes. However,
this approach can be extended to support labeling for segmentation
purposes. Instead of using a dataset as input, we could use pixels
as input and then label pixels instead of images. With that, the user
can visualize the decision boundaries of a classifier when separating
different pixels of a single image. It would be interesting to evaluate
how the user can intervene or teach the classifier to learn what is
relevant in a specific image by using pseudo labels.

7. Conclusion

In this work, we have shown how automatic and user-driven pseudo
labeling methods can be combined in a single workflow to help con-
structing high-performance classifiers. Our proposed workflow starts by
executing an existing pseudo labeling algorithm from a (very) small set
of true labels to an entire training set. Next, users can examine this
training set, together with the classification model that this set leads to
(depicted as decision boundary maps), and manually label additional
samples to improve classification performance.

We have shown two sets of experiments, on a simple dataset
(MNIST) and a more complex one (P.cysts), both classified by a neural
network. We have shown that using a specific combination of direct
and inverse projection techniques to create DBMs (t-SNE and NNInv, re-
spectively) users achieve an average increase in classification accuracy
and « of 8.21% and 0.00913 (MNIST), and 1.43% and 0.0209 (P.cysts),
with a small effort — max 15 min of tool usage. We have also shown
evidence telling that this gain does not depend on prior knowledge of
the dataset and/or classification problem at hand, so it could be reached
by a wide spectrum of users having general knowledge in machine
learning and visual analytics. To our knowledge, this is the first study
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that explores decision boundary maps in a scenario aiming to improve
classifier performance. As such, our work brings additional evidence to
the value of DBMs.

Many future work avenues exist. Testing our VA approach with
more users, datasets, and classifiers is needed to confirm (or refine)
our findings and thus get a better idea of the added value it provides.
Secondly, improvements in the depiction of the classifier behavior
(via annotated decision maps), but also for the depiction of how the
classifier actually uses the provided manual labels during training, can
reduce the iterative effort needed to manually construct a good set of
pseudo labels.
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