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A B S T R A C T

Multidimensional projections are effective techniques for depicting high-dimensional data. The point patterns
created by such techniques, or a technique’s visual signature, depend — apart from the data themselves —
on the technique design and its parameter settings. Controlling such visual signatures — something that only
few projections allow — can bring additional freedom for generating insightful depictions of the data. We
present a novel projection technique — ShaRP — that allows explicit control on such visual signatures in
terms of shapes of similar-value point clusters (settable to rectangles, triangles, ellipses, and convex polygons)
and the projection space (2D or 3D Euclidean or 2). We show that ShaRP scales computationally well with
dimensionality and dataset size, provides its signature-control by a small set of parameters, allows trading off
projection quality to signature enforcement, and can be used to generate decision maps to explore the behavior
of trained machine-learning classifiers.
1. Introduction

Exploring high-dimensional data is a key challenge in the fields of
nformation visualization and visual analytics. This task is especially
ifficult for datasets having many samples, each in turn coming with
any dimensions to be depicted. Dimensionality Reduction (DR), also

alled projection, techniques are one of the most popular tools for this
ask. Simply put, projections map a high-dimensional dataset to a low-
imensional (typically 2D or 3D) scatterplot, which is next visualized.
rojections scale well both computationally and visually with both the
ample and dimension counts. Many projection techniques have been
roposed in the last decades, with various approaches to tackle compu-
ational scalability, quality of the produced scatterplots, robustness to
ata noise, and ease of use [1–7].

When constructing the low-dimensional scatterplot, projection tech-
niques aim to preserve as much as possible of the so-called data
structure [8]. That is, data elements such as compact groups of sam-
les, outlier samples, or areas having different sample densities, are
apped to analogous visual elements in the low-dimensional space.
his allows users to search and inspect the low-dimensional space for
he presence of such visual elements. When these are found in the

scatterplot, the presence of their high-dimensional data counterparts
can be inferred. Prior research has shown that exploring scatterplots
o locate such visual patterns can help uncovering topological aspects,

such as groupings, outliers, and correlations in the data [9–11].
However, no projection technique can perfectly map all possible

data patterns to corresponding visual patterns for any high-dimensional
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dataset. Different projection techniques encode their mapping goals
in a so-called cost function which is then minimized to construct the
scatterplot. As such, the exact nature of the produced visual patterns
depends not only on the underlying data, but also on how the DR
technique is designed to minimize a specific cost function. For example,
for the same dataset, t-SNE tends to create organic, round, structures;
Auto-Encoders create starburst-like clusters; PCA tends to create elliptic
patterns; ISOMAP [12] creates line-like structures; and UMAP creates
very dense, round, clusters, separated by large amounts of whitespace
— to mention just a few [7,8]. We further call such aspects that a
projection technique tends to generate, regardless of the dataset it
visualizes, the visual signature of that projection technique.

We believe that users can benefit from having direct control over the
visual signatures of a projection technique for several reasons. Firstly,
the possibility of picking a visual signature for a projection gives users
direct control over what is thus far an emergent property implicitly
determined by a DR algorithm’s design and not necessarily a portrayal
of true data patterns. For example, assume we see elliptical visual
patterns (clusters) in a projection. With current projection techniques,
we do not know if these reflect actual (elliptical) patterns in the data or
they are produced by the projection technique. In contrast, our method
allows controlling such patterns — so, when seeing them, we know that
they are due to the projection and not the data; in other words, we
argue that precise visual signature control is better than no control.
To refine this example: In cases where users employ pseudolabels
in their pipeline, outputting shapes that match the pseudolabeling
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algorithm’s assumptions would ensure a ‘‘match’’ between high and
ow dimensional space — for instance, producing round shapes when
sing 𝑘-means, which assumes isotropic (Gaussian clusters). Secondly,
ontrolling the generated visual patterns can help in creating 2D or 3D
catterplots which better match a given interactive exploration task at
and. For example, when performing interactive data labeling using
ectangular selections or displaying image thumbnails over data clus-
ers (see Fig. 3), a projection whose clusters resemble rectangles would

be more suitable than one creating various-shaped clusters (modulo
other aspects of the two projections, e.g., quality).

However, controlling such visual signatures is typically hard with
urrent projection methods, as these are designed around cost functions
hich typically do not incorporate measures on, or controls of, the
isual patterns they create. Recently, the Shape Regularized Neural
rojection (ShaRP) technique was proposed to fill this gap [13]. ShaRP

achieves such control by extending the earlier autoencoder-based SSNP
projection technique [14] by a variational autoencoder that allows
constraining the shapes of created visual patterns. ShaRP scales well
with both dimension and sample count, works both in a supervised way
(by class labels) and self-supervised way (by pseudolabels created by
ata clustering), generically handles any quantitative high-dimensional
ataset, and is simple to implement. It also provides, by design, an
nverse projection mapping useful for interpolating new data space
oints and generating Decision Boundary Maps [15] (see Section 4.5),

as well as a mechanism to project data into the non-Euclidean space
2, the surface of a 3D ball, providing an entirely novel view into the
data.

In this paper, we extend the proposal of ShaRP in several directions,
s follows.

• We introduce support for additional visual signatures, allowing
the creation of 3D projection scatterplots with better properties
than current state of the art methods can do;

• We extend ShaRP to create decision maps for visual exploration
of classification models;

• We present additional validation of ShaRP by including more
datasets to compare on.

The structure of this paper is as follows. Section 2 presents related
ork covering projection techniques and measuring and controlling

heir visual signatures. Section 3 details the ShaRP technique, including
our proposed extensions. Section 4 evaluates ShaRP by studying the
effect of its hyperparameters and also comparing its results with other
well-known projection techniques on a variety of datasets. Section 5
discusses our proposal. Finally, Section 6 concludes with future work
irections.

2. Related work

2.1. Notations

A dataset 𝐗 = {𝐱𝑖}𝑖=1,…,𝑚 has 𝑚 samples 𝐱𝑖 = [𝑥𝑖1,… , 𝑥𝑖𝑛]𝑇 , where
𝑖 is a point in R𝑛 with components 𝑥𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑛 and an optional
abel 𝑦𝑖 ∈ {1,… , 𝐾}. In the following, we use capitals to denote the set
f all elements for the corresponding small letter, e.g., 𝑌 = {𝑦̄𝑖}𝑖=1,…,𝑚
s the set of (pseudo-)labels used for training. Variables marked with
 hat (e.g., 𝐗̂, 𝑌 ) represent predictions as produced by a classifier
r regressor. We denote the Euclidean norm by ‖𝐱‖ =

√

𝐱𝑇 𝐱 and
the expected value of a function of a random variable 𝐳 distributed
according to 𝑝 by E𝐳∼𝑝[𝑓 (𝐳)]. We use 𝜃 to denote probability distribution
parameters, for example 𝜃 = (𝜇 ∈ R2, ⃗𝜎2 ∈ R2) for a 2D Diagonal
Gaussian distribution.
2

2.2. Dimensionality reduction

Projection algorithms can be defined as functions

𝑃𝜂 ∶ R𝑛 → R𝑞 , (1)

where 𝑞 ≪ 𝑛 is the dimension of the created scatterplot (typically
𝑞 ∈ {2, 3}) and 𝜂 denote 𝑃 ’s (hyper)parameters. Hence, for a sample
∈ R𝑛, 𝑃 (𝐱) denotes its mapping to the 𝑞-dimensional space. We denote
y 𝑃 (𝐗) the entire scatterplot created by a given technique 𝑃 applied
o all samples of a given dataset 𝐗.

Many projection algorithms are available nowadays. These are de-
cribed from technical perspectives (how they differ design-wise) in

several surveys [1–6,16]; from the perspective of how they perform
with respect to several quality metrics [7]; and based on the tasks that
ne aims to use them for [8]. In particular, autoencoder techniques,

which share structurally some similarities to our approach, can be used
to this end [17]. However, such techniques have not been deemed so far
better than other non-autoencoder projection methods [7]. Examples
of well-known projection techniques are Principal Component Analysis
(PCA) — a simple, easy to code, but qualitatively limited method
especially for complex non-planar data structures embedded in high
dimensions [18]; Isomap — a technique which works well if the data
resides on a (single) high-dimensional manifold [12]; t-SNE, which
works well for arbitrary high-dimensional data distributions but has
challenges in controlling (and predicting) the shapes of the emerging
visual clusters [19–21]; and UMAP, similar to t-SNE in terms of ease
and of visual cluster control [22].

2.3. Inverse projections

The ability to construct a so-called ‘direct’ projection mapping 𝑃
(Eq. (1)) raises the question whether constructing an inverse mapping

𝑃−1 ∶ R𝑞 → R𝑛 (2)

is possible and, if so, useful. Recent work has shown that such inverse
mappings can be constructed by minimizing the cost ‖𝑃−1(𝑃 (𝐱)) −
‖, 𝐱 ∈ 𝐗 for a given dataset 𝐗, by using methods such as radial basis

functions [23], feedforward neural networks [24], or autoencoder-
ased strategies [25,26]. It is important to note that inverse projections

𝑃−1 are not the mathematical inverse function of the projection func-
tion 𝑃 , as 𝑃 is often not injective and, therefore, not invertible [27].
Rather, 𝑃−1 are approximate, regularized, forms of such inverse func-
tions. Inverse projections have many practical uses, such as shape and
mage morphing [23], data imputation [28], and constructing so-called

decision maps to visualize the behavior of trained classification mod-
els [15,26,29–31]. We show further in Section 4.5 how our proposed
projection method can be used to construct such decision maps.

2.4. Decision boundary maps

Projections aim to preserve data similarities in the data space by
the 2D scatterplots they construct, so they can be used to assess the
classification difficulty of a dataset. If points from different classes
cannot be easily disentangled by a projection algorithm — leading
to good visual separation in the projection plot — that might mean
that a classifier will struggle with achieving good accuracy for that
dataset [32].

More recently, dense 2D visualizations of classifier behavior in
igh-dimensional space named Decision Boundary Maps (DBM [15])

have been proposed. These map-like visualizations densely portray the
partitioning effected by a classifier on the high dimensional space. Such
dense maps are created using inverse projections — every pixel of a
2D image is invertex by 𝑃−1, then classified by the model under study,
and finally colored to show the respective class in the 2D image. Ap-
proaches to create these inverse projections vary: some DBM generation

algorithms are projection-agnostic, i.e., they can work atop any given



A. Machado, A. Telea and M. Behrisch Computers & Graphics 124 (2024) 104093

n
𝑃
q

a

p

p
p

t
c
o

m
o
w

t
i
p

s

s
s

a
n

f
q
c
s
S
t
m
n
o
l
S

t

p

u
s
t
t

h
A

𝑃
S
c
f

c
S
f

projection 𝑃 [15]. Others jointly learn a projection and its inverse, such
as SDBM [26]. Alternatively, the invertibility of a projection algorithm
can be used to draw a DBM, as done by Schulz et al. [31] who use a
supervised version of UMAP.

2.5. Quality metrics

As outlined in Section 1, projections are computed by optimizing
given cost functions that reflect which data patterns the mapping 𝑃
should preserve. Hence, a technique 𝑃 can be seen as a cost function
(to optimize) plus an optimization algorithm. Such cost functions lead
ext to various quality metrics which express the ability of a computed
(𝐗) to preserve specific patterns of a given dataset 𝐗. Formally put, a
uality metric is a function

𝑄𝑃 ∶  × 𝑞 → R+ (3)
(𝐗, 𝑃 (𝐗)) ↦ 𝑞

that maps a dataset 𝐗 and its projection scatterplot 𝑃 (𝐗) computed by
 given technique 𝑃 to a real value. Quality metrics can be computed at

different scales to gauge different patterns present in a projection. Four
such scales exist, as follows. For each scale, we discuss why its metrics
cannot be used to directly capture our notion of visual signature of a
rojection.

Point-pairs: At the lowest level, one can quantify how well each point-
air (𝐱𝑖, 𝐱𝑗 ) from a dataset 𝐗 is mapped to the corresponding scatterplot
oint-pair (𝑃 (𝐱𝑖), 𝑃 (𝐱𝑗 )). The simplest way to gauge this is to measure

the so-called normalized stress

𝑄S =

√

√

√

√

∑

𝑖,𝑗
(

‖𝐱𝑖 − 𝐱𝑗‖ − ‖𝑃 (𝐱𝑖) − 𝑃 (𝐱𝑗 )‖
)2

∑

𝑖,𝑗 ‖𝐱𝑖 − 𝐱𝑗‖2
(4)

which tells how well distances in 𝐗 are preserved by 𝑃 (𝐗). Techniques
such as MDS [33] and its variants directly aim to optimize 𝑄S. For our
goal, point-pair metrics are too fine-grained to capture visual signatures
— as any such signature, obviously, involves patterns formed by more
than two points.

Neighborhoods: At the next level, one can quantify how well a projec-
tion maps a given neighborhood 𝜈 of points in 𝐗. Let, next, 𝜈𝑖 denote
he 𝑘 nearest neighbors of a given sample 𝐱𝑖 ∈ 𝐗. Trustworthiness [34]
omputes how far the points in 𝑃 (𝜈𝑖) are from the 𝐾 nearest neighbors
f 𝑃 (𝐱𝑖) — or, simply put, how closely-projected are the points of 𝜈𝑖, as

𝑄T = 1 −
∑

𝐲∈𝜈𝑞𝑖

(

𝑟𝑖(𝐲) − 𝑘
)

, (5)

where 𝜈𝑞𝑖 are the 𝑘-nearest neighbors of 𝑃 (𝐱𝑖) which do not map points
in 𝜈𝑖; and 𝑟𝑖(𝐲) is the rank of the 2D point 𝐲 in the ordered set 𝜈2𝑖
of nearest neighbors of 𝑃 (𝐱𝑖). False neighbors [35] provide a similar

easure. Symmetric to the above, continuity [34] measures the fraction
f points close in a 2D neighborhood in 𝑃 (𝐗) that come from data points
hich are also close in 𝐗, as

𝑄C = 1 −
∑

𝐳∈𝜈𝑛𝑖

(

𝑟𝑖(𝐳) − 𝑘
)

, (6)

where 𝜈𝑛𝑖 are the 𝑘-nearest neighbors of 𝐱𝑖 which do not map to points in
he 𝑘-nearest neighbors of 𝑃 (𝐱𝑖); and 𝑟𝑖(𝐳) is the rank of the data point 𝐳
n the ordered set 𝜈𝑛𝑖 of nearest neighbors of 𝐱𝑖. Missing neighbors [35]
rovide a similar measurement.

For labeled datasets, the neighborhood hit [36] measures the frac-
tion of the 𝑘-nearest neighbors of a projection point 𝐲 that have the
same label as the point 𝐲 itself, as

𝑄N =
|𝐳 ∈ 𝜈𝑞𝑖 ∶ 𝑙(𝐳) = 𝑙(𝐲)|

𝑘
, (7)

where 𝑙(𝐲) denotes the label of a scatterplot point 𝐲.
Other neighborhood-level metrics include the projection precision

core [37] which measures how the distances from a data point to its
 (

3

𝑘-nearest neighbors differ from the analogous distances between their
catterplot points (thus, a neighborhood-level generalization of 𝑄S);
tretching and compression [38,39], which are variants of trustwor-

thiness and continuity; and the average local error [35], which also
generalizes 𝑄S to neighborhoods. The Kullback–Leibler divergence used
as cost function by the by-now famous t-SNE technique [19] to compare
 high-dimensional with a low-dimensional neighborhood is another
eighborhood metric.

Neighborhood metrics help visually exploring projections to e.g.
ind high-quality areas (that can be reliably interpreted) and low-
uality areas (which can be misleading). However, they cannot directly
apture visual signatures, since they are heavily influenced by their
ize, given by the parameter 𝑘 or, for t-SNE, its perplexity parameter.
etting 𝑘 to different values will yield different quality judgments on
he same projection [40]. In other words, neighborhood metrics only
easure patterns at a given fixed scale 𝑘. More importantly, 𝑘-nearest
eighborhoods can be only used to model ‘circular’ patterns based
n the distance to a central point. Patterns such as Isomap’s line-
ike structures, or autoencoders’ starburst-like shapes (mentioned in
ection 1), cannot be in general modeled by 𝑘-nearest neighbors.

Classes: One level higher than 𝑘-nearest neighborhoods, one can quan-
tify projections of labeled data at the class level. Visual separation
metrics [41–44] gauge how well points from each class, in a projection,
are visually separated from points of other classes. The underlying idea
is that ground-truth information on the class separation in 𝐗 can be
used to compute how well 𝑃 (𝐗) reflects that separation. Sedlmair and
Aupetit [45] surveyed of 15 such metrics. Their conclusion is that
he distance consistency metric (DSC, [46]), also presented as class

consistency measure (CCM, [47]), best encodes the perception of class
separation in labeled scatterplots. DSC is computed assuming that, in a
well-separated labeled dataset 𝐷, a point with label 𝑙 is closest to the
centroid (barycenter) of all points with the same label 𝑙 (that is, the
centroid of class 𝑙), than to centroids of other classes. A good projection
should keep this property on 𝑃 (𝐗). DSC is computed as

𝑄DSC =
|

|

{𝐲 ∈ 𝑃 (𝐗) ∶ 𝑙(𝐲) = ar g min𝑙′∈𝑌 ‖𝐲 − 𝑐(𝑙′)‖}|
|

𝑚
, (8)

where 𝑐(𝑦) = |𝑃𝑦(𝐗)|−1
∑

𝐲∈𝑃𝑦(𝐗) 𝐲 denotes the centroid of all projection
oints having class 𝑦.

Visual (class) separation metrics are very useful in assessing the
sability of a projection scatterplot for machine-learning-related tasks
uch as finding how well are classes separated in a dataset. In turn,
his can predict the ease of classification of that dataset via its projec-
ion [32]. However, such metrics are not useful for our task of assessing

(and next, controlling) the visual patterns created by a projection
technique. Moreover, such metrics are only applicable to labeled data.

Scatterplot: At the highest level, one can compute quality metrics for
an entire projection scatterplot. This is the most frequently used de-
ployment of quality metrics since it allows easy comparison of multiple
scatterplots by a single, aggregated, value. All point-pair, neighbor-
ood, and class-level metrics can be aggregated at scatterplot level.
part from this, separated metrics exist that gauge an entire scatterplot.

For example, the Shepard diagram [48] computes a scatterplot of data-
distances vs scatterplot-distances over all point pairs in 𝐗, respectively
(𝐗). The diagram can be reduced to a single quality value, called the
hepard goodness, by computing its Spearman rank correlation, thus
apturing how well a projection preserves distances (generalizing 𝑄S)
or an entire scatterplot (see 𝑄R, Table 1).

However, as all earlier discussed metrics, scatterplot-level metrics
annot capture the patterns that create a projection’s visual signature.
till, such metrics are useful to quickly compare the quality of dif-
erent projections, so we will use them to this end in our evaluation
Section 4).
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Table 1
Projection quality metrics used in this paper. All metrics range over [0 = worst, 1 = best] or are linearly mapped thereto.

Metric Definition

Trustworthiness (𝑄T) 1 − 2
𝑚𝑘(2𝑚−3𝑘−1)

∑𝑚
𝑖=1

∑

𝐲∈𝜈2𝑖
(𝑟𝑖(𝐲) − 𝑘)

Continuity (𝑄C) 1 − 2
𝑚𝑘(2𝑚−3𝑘−1)

∑𝑚
𝑖=1

∑

𝐳∈𝜈𝑛𝑖
(𝑟𝑖(𝐳) − 𝑘)

Neighborhood hit (𝑄N)
∑𝑚

𝑖=1
|𝐳∈𝜈2𝑖 ∶ 𝑙(𝐳)=𝑙(𝐲)|

𝑚𝑘

Shepard goodness (𝑄R) Spearman rank of scatterplot {(‖𝐱𝑖 − 𝐱𝑗‖, ‖𝑃 (𝐱𝑖) − 𝑃 (𝐱𝑗 )‖)}, 1 ≤ 𝑖 ≤ 𝑚, 𝑖 ≠ 𝑗

Distance consistency (𝑄DSC) |
{𝐲∈𝑃 (𝐗)∶𝑙(𝐲)=ar g min𝑙′ ∈𝑌 ‖𝐲−𝑐(𝑙′ )‖}|

𝑚

f
o
S
(
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e
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c

2.6. Visual signatures

Summarizing the above, we see that projection-quality metrics,
hile useful in gauging various desirable aspects of a projection at
ifferent scales, cannot really capture the patterns that constitute a pro-

jection’s visual signature. As such, they cannot be used to design cost
functions to actually drive a projection to generate specific visual signa-
tures. However, several works have addressed the measurement — and
only very partially, the control — of visual signatures of projections, as
follows.

Initial work on perception-driven DR [11,49] aims to factor the
humans’ perceptual capabilities in the DR computation and quality
assessment. Yet, developing quality metrics that target a variety of
visual patterns is nontrivial, since these heuristics must simulate the
humans’ complex pattern recognition process. Moreover, even if we
possessed such a visual quality metric, it is not evident what would be
a suitable ground truth to compare it to, since that ground truth has to
somehow measure the patterns present in the data. More importantly,
our goal here is different: while perception-driven DR aims to measure
how users see patterns in a projection scatterplot, we aim to allow users
to control how that scatterplot will look like in terms of its patterns.
As such, perception-driven DR research can come after ours — to
assess how users perceive our pattern-controlled projections — but not
precede or replace it.

Cutura et al. [50] use space-filling curves to adapt the position of
data points in image thumbnail scatterplots such that they are non-
verlapping. This can be seen as a local way to control the generation
f visual patterns in a projection. Their idea is effective but limited to
mage datasets, while our proposed technique is designed to be generic.

Abbas et al. [51,52] proposed a visual quality metric that mimics
he users’ ability to distinguish one or more clusters in a scatterplot.

The main differences of our work to this is that we (a) do not aim to
ropose a technique to separate clusters, but to enforce the shapes of
uch clusters; and (b) our ground truth is not user perception, but the
ata space.

The perplexity parameter in t-SNE controls, among other things, a
rojection’s the visual appearance. Its effect is intricately enmeshed
ithin t-SNE, leading to cluster shapes, sizes, and distances that do
ot necessarily convey meaning [53]. Our technique minimizes the

variability of this visual appearance. Related to this, since fully doing
away with hyperparameters might be infeasible, techniques such as
HyperNP [54] learn to simulate their effects on the resulting projection.

his helps users quickly scan different perplexity values to choose
he one generating a projection with the desired visual signature. In
ontrast to HyperNP, our technique uses a single set of hyperparameters

to generate user-chosen visual patterns, reducing the need for such
costly simulations.

Finally, Makhzani et al. [55] propose an approach similar to ours.
hey adapt an auto-encoder into an adversarial setting to increase
he quality of the projection (e.g., better cluster separability) that the
anilla auto-encoder would create. Our method instead aims mainly
o put cluster shapes under the user’s control. In other words, they
ptimize a general-purpose quality metric, but do not control the visual
atterns explicitly; we control these patterns explicitly, and measure a
osteriori what the quality price incurred by the control is.
4

3. ShaRP: Shape-regularized neural projection

We now present ShaRP, our novel DR technique, which is based
on deep neural networks. Such networks can, in general, approximate
complex non-linear functions and have several desirable features that
ShaRP inherits:

Scalable: ShaRP scales linearly in the sample count because it avoids
precomputing pairwise distances or covariance matrices, like in PCA or
t-SNE, and lends itself to hardware-acceleration through GPUs or TPUs
tailored for fast deep learning.

Parametric: ShaRP operates in a ‘‘learn once, project as needed’’
ashion. It learns to parameterize a projection function instead of only
utputting the projected points, such as t-SNE or UMAP. This allows
haRP to project data it was not trained on along with existing data
out-of-sample ability).

Generic: ShaRP handles any dataset comprised of numeric features and
can be applied to a wide range of datasets using the same or only
lightly adapted hyperparameter settings.

Sound: ShaRP scores comparably to state of the art techniques in
relevant projection quality metrics.

To these, ShaRP adds two flavors of Shape Regularization:

• Intra-projection: ShaRP creates point clusters having shapes com-
ing from the same (user-controlled) family : ellipses, rectangles,
triangles.

• Inter-projection: Running ShaRP over different datasets produces
a consistent visual signature where differences in the projections
are driven mainly by data patterns.

Invertible: Since ShaRP uses deep learning, it can be directly used to
invert the projection mapping 𝑃 to compute inverse projections 𝑃−1.
We show in Section 4.5 how we can use this ability to compute decision

aps to explore the behavior of trained classification models.
ShaRP is implemented in Python using Keras (Tensorflow back-

nd) [56], Tensorflow Probability [57] for sampling and calculating
log-probabilities under different distributions. It is publicly available
t https://github.com/amreis/sharp.

3.1. Method description

ShaRP belongs to the family of Representation Learning [58] tech-
niques, i.e., it learns a latent encoding for input data. A latent encoding
is a vector 𝐳 ∈ R𝑞 , where 𝐳 = 𝑓 (𝐱) is a low-dimensional representation
of the input 𝐱 ∈ R𝑛 that enables a reconstruction of 𝐱 with minimal
errors. As we aim to create 2D and 3D projections, 𝑞 ∈ {2, 3} in our
ase.

ShaRP builds atop of the recent DR method SSNP [14] (see next
Fig. 1). SSNP extends a vanilla auto-encoder with loss AE with a
classifier head (with an accompanying loss class), yielding the total
loss to be optimized as

SSNP(𝐗, 𝐗̂, 𝑌 , 𝑌 ) = AE(𝐗, 𝐗̂) + 𝜌class(𝑌 , 𝑌 ). (9)

The projection 𝐳𝑖 ∈ R𝑞 of each input 𝐱𝑖 is generated by the bottleneck
layer of the network. The classification loss  , together with target
class

https://github.com/amreis/sharp
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Fig. 1. Relation of ShaRP (a) with VAEs (b) and SSNP (c). Detailed architecture of ShaRP (d). See Section 3.1.
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Fig. 2. Comparison of projections of the MNIST dataset learned using (a) Auto-
ncoders, (b) SSNP [14], and (c) ShaRP. SSNP and ShaRP were trained using the ground
ruth labels as class information — encoded, here and next, by colors. Values in brackets
re Distance Consistency scores (higher is better, see Table 1).

labels or pseudolabels generated by a clustering algorithm, enables
SNP to separate data clusters better than plain auto-encoders. Fig. 2

illustrates this for the well-known MNIST dataset. Yet, as the figure also
hows, SSNP collapses some clusters into elongated shapes, which we
rgue is (a) unnatural, as it suggests some anisotropy in the sample
istribution; (b) space-inefficient, as much white space is not used to
epict data; and (c) suboptimal for visualization as we cannot e.g. easily
elect a cluster by rubberband tools or efficiently annotate it with a
ectangular icon.

ShaRP overcomes these shortcomings of SSNP by an explicit user-
controlled shape regularization mechanism, described next (see also
ection 3.2 for examples). ShaRP replaces SSNP’s Auto-Encoder (AE)
ith a Variational AE (VAE) [59]. The key AE-VAE difference is the

latter’s use of a sampling process in the network’s bottleneck layer. This,
coupled with a necessary KL divergence (KLD) regularization term

reg(𝜃) = 𝐷KL(𝑞𝜃 ∥ 𝑝)=̇E𝐳∼𝑞𝜃 [log(𝑞𝜃(𝐳)∕𝑝(𝐳))] (10)

has as an immediate effect on the regularization of the learned latent
pace: Using reg pushes the learned probability distributions 𝑞𝜃 to-

wards a standard form 𝑝 defined a priori (e.g., a standard Gaussian
distribution) which prevents learning degenerate distributions. Also,
crucially for our goals, this loss can be exploited to model different
shape regularization constraints (see next Section 3.2). Our complete
loss function then reads as

ShaRP(𝐗, 𝐗̂, 𝑌 , 𝑌 , 𝛩) =recon(𝐗, 𝐗̂) + 𝜌class(𝑌 , 𝑌 ) + 𝛽reg(𝛩) (11)
=SSNP(𝐗, 𝐗̂, 𝑌 , 𝑌 ) + 𝛽reg(𝛩),

where we make the connection to the SSNP loss explicit.
By using a suitable sampling process, the clusters emerging in the

projection will be shape-regularized. For example, a 2D Gaussian sam-
pling distribution yields elliptical shapes (see Fig. 2(c)) because the
equidensity contours of a 2D Gaussian are ellipses. This is dependent
n reg preventing the degenerate learning of low (respectively, high)
ariances, which would give rise to point-like (resp., line-like) shapes

in the projection.
Table 2 summarizes the differences between using a pure VAE,

SSNP, and ShaRP. A VAE is good at producing a latent representation
5

Table 2
Overview of desirable properties in three strongly related techniques (VAE, SSNP,
ShaRP), together with whether each technique fulfills the property completely (∙),
partially (◦), or does not fulfill it (×).

Property VAE SSNP ShaRP (ours)

Projection-oriented × ∙ ∙
Can use (pseudo-)labels × ∙ ∙
DBM generation × ∙ ∙
Latent space regularization ∙ × ∙
Shape regularization ◦ × ∙
Non-Euclidean projection ◦ × ∙

that enables downstream tasks, so its latent space usually has more than
2 or 3 dimensions and visualizing (projecting) it is not a main concern.

his also means that, even though VAEs are in theory capable of shape
egularization and non-Euclidean projection, they meet such goals only
artial due to the aforementioned reason. SSNP is designed to generate
rojections, and has support for (self-)supervision through (pseudo-
labels. It performs no regularization on the learned latent space due
o the use of a vanilla auto-encoder, which also means it is unable of
hape regularization or non-Euclidean projections. ShaRP fulfills all of
he listed properties. It generates projections and DBMs on a regularized
atent space, allows for (self-)supervision, and has the extra capabilities
f shape regularization and non-Euclidean projection.

3.2. Controlling cluster shapes

We use as regularization targets the following shapes.

Ellipses. Consider a diagonal Multivariate Normal distribution, i.e.,
𝑖 ∼  (𝜇 , diag(𝜎⃗2)). The natural prior to use here is the standard
ultivariate Normal distribution  (𝟎⃗, 𝐈) which simplifies sampling,

ropagating gradients, and calculating the KLD loss [59]. By using this
rior, we encourage learned probability distributions to be as close
s possible to a standard Gaussian. Hence, the learned projection will
utput data clusters that resemble circles or ellipses (see next Fig. 8).

Using a Gaussian sampling distribution is standard for VAEs. For
our projection goals, tweaking the sampling distribution and using
uitable priors allows favoring different cluster shapes. We can use any
istribution as long as we have (i) access to log-probabilities of samples
nder the learned distribution and the prior; (ii) a way to propagate
radients through the sampling process (using a reparametrization trick
r otherwise).

Access to the log-probabilities of samples under learned distri-
butions and the prior removes the (constraining) need to analyti-
cally calculate the KLD since we can re-express it as a sample-based
computation as

𝐷KL(𝑞𝜃 ∥ 𝑝) ≈ 1
𝑚
∑

(

log 𝑞𝜃(𝐳𝑖) − log 𝑝(𝐳𝑖)
)

, (12)

𝑚 𝑖=1
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Fig. 3. Rectangular shaping can be convenient for data labeling tasks, as illustrated by
he right image where class representatives are overlaid atop their clusters. We achieve
his using a Generalized Normal distribution, here shown on the MNIST dataset for
= 10 (left).

where the approximation holds if 𝐳𝑖 ∼ 𝑞𝜃(⋅). Our next examples of reg-
ularization shape targets use Eq. (12) for computing the (approximate)

LD.

Rectangles. To create rectangular clusters, we use a Generalized Nor-
al ( ) probability distribution. It introduces an additional shape
arameter to the Gaussian (here denoted 𝜔) and has a density function
f the form

𝑝(𝑥|𝜇 , 𝛼 , 𝜔) ∝ exp (−(|𝑥 − 𝜇|∕𝛼)𝜔) .

Tuning 𝜔 makes the distribution tails heavier or lighter. This is
akin to the Minkowski p-norm where 𝑝 → ∞ values (analogous to 𝜔)
make sets of equidistant points approach axis-aligned squares instead
of circles (𝑝 = 2). Using this distribution for sampling, with a high
𝜔, yields cluster shapes that resemble squares/rectangles instead of
ellipses (see Figs. 3, 4).

Triangles. We first define an equilateral triangle in R2 by arranging its
ertices 𝐯1, 𝐯2, 𝐯3 in a matrix as

𝐓 = [𝐯1 𝐯2 𝐯3] =
[

0 1∕2 1
0

√

3∕2 0

]

.

To remove bias in the base shape, we use a base equilateral, unit-edge,
triangle. The initial bias can be overcome through the training process
ia the following necessary extension that we add to the sampling
cheme. Any convex combination of the barycentric coordinates 𝐯1, 𝐯2,
nd 𝐯3 gives a point inside the triangle. Formally: for a vector 𝐰 =
𝑤1 𝑤2 𝑤3]𝑇 with 𝑤𝑖 ∈ [0, 1], 1 ≤ 𝑖 ≤ 3 and ∑3

𝑖=1 𝑤𝑖 = 1, 𝐩 = 𝐓𝐰 is
nside the triangle.

We now need to use a sampling distribution in ShaRP that generates
vectors with the same properties as 𝐰 above. The Dirichlet probability
istribution

𝐰 ∼ Dir (𝛼1, 𝛼2, 𝛼3) ⇒ 𝐰 ∈ [0, 1]3,
3
∑

𝑖=1
𝑤𝑖 = 1 (𝛼𝑖 > 0, ∀𝑖)

does exactly that. We choose as prior the ‘‘uniform’’ distribution on the
triangle, which corresponds to Dir (1, 1, 1).

If we stopped here, our algorithm would fail to learn a useful
embedding since every data point will draw samples from the same
base triangle, i.e., the encoding layer will map all points to the same
region in 2D space. Hence, we augment our sampling scheme to allow
triangles to be rotated, scaled, and translated.

The set of learned parameters used to force shapes into triangles is
𝜃 = (𝜙 ∈ [−𝜋 , 𝜋], 𝑠𝑥 ∈ R+, 𝑠𝑦 ∈ R+, 𝑡𝑥 ∈ R, 𝑡𝑦 ∈ R, 𝛼1, 𝛼2, 𝛼3). Here, 𝜙 is
a rotation angle; 𝑠𝑥 and 𝑠𝑦 are scaling factors of the 𝑥 and 𝑦 axes; 𝑡𝑥
and 𝑡𝑦 are translation amounts in the 𝑥 and 𝑦 directions; and 𝛼𝑖 are the
sampling distribution parameters. A forward pass through this layer is
given by

𝐰 ∼ Dir (𝛼 , 𝛼 , 𝛼 )
1 2 3 (

6

𝐩 =
[

cos𝜙 − sin𝜙
sin𝜙 cos𝜙

] [
𝑠𝑥 0
0 𝑠𝑦

]

𝐓𝐰 +
[

𝑡𝑥
𝑡𝑦

]

As a result, we get triangle-shaped clusters (see Fig. 5). This param-
eterization can generate every possible triangle in R2 and is more
onvenient than learning triangle vertices directly. We can even add
ndividual regularization losses depending on the parameter’s seman-
ics. For example, we choose not to add regularization to 𝜙, to allow
t to freely range over its domain; we regularize 𝑠𝑥, 𝑠𝑦 towards 1 and
𝑥, 𝑡𝑦 towards 0. Fig. 6 shows the effect this has on different datasets,

and also what happens when we remove a degree of freedom from the
ampling scheme, namely setting the 𝑡𝑥, 𝑡𝑦 translation amounts to 0.

Convex polygons. The triangle sampling scheme described above lends
itself easily to generalization to any convex polygon in R2. This can be
achieved by observing that a 𝑣-dimensional Dirichlet distribution can
be used to generate barycentric coordinates 𝐰 ∼ Dir (𝛼1,… , 𝛼𝑣) of a 𝑣-
ided polygon. In practice, sampling in triangular shapes can be viewed

as a special case where the convex polygon of interest has 𝑣 = 3.
We build a matrix 𝐕 ∈ R2×𝑣 of the base convex polygon’s 𝑣 vertices

in R2 with equally spaced points around a circle of radius 1 for the
ame reasons as in the triangular case. The bias caused by this choice
f initial coordinates is, as earlier, overcome by augmentations that
llow for rotation, scaling, and translation. We also see that any point
= 𝐕𝐰 is inside the specified polygon. To achieve shape regularization,

he prior distribution should encourage sampling to occur in all regions
f the polygon, which is achieved when all the 𝛼𝑖 are set to 1.

3.3. Projection on non-Euclidean spaces

Projection techniques most often concern themselves with find-
ing ‘‘compressed’’ representations of high-dimensional data in a lower
dimensional space R𝑞 that has a standard Euclidean structure. This
seemingly natural design choice leads to projections where one corner
of the projected space is at the largest distance possible from its
diagonally opposing corner — assuming, without loss of generalization,
that projected points range in [0, 1]𝑞 . This space cannot represent well
certain similarity relationships between categories. For example, con-
sider a dataset having 𝐾 classes, where each class 𝑖, 1 ≤ 𝑖 ≤ 𝐾, is similar
to class 𝑖 + 1 mod 𝐾. A projection of this dataset in Euclidean space
would have to distort at least one of these similarity relationships. Well-
known instances hereof are projections of the 3D earth surface (with
geodesic distances between countries being the similarity relationships)
by classical 2D cartographic methods [60].

We address this problem as follows. The sampling mechanism of
haRP not only enables shape regularization, but also allows for the
ossibility of projecting onto spaces other than R2. For example, using
 3D von Mises-Fisher distribution (vMF) results in projecting points in

2, the 2-dimensional sphere — i.e., the boundary of a 3D ball. Previous
ork has explored the use of such distributions in VAEs [61], and our

work is the first, to the best of our knowledge, to use this in a specific
architecture (see Fig. 1) with the primary goal of producing high quality
data projections in non-Euclidean space.

Fig. 7 (top) shows this for a subset of the ‘Quick, draw!’ dataset [62].
From all the 345 classes of the dataset, we selected the following ten to
explore, due to similarities in their appearances: Ambulance, Bicycle,

ulldozer, Car, Firetruck, Motorbike, Pickup truck, Police car, Truck,
nd Van. We expect good projections to capture true data similarities,
.g., show ambulances next to vans, bicycles next to motorbikes, and so
n.

Images (a–c) show three viewpoints of the spherical projection
created by ShaRP, with points slightly shaded to represent the spherical
surface. In (a) we see the classes Car (bottom-right of sphere) and Police
Car (top), which we expect to be similar and therefore projected in
eighboring regions; in (b) we see to the right the classes Bicycle and
otorbike — which are again similar and projected next to each other;

n (c) we see the Pickup truck (top left), Truck (center), and Firetruck

bottom) are projected in adjacent regions as well.
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Fig. 4. Demonstration of shape regularization towards rectangles for different values of 𝜔 across five datasets. The strength of the ‘‘squarification’’ effect consistently increases
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Fig. 5. The results of our Triangular shaping sampling scheme over 3 different datasets.
DSC values (in brackets) are close to the best value possible, indicating good class
separability.

Fig. 7 (top) d–f show three viewpoints of the same dataset, projected
n 3D Euclidean space using t-SNE. These views show some similarity of
he same-class samples, visible as close points having the same color.
et, the delineation of same-class points as clearly separated same-color
egions in the projection, visible with the ShaRP spherical projection
a–e), is now lost. The key problem for t-SNE is that it uses the entire 3D
pace to project data. Given the earlier-mentioned tendencies of t-SNE
o create round, organic-like shapes, and also to fill in the projection

space with these shapes, this yields a sphere filled in with the projected
points. Finding out how such points group into same-class regions,
representing class-consistent groupings, is extremely hard, even when
examining this 3D scatterplot from multiple viewpoints, due to oc-
clusion and depth effects. Finding out how same-color point groups
neighbor each other is even harder for the same reason. The above
are fundamental challenges of exploring 3D scatterplots created by
projections, i.e., not limited to t-SNE [63]. Additional interactive ex-
ploration tools can help finding better viewpoints but cannot eliminate
the occlusion and inherent difficulties of understanding a dense 3D
scatterplot [64]. In contrast, our spherical space considerably decreases
he occlusion problems (maximally two points can be on the same
iew line). Also, as explained earlier, the spherical space allows for a
ore flexible point placement to model similarities than Euclidean (3D)

pace.
One can now ask whether simply avoiding 3D projections and using

D ones would not solve the above issues. Fig. 7 (top) g,h shows the
projections of the same dataset to 2D using ShaRP, respectively t-SNE.

e see that ShaRP renders the similarity of same-class points far better
than t-SNE due to its shape constraints. We also see an additional ad-
vantage of the earlier spherical space: whereas the spherical projection
shows that the green and pink classes are similar (since they are close
on the sphere, see images (a) and (b)), the 2D projection places these
far apart from each other, due to its need to render the other similarities
f the respective classes with their neighbors. Clearly, assessing 3D

projections — or, more generally, 3D scatterplots — is hard to do in
 static 2D view as shown in this paper. For such plots, interaction is

paramount, as explained in e.g. [63–66] . Our work is openly available
or users to try out such interactive exploration (see GitHub link listed
arlier in this section).
 𝛽
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Table 3
Mechanisms offered by ShaRP to control the cluster shapes and/or the projection space

Sampling Prior Shape Space

𝐳 ∼  (𝜇 , diag(𝜎2))  (0, 𝐼) ○ R𝑞

𝐳 ∼  (𝜇 , 𝛼 , 𝜔)  (0, 1, 𝜔) □ R𝑞

𝐳 ∼ Dir (𝛼1 , 𝛼2 , 𝛼3) Dir (1, 1, 1) ▵ R2

𝐳 ↦
[

𝑠𝑥 cos𝜙 −𝑠𝑦 sin𝜙
𝑠𝑥 sin𝜙 𝑠𝑦 cos𝜙

]

𝐕𝐳 +
[

𝑡𝑥
𝑡𝑦

]

𝐳 ∼ vMF(𝜇 , 𝜅) vMF(𝜇 , 0) ○ 2

Fig. 7 (bottom) shows the same experiment as above, now done
for the MNIST dataset. While we see a clearer separation of the same-
olor clusters in the t-SNE view, this separation is massively better with
pherical ShaRP. The same quality difference is visible in 2D ShaRP vs

2D t-SNE.
It is important to note that, for the evaluation of such non-Euclidean

rojections using quality metrics, we adapt distance calculations to use
the appropriate geodesic distance which, on a unit sphere (2), is the
great-circle distance

𝑑2 (𝐱, 𝐲) = 2 | ar csin(0.5 ‖𝐱 − 𝐲‖) | ∈ [0, 𝜋].

Table 3 summarizes our proposed mechanisms for controlling clus-
er shapes by sampling distributions in both 2D Euclidean and spherical
2 spaces.

4. Evaluation

We next discuss how ShaRP gives direct control over cluster shapes
while learning to project data (Section 4.1), the quality of ShaRP
projections (Section 4.2), and how tuning a single parameter controls
he shape regularization strength (Section 4.3). We also show how

ShaRP can be used to compute decision maps for exploring trained
classification models and compare it with other recent methods for
the same task (Section 4.5). Finally, we discuss ShaRP’s computational
calability (Section 4.6).

Datasets. We use 15 datasets for evaluation (Table 4) with different
classification difficulties, dimensionality, data types (images, motion
data, text), all often used in DR evaluations [7].

Techniques. We compare ShaRP with t-SNE, UMAP, and Isomap, due
to their wide adoption in the DR arena. We also compare with Auto-
ncoders since they are a key building block of our technique; with
SNP since we are extending it; and with NNP [81], a technique that
earns to imitate projections, here trained to imitate t-SNE. For both

ShaRP and SSNP, we use three different label sources: from the ground
ruth of the dataset (GT); and pseudolabels created by the K-Means
KM) [82] and Agglomerative (AG) [83] clustering techniques.

Hyperparameter settings. We train ShaRP with the Adam optimizer
ith default parameter settings. We add 𝐿2 regularization to the net-
ork’s bottleneck layer with a coefficient of 0.5. We use 𝜌 = 1 and
= 0.1 and mini-batches of 256 data points.
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Fig. 6. Triangle-oriented shape regularization demonstrated for five of the studied datasets. We present all three variants of ShaRP and also explore the impact of (dis)allowing
he translation of triangles in space. We notice that ShaRP is always able to find a sensible projection where distinct class clusters can be identified, even when we take away
ome degrees of freedom of the technique (e.g., forcing 𝑡𝑥 = 𝑡𝑦 = 0).
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Fig. 7. Projections of the Quickdraw (top) and MNIST (bottom) datasets. Using ShaRP’s
spherical sampling scheme plots points on the 2D surface of a 3D sphere (different
iewpoints shown in a–c). Using such a manifold allows for wrap-around behavior that

allows showing more complex similarity relationships of data points. This is in stark
contrast with a 3D t-SNE plot (three viewpoints of which are shown in d–f) where
similar groups are not easily identifiable. In 2D, a standard t-SNE plot (h) does not

ake the visualization better; and standard 2D ShaRP (g) can only show groupings in
 limited way.

4.1. Generating shape-regularized projections

Figs. 8–16 show how ShaRP regularizes projections for our 15
tudied datasets and compares these results with eight other projection
echniques. All images were generated using the same hyperparameter
alues, showing the robustness of ShaRP to different datasets. Instead
f producing scatterplots where cluster shapes, sizes, and intercluster
pacing are widely different (as with t-SNE and UMAP), ShaRP gen-
rates a more similar representation of the high-dimensional data in
ach 2D projection (intra-projection regularization). Also, the visual
ignature obtained is consistent throughout datasets (inter-projection
egularization). The learned projections do well with respect to quality
etrics (see Fig. 9 and its discussion in Section 4.2).
8

Table 4
Datasets used in our evaluation.

Dataset Dimensionality (𝑛) # classes (𝐾)

Bank [67] 63 2
CNAE-9 [68] 856 9
COIL20 [69] 400 20
FashionMNIST [70] 784 10
FMD [71] 1536 10
HAR [72] 561 6
Hate Speech [73] 100 3
IMDB [74] 700 2
MNIST [75] 784 10
Quick, draw! [62] 784 10
Reuters [76] 5000 6
Sentiment [77] 200 2
Spambase [78] 57 2
SVHN [79] 1024 10
USPS [80] 256 10

This comparison shows how the choice of projection algorithm has
a strong impact on the structures that arise in the projection plots.
Worthy of note are:

For the COIL20 dataset (Fig. 8), all of Isomap, t-SNE, and UMAP
produce ring-like structures (more deformed in Isomap) with different
degrees of spread and intercluster spacing (most visible in UMAP, with
low spread and big spacing between clusters). These seem to point to
pairwise sample similarities forming a chain, with points on opposite
sides of the rings being most different from each other. In contrast,
ShaRP is able to effectively project all samples without wasting the
space necessary to ‘‘draw’’ a ring; it draws filled circles with the data
points instead, and arranges them in 2D space with approximately
uniform intercluster spacing. One may wonder who is ‘right’ here. We
point out that PCA, a well-known linear projection method that should
have no trouble preserving such (near-)2D topology, does not produce
such structures in 2D. Also, changing the t-SNE perplexity parameters
can make these rings disappear — see e.g. the related analysis of how
etting perplexity can be tricky for t-SNE [53]. As such, we conjecture

that the existence of such rings in data space is not clear — it is, at
the very least, contingent on the representation used. Our method, by
design, does not create these rings because of its shape regularization.

his behavior is undoubtedly destructive, in the sense that if a dataset
oes possess such clear patterns in the data space, ShaRP will erase them
nd favor whichever shape regularization target is used. Whether this

is desirable is left for the user to decide. Note also that our approach
comes at the cost of introducing some false neighbors — which leads to
a lower trustworthiness value — while producing better DSC and Stress
values.
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Fig. 8. Projections of 15 datasets by 10 projection techniques (continued in Figs. 15, 16, see end of manuscript). Our ShaRP method produces cluster shapes regularized towards
 user-chosen target — here, ellipses — and can handle diverse data distributions, both when using (GT) labels or pseudolabels generated by K-Means (KM) or agglomerative

clustering (AG).
Datasets with only two classes (e.g., Bank, IMDB, SpamBase) seem
o draw out problematic behavior in SSNP. Namely, as we also discuss
ext in Section 4.2, the absence of dedicated neurons in the output
ayer for both positive and negative class collapses the projections of
9

different-class data points into a single line. This causes values of Stress
that reach 6 orders of magnitude above what is produced by other
techniques. ShaRP does not suffer of this problem, being able to reliably
place points with different (pseudo-)labels in distinct regions of space.
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Fig. 9. Performance of studied projection algorithms according to standard quality metrics: Trustworthiness 𝑄𝑇 , Continuity 𝑄𝐶 , Shepard Goodness 𝑄𝑅, Neighborhood Hit 𝑄𝑁 , and
Distance Consistency 𝑄𝐷 𝑆 𝐶 (higher is better, see Table 1). We observe a loss in terms of quality metrics due to shape regularization. 𝑄𝐷 𝑆 𝐶 is also highest for the (GT) variants of
SSNP and ShaRP, which is expected as true class information is being used. For detailed measurements including the Stress metric, see supplementary material.
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Finally, for the Hate Speech dataset, all studied techniques have
ifficulty coming up with an easily visually separable projection. How-

ever, the patterns present in different projections are qualitatively
distinguishable: for Isomap, we see lots of intermixing around the
middle of the projection, but not towards the edges; in t-SNE, we see
mall groups of same-class samples, mixed with each other; UMAP

seems to collapse most of the samples towards the same spatial region.
ShaRP is able to create some ‘‘pure’’ clusters even in absence of ground
truth labels (see ShaRP(KM)). If ground truth labels are provided,
the two classes become even more distinguishable, even if they are
projected concentrically.

Across all datasets, we consistently see ShaRP’s ability to regularize
cluster shapes towards a desired form, without the need to change
yperparameters to adapt to new datasets.

4.2. Measuring the projection quality

We evaluate ShaRP by trustworthiness, continuity, Shepard corre-
lation, normalized stress, neighborhood hit, and distance consistency
(see Section 2.5). We compute these metrics over all datasets using
a Gaussian sampling layer which produces ellipse-like clusters. Fig. 9
shows the metric values over all datasets for ShaRP and the other six
valuated projection techniques. Since Stress (𝑄S) has values in an
nbounded range, we chose not to visualize it here along the other
etrics. We report 𝑄𝑆 values, together with detailed numerical values

or all other metrics, in the supplementary material.
For the 𝑄𝑆 metric, ShaRP avoids very high values (present in t-

NE, all studied datasets; UMAP and AEs, some datasets). We do,
owever, have higher Stress than SSNP, since we force clusters into
esired shapes, which can require projected (2D) distances to be quite
ifferent from data-space distances. As explained in Section 1, if, for
 f

10
example, data is spread into Gaussian clusters, and we use ShaRP with
the elliptical cluster constraint, then we expect to see good quality
metric values (Stress and others). Conversely, if the data is spread in
different ways than the visual signature selected by the user for ShaRP,
then some quality metrics may decrease for ShaRP. Given that our
Stress is still lower than t-SNE, UMAP, and AE, we believe this is a
reasonable trade-off. For the same reason, 𝑄𝑇 and 𝑄𝐶 tend to have
(even if slightly) lower values in ShaRP than in reference projection
algorithms — since shaping can introduce (resp. miss) data space
neighbors. Overall, we claim that ShaRP offers its capability of shape
egularization with slight impacts to quality metrics — stronger for

high values of 𝛽, see Eq. (11). It is worth noting that, for their AG and
KM versions, both SSNP and ShaRP can be held back by the clustering
algorithm’s ability to properly group the dataset into classes.

To test how ShaRP’s support of different regularization shapes
ffects projection quality, we ran ShaRP to produce clusters in five
hapes — ellipses (using Gaussian sampling); rectangles (𝜔 = 5 and
= 15, see Section 3.2); and triangles (translated in projected space

nd respectively forced to 𝑡𝑥 = 𝑡𝑦 = 0), for all 5 tested datasets.
Table 5 shows the quality metrics for these settings, for five of the tested
datasets (for brevity; for the other 10 datasets, the values are similar).
We see little variation in these metrics. This points to the robustness
of ShaRP and further supports our claim that controlling the visual
signatures of projections can be done without (strongly) influencing
quality metric values.

4.3. Control of shape regularization intensity

We adjust the amount of shape regularization through the 𝛽 multi-
lier in the loss function (Eq. (11)). Fig. 10 shows this: larger 𝛽 values
orce clusters to conform to the shape generated in the sampling layer
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Table 5
Non-aggregated quality metrics for different sampling schemes within ShaRP. Rightmost
column shows mean square error (MSE) for training.

Dataset Shape 𝑄𝑇 𝑄𝐶 𝑄𝑅 𝑄𝑆 𝑄𝑁 𝑄𝐷 𝑆 𝐶 MSE

Fashion

○ 0.835 0.907 0.463 0.880 0.829 0.766 0.048
□[𝜔 = 5] 0.825 0.915 0.485 0.892 0.842 0.816 0.050
□[𝜔 = 15] 0.829 0.916 0.495 0.891 0.813 0.771 0.049
▵ 0.826 0.898 0.482 0.875 0.895 0.781 0.050
▵† 0.807 0.808 0.208 0.866 0.834 0.641 0.053
2 0.815 0.910 0.308 0.751 0.952 0.951 0.049

HAR

○ 0.823 0.810 0.521 0.749 0.965 0.829 0.010
□[𝜔 = 5] 0.825 0.880 0.582 0.749 0.952 0.936 0.010
□[𝜔 = 15] 0.829 0.886 0.513 0.768 0.928 0.909 0.010
▵ 0.828 0.854 0.563 0.662 0.978 0.921 0.010
▵† 0.830 0.824 0.426 0.717 0.980 0.928 0.010
2 0.823 0.898 0.423 0.522 0.990 0.990 0.009

MNIST

○ 0.732 0.897 0.251 0.859 0.977 0.962 0.055
□[𝜔 = 5] 0.735 0.896 0.271 0.878 0.979 0.961 0.055
□[𝜔 = 15] 0.735 0.900 0.230 0.864 0.968 0.948 0.055
▵ 0.747 0.874 0.119 0.850 0.986 0.896 0.054
▵† 0.738 0.799 0.148 0.844 0.959 0.769 0.056
2 0.735 0.907 0.219 0.722 0.993 0.994 0.053

Reuters

○ 0.554 0.701 0.104 0.676 0.962 0.851 0.001
□[𝜔 = 5] 0.556 0.699 0.300 0.714 0.975 0.933 0.001
□[𝜔 = 15] 0.558 0.715 0.256 0.760 0.977 0.953 0.001
▵ 0.560 0.696 0.265 0.581 0.981 0.953 0.001
▵† 0.561 0.637 0.002 0.665 0.977 0.793 0.001
2 0.555 0.709 0.283 0.411 0.981 0.971 0.001

USPS

○ 0.802 0.922 0.285 0.774 0.973 0.931 0.044
□[𝜔 = 5] 0.799 0.918 0.350 0.793 0.975 0.948 0.045
□[𝜔 = 15] 0.798 0.919 0.329 0.792 0.962 0.934 0.045
▵ 0.823 0.898 0.363 0.775 0.992 0.887 0.043
▵† 0.804 0.826 0.185 0.763 0.972 0.837 0.045
2 0.826 0.935 0.296 0.559 0.993 0.993 0.040

Shape Sampling scheme

○ Ellipses, Gaussian sampling
□[𝜔 = 𝑘] Squares, generalized Normal sampling with 𝜔 = 𝑘
▵ Triangles, Dirichlet sampling
▵† Triangles, Dirichlet sampling with 𝑡𝑥 = 𝑡𝑦 = 0
2 Spherical, von Mises-Fisher sampling

— ellipses, in this case. Exaggerated shape regularization (high 𝛽),
however, makes ShaRP favor ‘shape over data’ too much and creates
projections which cannot properly depict data — sampling from a
istribution similar to the prior overshadows producing a sensible
mbedding. The table below in Fig. 10 gives the quality metrics for

the different 𝛽 settings. In our tests, we have found a value of 𝛽 = 0.1
to give consistently good results.

4.4. Faithfulness to data class structure

As ShaRP is a method that uses (pseudo-)labels 𝑌 , it is important
to assess whether the creation of clusters in a projection is artificial,
nd therefore less trustworthy, similar to earlier studies that aim to
ssess class faithfulness in projections [84,85]. To this end, we conduct

an experiment in which we randomly assign a different label 𝑦′𝑖 ∈
{1,… , 𝐾} to increasing fractions 𝑝 ∈ [0, 1] of the samples of each class
in a dataset — we choose MNIST due to expected reader familiarity.

his class mixing should produce correspondingly mixed projections as
e increase 𝑝. Fig. 11 shows exactly this effect: As we increase 𝑝, the

observed visual separation of same-label clusters decreases; also, the
class separability metric 𝑄DSC monotonically decreases.

This experiment provides evidence that ShaRP does not artificially
create clusters based on the (pseudo-)label information it is supplied.
That is to say, ShaRP’s shape regularization effect still preserves intra-
class similarities, and therefore data class structure, as we would expect
from a sensible DR algorithm.
11
Fig. 10. The 𝛽 coefficient (Eq. (11)) controls the shape regularization strength, shown
here on the USPS dataset. 𝛽 = 0 approximately reproduces SSNP (a). Increasing it (b,
) progressively forces the learned clusters into circular shapes, up to the point where
he projection is of low quality (d).

Fig. 11. Progressively mixing classes in the MNIST dataset (i.e., increasing the mixing
fraction 𝑝) leads to the progressive degradation of the projection produced by ShaRP,
as visible above and also measured by the class separability metric 𝑄DSC. Even though
ShaRP has access to the (noisy) labels, they do not artificially create separated clusters
— as is expected from projection methods.

4.5. Generating decision boundary maps

Visualizing how a classifier partitions the input space into regions
corresponding to different classes can give insight into its correctness
and robustness. For high-dimensional inputs, this visualization uses a
projected space through so-called Decision Boundary Maps (see Sec-
tion 2.4). A key factor to the quality of DBMs is the inverse projection
used. We next focus on comparing with SDBM given that, from all
existing techniques in this area (Standard DBM [15], SDBM [26],
DeepView [30]), this technique strikes the best balance of quality and
computational scalability.

Fig. 13 compares SDBM and ShaRP for visualizing the decision
boundaries of a given, (per-dataset) fixed, classifier. We chose as clas-
sifier model a shallow Multilayer Perceptron — 3 layers with sizes
512, 128, 32 — with ReLU activations. We additionally encode the
confidence of the classifier — i.e., the probability assigned to the most
probable class — in the saturation of the DBM colors, giving extra
insights into the classification quality per region. Note that, since ShaRP
learns to jointly project and classify, we could use the classifier head of
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Fig. 12. Times for a call to fit_transform (that is, both training and inference), all studied projection techniques, five datasets. Runs were stopped after 5 min. We see that
ShaRP is faster than all other tested DR techniques, being only marginally slower than SSNP, which does not offer visual pattern control. See Section 4.6.
Fig. 13. DBMs created by ShaRP and SDBM for all studied datasets, visualized without and with saturation-encoded confidence. The classifier is frozen per dataset. Immediately
noticeable are the 2-class cases where SDBM produces degenerate DBMs (Sentiment, SpamBase datasets). We also see SSNP’s starburst pattern leaking into SDBM (FashionMNIST,
MNIST datasets), which ShaRP avoids.
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its decoder over a grid of points in the latent space, immediately obtain-
ing information on which class is projected to which region, without
ny additional training. Also, ShaRP outputs a probability distribution
ver classes, enabling the visualization of uncertainty — e.g., entropy
 in the DBMs, without any additional effort. However, as mentioned

bove, we choose not to use ShaRP’s built-in classifier, but an externally
iven one. This decouples how the DBM is generated from what it is
sed to visualize — which, we argue, makes full sense. Indeed, users
ikely want to use a DBM visualization to inspect their own classifiers,
nd not the one in ShaRP.

In Fig. 13, we see that SDBM seems to fail to generate sensible
BMs for cases where there are only two classes in the dataset (see

e.g. datasets Bank and SpamBase). We believe this is due to a common
practice in Deep Learning models: using a single neuron in the output
layer of the classification network instead of naively using two, one per
class. This absent neuron would indeed be redundant for classification
since the output layer’s values must sum to one (as they form a proba-
bility distribution). We argue that this unnecessarily and strongly limits
he power of SDBM to learn projection and inverse projection functions
hat place elements of different classes in significantly different regions

of space. ShaRP does not possess that limitation, since it uses explicitly
two neurons in its output layer for projections where only two classes
of points exist.

Additionally, the starburst visual signature of SSNP leaks through
DBM, generating DBMs that have long, line-like regions (see datasets
ashionMNIST, FMD, MNIST). ShaRP might generate line-like regions

in DBMs as well, usually when the training process makes the learned
lusters stack vertically or horizontally (see dataset HAR), but this
ffect is less frequent and the regions are not as thin as those in SDBM,
hich poses a smaller hindrance to understanding the visualization.
he above show that ShaRP’s regularizing clusters in projections also
 R

12
regularizes the generated DBMs, while preserving the between-class
structures as demonstrated in Section 4.4.

It is worthy of note that ShaRP’s classifier head (see Fig. 1) is able
to predict classes directly for 2D points, thereby ‘‘painting’’ a DBM, i.e.,
computing the labels that lead to colors for each DBM pixel. However,
his classifier runs directly on projected space coordinates. In order to
lassify a new, unseen data point, this point must be projected by ShaRP
nd then classified, a process through which information may be lost.

In Section 3.3, we showed that ShaRP can create projections on
the 2 sphere, which can better show certain neighboring relations
etween sample clusters. The same idea applies to decision maps.

Fig. 14 shows decision maps created with ShaRP for a Multilayer
Perceptron classifier trained on the Quickdraw and MNIST datasets. We
ee, just as we do for the 2D counterparts (Fig. 13), different decision
ones of the classifier, with an additional degree of freedom given by
he wrap-around nature of the 2 space. The decision zones naturally

enclose the training samples (small white dots) and have decreasing
onfidence as one approaches their boundaries. Note that our goal here

to create DBMs which better capture the underlying neighborhoods
of high-dimensional data points (which we achieve by using the 2

sphere) is related conceptually to goals of preserving the data topology
via projections [86]. The key difference is that we aim to generate

BMs, which involve extrapolating a projection from a given dataset,
hereas [86] focuses on preserving topology as defined by a given

dataset.

4.6. Computational performance

Fig. 12 shows how ShaRP fares compared to other projection tech-
iques vs. computational time. Tests were run on a PC with an AMD
yzen 9 5900HX 3.3 GHz 8-core processor and an NVIDIA RTX 3080
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Fig. 14. Decision maps for the Quickdraw and MNIST datasets using the 2 space.
Bottom row maps classifier confidence to color saturation. White dots show training
samples. Compare with Fig. 7.

GPU. ShaRP is much faster than t-SNE (5 to 10 times speedup) and
Isomap (5 to 6 times speedup). It is also faster than AE, UMAP, and only
slightly slower than SSNP, its predecessor. The used batch size (256
ata points) is largely responsible for ShaRP’s speed and, according to
ur experiments, does not negatively impact the quality metrics of the

obtained projections, meaning it could be increased by a user whose
riority is fast iteration. For ease of comparison, we use evaluation
ettings similar to those in other works advocating analogous Deep
earning architectures [14,81,87,88]. We refer the reader to [87,88]
or experiments on how the batch size affects performance for a wide

variety of datasets.

5. Discussion

We next discuss several key aspects of our proposed method.

Genericity: ShaRP can handle high-dimensional dataset of any na-
ure (e.g., text, images, or tabular) as long as the data values are
uantitative, as such data directly works with autoencoders. One-hot
ncoding or Categorical Variational Auto-Encoders [89] can overcome
his limitation with only slight adaptions to our network architecture.

Inverse projections: Since using an autoencoder architecture, ShaRP
automatically provides the inverse projection 𝑃−1 from the embedding
o the data space at no additional cost or complexity.

Scalability: Since based on a deep learning architecture, ShaRP’s run-
ning time is linear in the number of samples and dimensions and
onsiderably faster than classical methods such as t-SNE, Isomap, or
MAP (see Section 4.6). After training, ShaRP’s operation is deter-

ministic and also has the out-of-sample property, i.e., it can project
nseen samples along the training ones. This allows its simple usage

for constructing decision maps, for which the inverse projection 𝑃−1

ust be applied to unseen points (pixels).

Shape and space control: ShaRP allows controlling the shapes of
imilar-sample clusters (provided by (pseudo-)labels) to match ellipses,
riangles, rectangles, or more generally any convex polygon. Doing this
an decrease certain projection quality metrics as compared to using
free’ projections which do not constrain cluster shapes. We see this
s an application-dependent trade-off that users can settle based on
uning a single, simple, parameter (see Section 3.2). As explained in

Section 1, this trade-off means that, if users select, say, ShaRP with
ectangles, they will (a) get a projection containing mainly rectangles

and no other patterns; and (b) know that these patterns are due to their
13
choice. In contrast, when using other DR techniques, one can expect a
wide set of patterns in the projection (also depending on the technique’s
arameter values). We argue that this can be confusing since (a) one

has no clear control of the appearing patterns; and, more importantly,
(b) the spontaneous appearance of such patterns can wrongly suggest
they actually depict data patterns [53]. We remove such uncertainties
by allowing the user to control the visual patterns in the projection. On
the flip side, this means that if cluster shape patterns do exist in the data
space, ShaRP will explicitly undo them and favor the user-chosen shape
arget instead. This is a relevant decision point for whether ShaRP is an

adequate projection technique for a given task.
Shape-regularized projections can help visualization tasks. For ex-

ample, rectangular shaped clusters ease the task of adding (rectangular)
thumbnails or similar annotations atop of the respective clusters (see
Fig. 3).

Independently on the selected cluster shape, ShaRP can project data
to Euclidean spaces (like the 2D plane) or spherical ones (like 2). This
is an additional global degree of control of the projection shape.

Decision maps: ShaRP can trivially create decision maps of any clas-
sification model trained on its input data samples. Compared to other
decision map visualizations (e.g. SDBM or DeepView), ShaRP offers the
dditional aforementioned control of shape and space. Simply put, if
his control enables one to generate a good projection for understanding
 dataset, the same control (and projection) can be used to create a
ecision map for a classifier trained on that dataset.

Limitations: While flexible, ShaRP also has several limitations.
The sampling schemes we presented in Section 3 support shaping

clusters into ellipses and convex polygons. A wider variety of shapes
can be obtained by devising new sampling schemes. However, obtain-
ing log-probabilities for samples of complex sampling schemes can be
computationally intensive.

As many other DR methods relying on clustering, e.g. SSNP [14,88],
ShaRP relies on a reasonable estimate of the number of clusters to use
if no ground-truth labels exist. If ground-truth labels exist, the problem
is solved — one either uses them directly or sets the cluster count to
the number of different classes. Evidently, the quality of the clustering
used in this case is important as well. This is a standard limitation of
similar DR methods that use clustering.

More importantly, the issue of shape control raises some hard
uestions. On the one hand, no control allows a projection technique
o freely place samples to optimally follow the data values. Yet, as
e argued, this also allows the technique to enforce its own ‘visual

ignature’ which typically does not depend on the data but on the
echnique’s design, so it can be visually misleading. On the other hand,
ontrolling shapes largely removes this algorithmic bias. Yet, this puts
he responsibility of selecting ‘good’ shapes to further interpret the data
n the user. All taken into account, we believe the latter option to be
etter. Yet, further studies e.g. involving user experiments are needed
o see how shapes affect the perception of a ShaRP projection.

Another open question is how to control ShaRP in intuitive ways.
So far, we have shown that the user can specify the shape of visual
patterns ro emerge in a projection, while taking some loss in projection
quality in return. Yet, users may want to tune this, e.g., specify how
much they want to control shapes vs how much quality loss they agree

ith, beyond setting the 𝜔 parameter. A way forward would be to show
local projection errors for ShaRP (following e.g. [38,90]) and provide
users with interactive tools to tune such errors vs the desired visual
cluster shapes. A separate interesting open issue is how to quantify and
display how well ShaRP enforces the desired visual shapes.

6. Conclusion

We have presented ShaRP, a new method for creating projections of
high-dimensional data. ShaRP leverages variational autoencoders and
(pseudo-)labeled datasets to allow users to control the shapes of clusters
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Fig. 15. Continuation of Fig. 8.
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Fig. 16. Continuation of Fig. 8.
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created in Euclidean or spherical spaces. Alongside this, ShaRP keeps
desirable features of projection techniques such as genericity, compu-
tational scalability, ease of use and implementation, and out-of-sample
ability.

Several future work directions are possible. First, exploring new
hape as well as space constraints would allow users an even greater
ontrol of the resulting projections. This can prove useful to e.g. create

projections onto specific 2D or 3D manifolds that match known priors
of the data distribution. Secondly, we aim to study sampling schemes
that naturally encourage further visual aspects of interest of projections,
e.g., cluster separability. Finally, we aim to explore applying ShaRP
recursively to create an interactively navigable hierarchy of clustered
data in projections.
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