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Abstract. Visualization of multidimensional data is a difficult task, for which
there are many tools. Among these tools, dimensionality reduction methods
were shown to be particularly helpful to explore data visually. Techniques with
good visual separation are very popular, such as those from the SNE-class, but
those often are computationally expensive and non-parametric. An approach
based on neural networks was recently proposed to address those shortcomings,
but it introduces some fuzziness in the generated projection, which is not
desired. In this paper we thoroughly explain the parameter space of this neural
network approach and propose a new neighborhood-based learning paradigm,
which further improves the quality of the projections learned by the neural
networks, and we illustrate our approach on large real-world datasets.

Keywords: Dimensionality reduction · machine learning · neural networks ·
multidimensional projections.

1 Introduction

High dimensional datasets are prominent in many fields of science. However, exploring
such datasets is challenging, especially when the number of dimensions – also called
attributes or variables – is large. This difficulty is particularly salient for visualization
methods that address high-dimensional data [16, 21, 29].

One major type of techniques used for high-dimensional visualization methods
is formed by so-called dimensionality reduction (DR) methods. In contrast to other
methods in information visualization, DR methods can handle data having a higher
number of dimensions – up to hundreds or even thousands – as the visual space is not
assigned separately for each dimension. Different DR techniques have been developed,
aiming to balance various requirements such as speed, projection quality, and ease
of use [44, 39, 29, 8]. Arguably one of the best known (and used) such techniques is
t-SNE [25], which is able to create scatterplots that capture well data separation in
the original space. Yet, t-SNE is slow to run on datasets of tens of thousands of

? This study was financed in part by FAPESP (2014/12236-1, 2015/22308-2 and 2017/25835-
9), CNPq (303808/2018-7) and the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001.



2 T. Modrakowski et al.

observations or more, due to its quadratic time complexity; its hyperparameters can
be hard to tune to get a good result [47]; its results are quite sensitive to data changes,
e.g., adding more samples may result in a completely different projection; and it cannot
project out-of-sample data, which is useful for time-dependent data analysis [36, 29,
46]. Work has been done to address the performance issue, such as tree-accelerated
SNE [24], H-SNE [33], A-SNE [34], and UMAP [28], which is a completely different
algorithm but with the stated goal of having t-SNE quality at a higher speed. However,
in general, there is no technique in the SNE class that jointly addresses scalability,
stability, and out-of-sample handling.

A very different approach to projection was recently proposed [6] based on deep
learning. Given a high-dimensional dataset and its 2D scatterplot created by the DR
technique of choice of the user, a neural network is trained to reproduce the scatterplot.
After training, the network can generate projections of high-dimensional datasets that
are similar in nature to the ones used during training. This method – referred next
as Neural Network Projection (NNP) – is particularly interesting as an alternative
to t-SNE, since it is several orders of magnitude faster than classical t-SNE, has
out-of-sample capability by design, and is simple to implement and easy to use.

A drawback of the work in [6] is, however, validation: While NNP is shown to work
well, in terms of projection quality metrics, on a variety of datasets and able to learn
different projection methods, the space of hyperparameters used during architecture
and training is left unexplored. This leaves two open questions. First, a detailed study
of how NNP’s results depend on these hyperparameters is needed before being able to
claim that the method can consistently generate good projections, as common with
other deep learning evaluations [9, 13]. A second problem of NNP’s results shown in [6]
is that these exhibit less sharp separation of data clusters than in the ground-truth
(training) projection, compare e.g. Figs 1a and b, a phenomenon referred to next as
projection diffusion or fuzziness. Exploring how hyperparameter settings affect, and
possibly reduce, diffusion is thus an important open question.

a) b) c)

Fig. 1. Example of diffusion introduced by NNP. (a) Ground-truth t-SNE projection (b)
Inferred NNP (10K samples) with diffusion. (c) Inferred KNNP (10K samples) showing less
diffusion.

Many potential causes exist for diffusion, e.g.: (1) too small training sets or too
few training epochs (underfitting); (2) using a suboptimal regularization (overfitting);
(3) using an improper optimizer which gets stuck in a local minimum of the cost
function. Recently, Espadoto et al.[7] studied the causes of diffusion by exploring
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the hyperparameter space of NNP, showing how these influence the results’ quality,
gauged by projection quality metrics. They showed that NNP is stable with respect
to hyperparameter settings, thereby completing the claim made by [6] that they can
be reliably used for out-of-sample and noisy-data contexts. However, they did not
propose a way to reduce diffusion.

In this paper, we extend the work in [7] by proposing a novel approach to deep
learning projections. Rather than learning from a single sample at a time, we project
whole groups of related (neighboring) samples at a time. This aids the network to learn
how to preserve neighborhoods. To do this, we explore different schemes of efficient
nearest-neighbor search in high-dimensional data during both training and inference.
We evaluate our method, called K-Nearest-Neighbor Projection (KNNP) against NNP
on a variety of datasets and using several quality metrics, and show that our strategy
is both computationally scalable and also leads to quality improvements as compared
to NNP.

The structure of this paper is as follows. Section 2 discusses related work and
introduces NNP. Section 3 details our experimental NNP evaluation. Section 4 presents
our results for optimizing NNP via hyperparameter space search, discussed next
in Sec. 5. Section 6 presents the new KNNP projection method, whose results are
discussed next in Sec. 7. Finally, Section 8 concludes the paper.

2 Related Work

2.1 Dimensionality reduction

We first introduce some notations. Let D = {xi}, 1 ≤ i ≤ N be a dataset of N
samples, where each sample x = (x1, . . . , xn), xi ∈ R, 1 ≤ i ≤ n is an n-dimensional
(nD) data point. We model a projection method by a function P : Rn → Rq where
q � n. We next consider 2D projections, i.e., set q = 2. Hence, the projection of a
sample x ∈ D is denoted by P (x). For notation ease, we denote the 2D scatterplot
obtained by projecting a dataset D as P (D) = {P (x)|x ∈ D}.

Dimensionality Reduction (DR) techniques implement various versions of the
function P , aiming at optimizing different so-called quality metrics such as distance
preservation or neighborhood preservation, by using different optimization strategies.
Arguably the simplest, and probably earliest, DR method is PCA [32, 15], which
is simple to implement, fast, and deterministic. More complex techniques include
manifold learners, such as MDS [43], Isomap [42], LLE [37], and UMAP [28], which
work well when the high-dimensional data is distributed over a manifold surface. These
techniques are compared extensively from algorithmic viewpoints [12, 44, 5, 39, 21, 2,
50] and also from practical viewpoints (benchmarking) [8].

The t-Stochastic Neighbor Embedding projection [25] and other similar techniques
in the same family [33, 24] succeed in creating high-quality projections from a neighbor-
hood preservation perspective, thereby being very effective in exploring cases where
data is segregated into similar-sample clusters in unsupervised learning contexts. How-
ever, as outlined in Sec. 1, t-SNE is quite slow and, due to its stochastic optimizer,
hard to tune so that it produces deterministic results. Obviously, the latter implies it
cannot be directly used in out-of-sample contexts. Parametric t-SNE variants help with
this latter problem [23] at the expense of more complex, and slower, implementations.
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2.2 Deep learning projections

Early on, autoencoders [11, 18] were proposed to generate a compressed, low-dimensional
representation on their bottleneck layers by training the network to reproduce its
inputs on its outputs. Typically, autoencoders produce results comparable to PCA.
The ReNDA algorithm [1] uses two networks, improving on earlier work from the
same authors. One network is used to implement a nonlinear generalization of Fisher’s
Linear Discriminant Analysis, using a method called GerDA; the other network is
an Autoencoder used as a regularizer. The method scores well on predictability and
has out-of-sample capability. However, it requires labeled data, which is not always
available. Parametric t-SNE (pt-SNE) [23] was proposed to address the out-of-sample
limitation of t-SNE. Being of parametric nature (mapping the entire nD input space
to the lower-dimensional qD space), it allows out-of-sample behavior by construction.
Only few other DR methods are parametric and thus have this ability (e.g., PCA [15],
NCA [10], and autoencoders [11]).

Recently, Espadoto et al. [6] proposed Neural Network Projections (NNP). Consider
a dataset D ⊂ D, where D ⊂ Rn is a so-called universe of high-dimensional datasets
related to a given domain, e.g. natural images of people faces. A training subset
Ds ⊂ D thereof is selected, and projected by some DR method (t-SNE or any other)
to yield a so-called training projection P (Ds) ⊂ R2. Next, Ds is fed into a three-layer,
fully-connected, regression neural network which is trained to output a 2D scatterplot
Pnn(Ds) ⊂ R2 by minimizing the mean squared error between P (Ds) and Pnn(Ds).
After that, the network is used to construct projections of unseen data from the
same universe, Dp = D \Ds, by means of 2-dimensional, non-linear regression. This
approach is fundamentally different from autoencoders [11] which do not learn from
a training projection P , but simply aim to extract, in an unsupervised way, latent
low-dimensional features that best represent the input data. Also, NNP is different
from pt-SNE since it uses supervised learning (based on the training projection), has
a much simpler network architecture, and a different cost function (distance to 2D
ground-truth projection rather than Kullback-Leibler divergence). The NNP pipeline
is shown in Figure 2.

Projection technique

Training dataset DsTest dataset Dp

Projection

P(Ds)

Deep network

Deep network

Learning phase

Inference phase
Projection

Pnn(Dp)

Data universe D

Deployment

Fig. 2. Pipeline for the Neural Network Projection (NNP) method.
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The NNP method is simple to implement, generically learns any projection P for
any dataset D ⊂ Rn, has deterministic (thus, out-of-sample) behavior, and is orders
of magnitudes faster than classical projection techniques, in particular t-SNE.

However, as outlined in Sec. 1, designing a quality neural network (in our case, the
NNP regressor) is challenging, given the large space of design decisions available. We
outline below five such degrees of freedom, all of them relevant for NNP’s performance.

Network Architecture: Much of the flexibility of neural networks (NNs) comes from
architectural choices. If we follow NNP’s design, which restricts itself to fully connected
networks, the open choices regard the number of layers and layer sizes.

Loss functions: To start with, one needs to choose a loss function J that describes
what the network aims to learn. Typical loss functions for regression are Mean Squared
Error (MSE), Mean Absolute Error (MAE), logcosh, and Huber loss (see Tab. 1, where
ŷ = {ŷi} is the NN’s output vector and y = {yi} is the training-set sample that ŷ
should infer). These losses differ in several aspects: Smoother ones (MSE, logcosh) are
easier to optimize by gradient descent and its variants (discussed further below); MAE
is harder to optimize since its gradient is discontinuous. The Huber loss, controlled
by a parameter α, behaves in the range of these models – it is close to MAE for low
α and close to MSE for larger α. Finally, MAE and Huber losses are typically more
robust to outliers than MSE.

Regularization: To address overfitting, regularization techniques are used to make
training harder, therefore increasing the number of epochs needed for the NN to
achieve convergence and thus increase their generalization power. Such techniques
include L2, L1, max-norm, early stopping, and data augmentation. The Lk regular-
ization techniques, also known as weight pruning (k = 1) and weight decay (k = 2),
adds a penalty term λ‖w‖k to the NN cost function, i.e., the k-norm of the weights
w of a given layer. Here, the parameter λ gives the regularization strength. The
L1 [30] variant sets the weights of less important layers to zero, thereby effectively
sparsifying the model. The L2 [19] variant, in contrast, decreases weights to small
but non-zero values, thereby effectively distributing weights over more connections
across the model. Both L1 and L2 are effective in reducing overfitting. Max-norm [40]
regularization caps the norm of layer weights to a maximal value γ. Another way to
reduce overfitting is to combine such regularization techniques with early stopping [51].
Hereby training is halted when the validation loss JV stops decreasing or starts in-
creasing while the training loss JT keeps dropping, a situation which signals overfitting.

Optimizers: The NN cost can be minimized using Gradient Descent (GD). GD aims
to minimize the training error by adjusting the weights wt at the current step t by
taking steps of size η (also called the learning rate) downwards along the gradient ∇Jt
of the current value of the loss function Jt with respect to w as

wt = wt−1 − η∇Jt. (1)

Applying GD (Eqn. 1) on large datasets is expensive. Stochastic Gradient Descent
(SGD) speeds this up by using only one randomly-picked sample per update step t.
However, this uses too little information in each update step. Mini-batch SGD blends
the speed of SGD with the quality of GD by using one set (batch) of samples for
each iteration of Eqn. 1. The Momentum method [35] makes SGD converge faster by
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blending two consecutive updates by

wt = wt−1 − η(ν∇Jt−1 +∇Jt), (2)

where ν controls the momentum strength.
As in any optimization based on gradient descent, using a fixed learning rate η is

not optimal: Small values make convergence slow (many iterations); large values may
skip over minima. Adaptive Moment Estimation (ADAM) [17] improves upon this by
adaptively computing η by using squared gradients. While this makes convergence
faster, ADAM does not guarantee to always minimize better than fixed-learning-rate
methods such as Mini-batch SGD [48].

Data augmentation: Adding data that is similar to existing training data is typically
used to make deep learning effective in cases when only small training sets are available.
However, data augmentation also creates models that generalize better, thereby being
useful for regularization purposes.

Table 1. Typical NN loss functions. (table from [7])

Function Definition
MSE 1

n

∑n
i=1 (yi − ŷi)2

MAE 1
n

∑n
i=1 |yi − ŷi|

logcosh 1
n

∑n
i=1 log(cosh(yi − ŷi))

Huber

{
1
2
(y − ŷ)2 if|y − ŷ| ≤ α

α|y − ŷ| − 1
2
α otherwise

3 NNP Evaluation

While NNP has several advantages, as mentioned in the previous section, its quality
and stability vs hyperparameter settings has not yet been assessed in detail. We
address this by performing a set of experiments that explore the design space of
NNP (Sec. 3.1). For each experiment, we evaluate NNP using several quality metrics
(Sec. 3.2).

3.1 Hyperparameter space exploration

To evaluate NNP’s performance, we consider the space spanned by five dimensions:
Network architecture, regularization methods, optimizers, data augmentation, and loss
functions. We sample every dimension using several values (in terms of both method
types and actual values of parameters), aiming to cover typical choices in the literature
(Sec. 2) – when these are available – or choices that we deem suitable for the NNP
context. All these are detailed below.

Evaluating all combinations of all sample values across all five dimensions is
impractical, as it would lead to over 70 thousand of training-and-testing runs. We
decrease this search space by optimizing for every dimension in turn. Early stopping
was used on all experiments, stopping training if the validation loss stops decreasing
for more than 10 epochs. Except when noted otherwise, we used the ADAM optimizer
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and the MSE loss function. As dataset to project, we use MNIST [20], which has 70K
samples of handwritten digits from 0 to 9 represented as 28x28-pixel grayscale images,
flattened to 784-element vectors. We use training-sets of 2K, 5K, 10K and 20K samples
picked randomly from the full dataset and a 10K test-set sample. This way, we test
how both the hyperparameter values and the training-set size affect the quality of
NNP. Note that MNIST was also used by the original NNP method [6], which makes
it easy to compare our results.

We next detail the sampling of our five dimensions, pointing also at sections in the
paper where the respective evaluation is detailed.

Network Architecture (Section 4.5): The NNP architecture in [6], called next
Standard, has three fully-connected hidden layers, with 256, 512, and 256 neurons
respectively. We created variants of this architecture by using a total of 360 (small),
720 (medium) and 1440 (large) neurons, distributed into three different layouts, called
straight (st), wide (wd) and bottleneck (bt). This leads to exploring nine architectures.
For each architecture, we list its number of neurons in the first, middle, and final layer
below:

– Small - straight : 120, 120 and 120 neurons;
– Small - wide: 90, 180 and 90 neurons;
– Small - bottleneck : 150, 60 and 150 neurons;
– Medium - straight : 240, 240 and 240 neurons;
– Medium - wide: 180, 360 and 180 neurons;
– Medium - bottleneck : 300, 120 and 300 neurons;
– Large - straight : 480, 480 and 480 neurons;
– Large - wide: 360, 720 and 360 neurons;
– Large - bottleneck : 600, 240 and 600 neurons.

All above architectures are fully connected, and use ReLU activation, followed by a
2-unit layer which uses the sigmoid activation function to generate the 2D coordinates
of the projected points.

Regularization (Section 4.1): Following Sec. 2, we studied three regularization
methods:

– L1 with λ ∈ {0, 0.001, 0.01, 0.1} (0 denotes no regularization);
– L2 with λ ∈ {0, 0.001, 0.01, 0.1} (0 denotes no regularization);
– Max-norm, with γ ∈ {0, 1, 2, 3}, (0 denotes no max-norm constraint).

Optimizers (Section 4.2): We explored both ADAM and Mini-batch SGD optimiz-
ers with learning rates η ∈ {0.01, 0.001} and momentum ν = 0.9. The batch size used
was 32 samples in both cases.

Data augmentation (Section 4.3): We used two variants data augmentation with
the aim of reducing the diffusion effect present in the original NNP method, as follows:

– Noise Before: The t-SNE projection is known to create clear-separated clusters
even for relatively noisy data. We aim to leverage this by artificially making the
data to project more complex. For this, we add Gaussian noise of zero mean and
standard deviations σ ∈ {0, 0.001, 0.01}, with 0 meaning no added noise, to the
high-dimensional training data. We then project this noised data, added to the
original (clean) data by t-SNE, and train NNP to mimic this projection;
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– Noise After: The idea behind this strategy is to ‘jitter’ the high-dimensional data
while keeping its projection fixed to that of the clean data, and train NNP to
mimic the (clean) projection. This way, we hope to teach NNP that small-scale
jitters in the data should not create diffusion in the projection. For this, add
Gaussian noise (same σ as in the Noise Before strategy) to the data and train
NNP to project the noised data dataset to obtain the clean projection.

Loss functions (Section 4.4): Following Sec. 2, we experimented with four loss
functions: Mean Squared Error (MSE), used by the original NNP; Mean Absolute
Error (MAE); logcosh; and Huber, with α ∈ {1, 5, 10, 20, 30}.

3.2 Quality measurement

We measure the quality of the projections created by NNP by four metrics (see Table 2).
These are well-known in the DR literature [8]. Moreover, these were also used when
assessing the original NNP method.

Trustworthiness T : Gives the fraction of close points in D that are also close in
P (D) [45]. Differently put, a low T indicates that a projection exhibits so-called missing

neighbors [27]. U
(K)
i is the set of points that are among the K nearest neighbors of

point i in 2D but not among the K nearest neighbors of point i in Rn; and r(i, j) is
the rank of the 2D point j in the ordered set of nearest neighbors of i in 2D. We use
K = 7 neighbors, following [44, 27, 8];

Continuity C: Gives the fraction of points in P (D) that are also close in D [45]. A

low C indicates that a projection has so-called false neighbors [27]. V
(K)
i is the set of

points that are among the K nearest neighbors of point i in Rn but not among the K
nearest neighbors in 2D; and r̂(i, j) is the rank of the Rn point j in the ordered set of
nearest neighbors of i in Rn. As for T , we use K = 7 neighbors;

Neighborhood Hit NH: For labeled data, NH tells how homogeneous point-clusters
are in the projection, ranging from perfect separation (NH = 1) to no separation
(NH = 0) [31]. For data which one knows that consists of well-separated sample
clusters, one would want a high NH projection. NH is the number yl

K of the K
nearest neighbors of a point y ∈ P (D), denoted by yK , that have the same label as y,
averaged over P (D). As above, we use K = 7 neighbors;

Shepard diagram correlation R: Shepard diagrams are scatterplots of Euclidean
distances (in nD vs 2D) between all point-pairs [14]. Diagrams that are close to the
main diagonal indicate that the projection preserves distances well. Following [8], we
measure the quality implied by a Shepard diagram by computing the Spearman ρ
rank correlation of the respective 2D scatterplot, with R = 1 telling a perfect distance
correlation.

4 NNP Evaluation Results

We next present the results of the NNP hyperparameter-space exploration performed
along the five dimensions described in Sec. 3.
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Table 2. Quality metrics. Right column gives metric ranges, with optimal values in bold.

Metric Definition Range

T 1− 2
NK(2n−3K−1)

∑N
i=1

∑
j∈U(K)

i

(r(i, j)−K) [0,1]

C 1− 2
NK(2n−3K−1)

∑N
i=1

∑
j∈V (K)

i

(r̂(i, j)−K) [0,1]

NH 1
N

∑
y∈P (D)

yl
k

yk
[0,1]

R ρ(‖xi − xj‖, ‖P (xi)− P (xj)‖), 1 ≤ i ≤ N, i 6= j [0,1]

Table 3. Effect of regularization. Rows show metrics for t-SNE (GT row) vs NN projections
using different training-set sizes. Bold shows values closest to GT. (table from [7])

a) L1 regularization
Model λ NH T C R # epochs Time (s)
GT 0.929 0.990 0.976 0.277

2K

0 0.705 0.843 0.957 0.443 50 6.20
0.001 0.677 0.827 0.948 0.439 58 7.14
0.01 0.660 0.815 0.945 0.438 94 10.93
0.1 0.632 0.806 0.943 0.454 82 9.98

5K

0 0.738 0.871 0.962 0.423 26 7.22
0.001 0.692 0.845 0.953 0.436 38 10.05
0.01 0.670 0.835 0.947 0.427 68 18.29
0.1 0.599 0.815 0.945 0.459 53 14.58

10K

0 0.834 0.902 0.968 0.337 45 22.32
0.001 0.753 0.852 0.958 0.348 31 16.09
0.01 0.722 0.833 0.951 0.352 39 19.12
0.1 0.665 0.811 0.947 0.345 61 30.67

20K

0 0.885 0.922 0.967 0.341 49 47.28
0.001 0.816 0.883 0.960 0.364 30 29.35
0.01 0.743 0.842 0.954 0.366 28 26.89
0.1 0.707 0.822 0.946 0.364 25 24.17

b) L2 regularization
NH T C R # epochs Time (s)
0.929 0.990 0.976 0.277
0.695 0.839 0.956 0.437 35 4.61
0.711 0.847 0.958 0.432 29 4.27
0.684 0.834 0.954 0.433 42 5.57
0.683 0.830 0.952 0.428 68 8.54
0.767 0.880 0.963 0.422 53 14.33
0.742 0.875 0.963 0.419 28 7.71
0.733 0.866 0.959 0.416 55 15.24
0.709 0.860 0.958 0.429 45 12.51
0.833 0.899 0.967 0.342 43 20.93
0.821 0.899 0.966 0.340 55 27.88
0.798 0.880 0.963 0.337 34 17.37
0.773 0.865 0.961 0.336 36 18.48
0.885 0.922 0.967 0.341 46 43.49
0.870 0.915 0.966 0.343 34 33.06
0.853 0.902 0.963 0.344 40 38.05
0.826 0.883 0.960 0.339 38 37.87

a) |T|=2K b) |T|=20K

λ
=

0
λ

=
0
.0

0
1

λ
=

0
.0

1
λ

=
0
.1

Training (t-SNE) Training (NN) Test (NN) Training (t-SNE) Training (NN) Test (NN)

Fig. 3. L1 regularization: Effect of λ for different training-set sizes. Compare the ground
truth (training-set, projected by t-SNE) with the NN results on the training-set, respectively
test-set. (figure from [7])

4.1 Regularization

We first focus on studying the L1 and L2 regularization methods. For both of them,
used independently, we use increasing amounts (controlled by λ), aiming to see whether
higher regularization, which makes learning harder, can improve the quality of the
inferred projections.
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a) |T|=2K d) |T|=20K

λ
=

0
λ

=
0
.0

0
1

λ
=

0
.0

1
λ

=
0
.1

Training (t-SNE) Training (NN) Test (NN) Training (t-SNE) Training (NN) Test (NN)

Fig. 4. L2 regularization: Effect of λ for different training-set sizes. Compare the ground
truth (training-set, projected by t-SNE) with the NN results on the training-set, respectively
test-set. (figure from [7])

Figures 3 and 4 show the resulting projections for the training set and test set.
Given the limited space, we only show here the projections for the 2K and 20K
training-set sizes – the ones for 5K and 10K training-set sizes are very similar. Here
and next, ‘Training (t-SNE)’ shows the ground-truth (GT) projection computed by
t-SNE on the training set, which is the projection whose quality we want to ultimately
achieve. We see that, as λ increases, the results get worse (fuzzier, farther from the
crisp separation visible in the GT projection). Separately, we see that L2 regularization
produces projections which are closer to GT than those produced using L1 for the
same λ values. Table 3 confirms these visual insights by showing the values of the four
quality metrics (Sec. 3.2) for the L1 and L2 experiments, for all four training-set sizes
(leftmost column). As noted above, L2 regularization yields NH, T , and C values
closer to the GT ones than L1 regularization. Separately, Table 3 shows that NNP
yields higher Shepard correlation R values than GT, for all λ values (slightly higher
for L1 than L2). In other words, NNP preserves the nD distances in the 2D projection
better than t-SNE projection (see definition of R, Tab. 2). This indirectly explains
the diffusion we see in NNP: Indeed, since NNP aims to preserve distances, it cannot
rearrange points as freely as t-SNE does (which only aims to preserve neighborhoods),
thereby yielding a less crisp cluster separation than t-SNE.

The rightmost two columns in Tables 3(a,b) show the training effort until con-
vergence (number epochs and seconds). Convergence is reached in under 70 epochs,
regardless of the regularization type (L1 or L2) or strength λ. L1 and L2 regularization
require similar effort, with L2 being slightly faster than L1 for smaller training sets.
This confirms the initial findings from [6] that NNP converges well, and additionally
tells that this happens regardless of regularization.

We next study the max-norm regularization. Figure 5 shows that the projection
quality does not strongly depend on the max-norm constraint γ. The metrics in
Tab. 4(a) confirm this. We also see that max-norm yields higher projection quality
values (closer to GT) than L1 and L2. Effort-wise, max-norm regularization is very sim-



Improving Deep Learning Projections by Neighborhood Analysis 11

ilar to L1 and L2 (compare rightmost columns in Tab. 4 (a) with those in Tab. 3(a,b)).
Putting all above results together, we conclude that regularization does not bring a
significant benefit to NNP, with max-norm being only slightly better than L1 and L2.

Table 4. Effect of max-norm (a) and optimizers (b). Metrics shown for t-SNE (GT row)
vs NN projections using different training-set sizes. Bold shows values closest to GT. (table
from [7])

a) Max-norm regularization

Model γ NH T C R # epochs Time (s)
GT 0.929 0.990 0.976 0.277

2K

0 0.701 0.839 0.956 0.443 44 5.45
1 0.692 0.836 0.956 0.431 32 4.47
2 0.699 0.842 0.957 0.441 45 5.80
3 0.698 0.837 0.956 0.441 31 4.47

5K

0 0.759 0.881 0.964 0.417 51 13.34
1 0.756 0.880 0.964 0.421 40 10.70
2 0.740 0.866 0.961 0.420 24 7.05
3 0.755 0.879 0.963 0.423 48 13.23

10K

0 0.824 0.898 0.966 0.337 37 18.14
1 0.840 0.904 0.967 0.338 31 15.43
2 0.829 0.903 0.967 0.340 37 18.67
3 0.837 0.905 0.968 0.338 53 26.63

20K

0 0.886 0.923 0.967 0.342 56 52.65
1 0.870 0.918 0.967 0.340 26 25.22
2 0.881 0.917 0.967 0.341 30 28.88
3 0.879 0.920 0.967 0.345 34 34.11

b) Optimizers

Model Optimizer (η) NH T C R # epochs Time (s)
GT 0.929 0.990 0.976 0.277

2K
ADAM 0.696 0.841 0.956 0.447 30 3.72

SGD (0.01) 0.625 0.791 0.938 0.464 97 8.32
SGD (0.001) 0.610 0.787 0.938 0.464 455 36.56

5K
ADAM 0.733 0.861 0.960 0.421 19 5.27

SGD (0.01) 0.655 0.817 0.945 0.439 86 16.90
SGD (0.001) 0.641 0.808 0.942 0.443 402 77.17

10K
ADAM 0.842 0.905 0.968 0.343 56 26.51

SGD (0.01) 0.707 0.821 0.949 0.362 75 28.55
SGD (0.001) 0.690 0.812 0.948 0.360 392 147.60

20K
ADAM 0.882 0.920 0.968 0.339 43 40.77

SGD (0.01) 0.769 0.838 0.952 0.356 129 94.30
SGD (0.001) 0.754 0.836 0.952 0.370 423 309.19

a) |T|=2K d) |T|=20K
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Fig. 5. Max-norm: Effect of γ for different training-set sizes. Compare the ground truth
(training-set, projected by t-SNE) with the NN results on the training-set, respectively test-set.
(figure from [7])

4.2 Optimizer

Following Sec. 3, we trained NNP using the ADAM optimizer with its default settings,
and also with Mini-batch SGD with learning rates η ∈ {0.01, 0.001}. Figure 6 shows
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Fig. 6. Optimizer: Effects of different settings (ADAM, SGD with η ∈ {0.001, 0.01}) for
different training-set sizes. Compare the ground truth (training-set, projected by t-SNE) with
the NN results on the training-set, respectively test-set. (figure from [7])

that ADAM produces results with far less diffusion than SGD. Table 4(b) confirms
this, as ADAM scores better than SGD for all four quality metrics. We also see here
that ADAM converges much faster than SGD. Since, additionally, ADAM works well
with its default parameters, we conclude that this is the optimizer of choice for NNP.

4.3 Data augmentation

As outlined in Sec. 3.1, we use two data augmentation strategies to add noise in
the attempt of forcing NNP to learn to reduce diffusion in the projections it creates.
Figure 7 shows that the Noise before and Noise after strategies yield similar results,
which are also close to GT. Table 5(a,b) confirms this, and shows that the Noise after
strategy yields slightly higher quality metrics on average than Noise before. Comparing
these quality values with those obtained by varying regularization techniques and
optimizers (Tables 3-4), we see that Noise after slightly improves the projection quality.
This can be explained by the ‘jitter’ effect of Noise after, which effectively teaches
NNP that points which are at slightly different locations (in nD) should project to
the same location (in 2D, given by the GT projection).

Table 5. Effect of data augmentation. Rows show metrics for t-SNE (GT row)) vs NNP
(other rows). Right two columns in each table show training effort (epochs and time). Bold
shows values closest to GT. (table from [7])

a) Noise after strategy

Model Noise σ NH T C R # epochs Time (s)
GT 0.929 0.990 0.976 0.277

2K
0 0.717 0.846 0.958 0.448 31 8.84

0.001 0.726 0.852 0.960 0.430 37 10.57
0.01 0.729 0.856 0.960 0.433 54 14.52

5K
0 0.783 0.892 0.966 0.401 43 23.28

0.001 0.780 0.895 0.966 0.408 52 29.44
0.01 0.783 0.892 0.966 0.401 47 26.84

10K
0 0.849 0.909 0.968 0.339 44 44.06

0.001 0.844 0.909 0.968 0.337 36 37.76
0.01 0.848 0.910 0.968 0.333 59 60.31

20K
0 0.887 0.924 0.966 0.340 55 105.87

0.001 0.888 0.924 0.967 0.336 46 88.09
0.01 0.885 0.925 0.967 0.339 51 97.06

b) Noise before strategy

NH T C R # epochs Time (s)
0.929 0.990 0.976 0.277
0.712 0.842 0.957 0.446 23 7.17
0.679 0.842 0.959 0.422 33 9.57
0.682 0.833 0.956 0.421 20 6.86
0.785 0.894 0.966 0.401 62 33.34
0.793 0.884 0.966 0.364 31 17.91
0.802 0.888 0.967 0.366 49 28.68
0.849 0.908 0.968 0.336 36 35.61
0.798 0.901 0.966 0.304 37 39.58
0.802 0.904 0.966 0.302 53 55.58
0.888 0.925 0.967 0.337 40 76.08
0.865 0.920 0.967 0.385 42 81.55
0.869 0.920 0.967 0.392 41 80.52
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Fig. 7. Noise after and noise before data augmentation: Effect of noise strength σ ∈
{0, 0.001, 0.01}. Compare the ground truth (training-set, projected by t-SNE) with the NN
results on the training-set, respectively test-set. (figure from [7])

4.4 Loss function

Figure 8 shows the comparative effect of the four tested loss functions. Among these,
MAE creates slightly less diffusion than the other ones, especially for small training
sets. Table 6 (a) confirms this: MAE yields an increase of NH from roughly 0.70
(when using the other loss functions) to roughly 0.74 for the smallest test-set of 2K
samples; for the largest test-set of 20K samples, the NH increases from roughly 0.87 to
0.88. Also, MAE yields the best quality metrics for all tested configurations. However,
Table 6 (a) also shows that the training effort for MAE is higher than for the other loss
functions. As the training set increases, the training-effort difference between MAE
and the other loss functions decreases. Hence, for a real-world configuration, MAE is
not really more costly than the alternatives. Given all above, we conclude that MAE
is the best loss function for NNP.

4.5 Network Architecture

Our final evaluation considers using different NN architectures. Figure 9 shows that
quality increases with the architecture size. This is not too surprising, since larger
architectures allow more freedom to learn the desired projection patterns, and in
the same time they are not too large to require more training data. Separately, we
see that the Large - bottleneck architecture produces visual clusters that are slightly
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Table 6. Effect of different loss functions (a) and architectures (b). Rows show metrics
for t-SNE (GT row) vs NN projections using different training-set sizes. Bold shows values
closest to GT. (table from [7])

a) Loss Functions

Model Loss (α) NH T C R # epochs Time (s)
GT 0.929 0.990 0.976 0.277

2K

Huber (1.0) 0.706 0.839 0.956 0.445 34 5.94
Huber (5.0) 0.687 0.827 0.953 0.447 16 3.99
Huber (10.0) 0.704 0.839 0.957 0.431 45 7.53
Huber (20.0) 0.692 0.835 0.956 0.442 32 5.88
Huber (30.0) 0.695 0.836 0.956 0.433 30 5.98

logcosh 0.704 0.839 0.957 0.434 33 6.37
MAE 0.742 0.866 0.962 0.423 78 11.05
MSE 0.704 0.842 0.957 0.442 40 6.86

5K

Huber (1.0) 0.762 0.883 0.964 0.420 50 14.50
Huber (5.0) 0.745 0.871 0.963 0.426 26 8.34
Huber (10.0) 0.769 0.886 0.965 0.416 69 19.79
Huber (20.0) 0.763 0.884 0.965 0.420 62 18.18
Huber (30.0) 0.768 0.883 0.965 0.420 55 16.16

logcosh 0.768 0.883 0.965 0.425 54 16.03
MAE 0.781 0.893 0.965 0.418 57 16.56
MSE 0.753 0.874 0.963 0.428 30 9.67

10K

Huber (1.0) 0.831 0.898 0.968 0.338 38 19.56
Huber (5.0) 0.833 0.902 0.968 0.342 40 20.64
Huber (10.0) 0.837 0.906 0.969 0.344 52 26.98
Huber (20.0) 0.831 0.900 0.968 0.344 38 19.97
Huber (30.0) 0.831 0.902 0.968 0.348 36 19.55

logcosh 0.818 0.893 0.967 0.347 25 14.00
MAE 0.848 0.912 0.968 0.333 58 29.55
MSE 0.839 0.906 0.968 0.339 65 32.42

20K

Huber (1.0) 0.856 0.907 0.967 0.353 20 19.57
Huber (5.0) 0.881 0.918 0.967 0.344 44 41.69
Huber (10.0) 0.882 0.921 0.968 0.344 36 34.48
Huber (20.0) 0.881 0.920 0.967 0.342 45 43.96
Huber (30.0) 0.877 0.915 0.967 0.341 29 28.71

logcosh 0.884 0.919 0.967 0.335 35 35.46
MAE 0.887 0.927 0.966 0.339 47 44.55
MSE 0.871 0.914 0.967 0.341 23 21.68

b) Network Architecture

Model NN Arch NH T C R # epochs Time (s)
GT 0.929 0.990 0.976 0.277 0 0

2K

small st 0.680 0.827 0.951 0.437 30 5.11
small bt 0.670 0.819 0.950 0.453 18 3.85
small wd 0.672 0.820 0.949 0.463 17 3.82

medium st 0.683 0.827 0.952 0.441 17 3.83
medium bt 0.690 0.833 0.955 0.456 25 4.96
medium wd 0.702 0.838 0.956 0.438 44 7.17

large st 0.692 0.835 0.956 0.447 19 4.66
large bt 0.720 0.852 0.961 0.430 50 8.95
large wd 0.713 0.847 0.959 0.434 45 8.30

5K

small st 0.744 0.875 0.962 0.414 66 18.31
small bt 0.719 0.855 0.958 0.423 17 5.78
small wd 0.726 0.864 0.959 0.424 40 12.21

medium st 0.761 0.879 0.963 0.418 42 12.67
medium bt 0.742 0.872 0.962 0.426 33 10.54
medium wd 0.740 0.873 0.963 0.419 40 12.53

large st 0.752 0.874 0.964 0.408 29 10.95
large bt 0.761 0.880 0.964 0.420 34 12.02
large wd 0.755 0.878 0.964 0.423 38 13.87

10K

small st 0.818 0.893 0.966 0.338 43 21.02
small bt 0.820 0.893 0.966 0.330 54 27.35
small wd 0.794 0.879 0.963 0.330 28 15.35

medium st 0.828 0.900 0.968 0.343 45 22.74
medium bt 0.820 0.895 0.967 0.343 31 16.68
medium wd 0.825 0.899 0.967 0.338 49 25.74

large st 0.831 0.902 0.968 0.338 32 20.34
large bt 0.836 0.905 0.969 0.341 36 21.97
large wd 0.830 0.900 0.968 0.338 30 19.31

20K

small st 0.865 0.910 0.965 0.335 30 30.81
small bt 0.838 0.891 0.965 0.353 16 15.74
small wd 0.865 0.910 0.965 0.345 37 34.66

medium st 0.882 0.922 0.967 0.339 45 41.97
medium bt 0.882 0.921 0.967 0.340 45 41.35
medium wd 0.874 0.917 0.967 0.346 34 32.92

large st 0.886 0.924 0.967 0.340 45 50.74
large bt 0.890 0.925 0.967 0.342 37 42.48
large wd 0.878 0.917 0.967 0.345 29 33.03

sharper than the ones created by the other eight studied architectures. The quality
metrics in Table 6 (b) confirm this: Large - bottleneck has a NH about 0.04 higher
for all training-set sizes. Separately, we see that, while this architecture is larger than
the others, its training effort is quite similar to the others. Hence, we choose this
architecture as our best one for NNP.

It is interesting to consider why the bottleneck architecture performs better than
the others. At a high level, this architecture is reminiscent of the bottleneck structure
used by autoencoder (AE) networks, which, as discussed in Sec. 2, are also used
for dimensionality reduction. It is possible that NNP’s bottleneck layer acts in a
conceptually similar way to the AE one, that is, extracts latent features from the data,
thereby helping the final layer(s) to create the 2D projection. However, NNP and AE
are fundamentally different: While AE is driven purely by latent feature extraction,
NNP is driven purely by the aim of mimicking a given 2D projection, constructed by
completely different mechanisms (e.g., t-SNE). Studying how bottleneck architectures
could further improve NNP is a potential future work direction.

5 Insights from Evaluation

We next summarize the insights from the evaluation of NNP along the five dimensions
discussed in Sec. 3.

Optimal settings: We obtain the best quality (that is, closest to the ground-truth
t-SNE projection following our four considered quality metrics) with no regularization,
ADAM optimizer, Noise after data augmentation, MAE loss function, and the Large -
Bottleneck architecture. The only free parameter in this configuration is σ – the noise
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Fig. 8. Loss: Effect of different loss functions. Compare the ground truth (training-set,
projected by t-SNE) with the NNP results on the training-set, respectively test-set. (figure
from [7])

standard deviation for the data augmentation step. As Tab. 5a shows, σ affects the
projection quality only very little, so we can in practice fix this parameter. We do this
to a default of σ = 0.01.

As explained at the beginning of Sec. 3, we evaluated the five dimensions of NNP’s
hyperparameter choices independently, to limit the number of tested combinations,
and found the above mentioned optimal settings. It is, at this point, important to test
that their combination still yields good results. For this, we did a final experiment as
follows. We used both NNP’s original Standard architecture and the Large - Bottle-
neck architecture, both using the optimal settings, to better assess the effect of the
architecture change. This is motivated by the fact that the architecture change is the
largest deviation from the original NNP parameter values presented in [6]. Table 7
shows that Large - Bottleneck performs better than Standard on practically all metrics
and for all training-set sizes. This improvement can be seen even when compared to
the best results of each individual test, especially for smaller training-set sizes. This
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Fig. 9. Arch: Effect of different architectures. Compare the ground truth (training-set,
projected by t-SNE) with the NNP results on the training-set, respectively test-set. (figure
from [7])

improvement is also visible in the figure below Table 7 in the form of less fuzziness
and better separated clusters in the images produced with Large - Bottleneck (bottom
row) as compared to the ones produced by Standard (top row).

Quality: We gauged the quality of NNP by measuring four projection quality metrics:
neighborhood hit, trustworthiness, continuity, and Shepard diagram correlation. The
optimal hyperparameter setting presented in the beginning of Sec. 5 yields quality
values that are closer to the ground-truth (t-SNE) values than the results presented
by the original NNP in [6]. Separately, we see that, as the training-set increases
(from 2K to 20K samples), the NNP quality consistently approaches the ground-truth
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Table 7. Effect of using optimal settings. Top: Metrics shown for t-SNE (GT row) vs
NN projections using different training-set sizes. Bold shows values closest to GT. Bottom:
Optimal settings for Std and Large - Bottleneck NN architectures. Compare the ground truth
(training-set, projected by t-SNE) with the NNP results on the training-set, respectively
test-set. (table from [7])

Model NN Arch NH T C R # epochs Time (s)
GT 0.929 0.990 0.976 0.277 0 0

2K
std 0.753 0.871 0.963 0.433 73 14.58

large bt 0.773 0.878 0.964 0.426 82 18.44

5K
std 0.794 0.904 0.964 0.411 129 60.26

large bt 0.813 0.906 0.966 0.411 70 37.19

10K
std 0.850 0.916 0.967 0.334 113 104.39

large bt 0.850 0.913 0.966 0.331 108 112.53

20K
std 0.884 0.923 0.964 0.335 121 215.66

large bt 0.891 0.929 0.964 0.335 101 205.07

a) |T|=2K b) |T|=20K

quality – see Tables 3-6. NNP quality is lower than GT quality, but the difference is
under 5% on average for the 20K point training-set. This difference, however small,
is still visible in the projections – visual examination of NNP shows still present
diffusion as compared to the GT (t-SNE). While this diffusion decreases with training-
set size, it is still there even for the optimal parameter settings and 20K training
samples – compare e.g. the inference on unseen data in Fig. 7(b), Test (NN), with
Fig. 7(b), Training (t-SNE). To decrease this diffusion further, something more drastic
than changing hyperparameters is needed. We present such an alternative next in Sec. 6.

Stability: Our experiments show that NNP is stable with respect to training set
sizes and all studied hyperparameter variations. Figures 3-9 show that NNP creates
practically clusters with the same shape and relative positions in the test projections
(NNP run on unseen data) as the ground-truth t-SNE projections create, for all tested
configurations – that is, excluding the diffusion effect already discussed above. The
stability of NNP with respect to changes in the training data, hyperparameter settings,
and noise added to data is in stark contrast with the instability of the t-SNE projection
technique with respect to all these three factors, and is explained by the deterministic
nature of NNP’s underlying neural network. This stability is of important practical
value in many applications that require predictability and repeatability when creating
a projection from data [47].

6 Improving NNP by Neighborhood Analysis

Following our analysis of the NNP evaluation (Sec. 5, we see that NNP scores very
well on stability and quality consistency with respect to hyperparameter values. In
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the same time, the quality is still on average 5% lower than that of the ground-truth
(t-SNE) projection. This is visible in the still higher diffusion of NNP as compared to
t-SNE. Our experiments show that hyperparameter settings, including regularization,
data augmentation, optimizer, loss function and network architecture cannot fully
eliminate diffusion, although by using MAE as loss function, quality metrics increased
in value.

The strong visual separation of data clusters produced by t-SNE is likely one of the
most praised feature of this method. t-SNE achieves this by essentially considering the
preservation of neighborhoods rather than of point-pair distances. We next leverage
this intuition in the context of NNP’s deep learning approach to projections.

Consider the NNP approach, where each training sample x is fed into the network
with its corresponding ground-truth (t-SNE) coordinate P (x) as a training label. We
replace each such training pair (x, P (x)) with a pair of neighborhoods (ν(x), P (ν(x)).
Here, ν(x) are the K nearest neighbors of x in D; and P (ν(x)) are the ground-
truth projections of these neighbors. We compute neighborhoods ν using both a fast
approximate nearest-neighbor search [26] and an exact, slower, brute-force search, to
check whether the approximate search has any negative impact on quality. We call
our new model K-nearest-neighbors NNP, or KNNP.

During inference, we compute nearest neighbors over points from the training set.
There are two reasons for this: (1) The training set is already learned (known) by the
network; (2) The training set is already indexed for fast search [26].

We tune the hyperparameters of the KNNP model following the results in Sec. 5.
We use MAE as our loss function, which is averaged over the K neighbors as each
one is treated as a single sample or label. We chose ADAM as our optimizer. The
architecture of the network follows the one in Sec. 3.1 aside from the input and output
layers which are scaled so that each input layer containing K nD points outputs a
single 2D point.

7 KNNP Evaluation

We next compare the KNNP method introduced in Sec. 6 with the original NNP
method using the optimized hyperparameter settings from Sec. 4 and with the ground-
truth t-SNE projection. For this, we use the four quality metrics in Sec. 3.2. In addition
to the MNIST dataset (Sec. 3.1), we use three more datasets to the comparison, namely:

Fashion MNIST [49]: 70K observations of 10 types of pieces of clothing, rendered
as 28x28-pixel grayscale images, flattened to 784-element vectors;

Dogs vs Cats [4]: 25K images of varying sizes divided into two classes (cats, dogs).
We used the Inception V3 [41] Convolutional Neural Network (CNN) pre-trained on
the ImageNet data set [3] to extract features of those images, yielding 2048-element
vectors for each image;

IMDB Movie Review [22]: 25K movie reviews from which 700 features were ex-
tracted using TF-IDF [38], a standard method in text processing.

We next show the performance of KNNP vs NNP and t-SNE, for training data
(Sec. 7.1) and test data (Sec. 7.2). We also show how quality depends on the training
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set size (Sec. 7.3) and evaluate KNNP’s speed vs other techniques (Sec. 7.4). Finally,
we show actual projection plots computed by KNNP, NNP, and t-SNE (Sec. 7.5). Due
to space restrictions, we present only a subset of our results.

7.1 Quality on training data

Figure 10 compares the performance of KNNP, the original method (NNP), and the
ground truth (GT, t-SNE) across four quality metrics. Red, yellow, and green indicate
that the respective method has a quality lower than, similar to, respectively higher
than GT. We see that, for K = 5 neighbors, KNNP performs slightly better than NNP,
in virtually all cases and for all quality metrics. We also see that quality does not vary
much with architecture style or size. Hence, when running on a tight computational
budget (where one cannot train or test large architectures), KNNP has a small edge
over NNP.

7.2 Quality on testing data

So far, we compared both deep learning projections (KNNP and NNP) against each
other and against the GT (t-SNE). For testing data, we cannot do the latter comparison,
since t-SNE is not a deterministic method, and does not have an out-of-sample
capability. Hence, for testing data, we next compare KNNP and NNP – trained on
the same data, and tested on the same data – against each other only.

Figure 11 shows that KNNP gets the largest quality boost vs NNP for K = 5
neighbors again. As in Fig. 10, the style and size of architecture do not influence the
results. Overall, KNNP yields better quality than NNP. However, which metric (of
the four evaluated) is most improved depends on the dataset. This is expected, since
neither NNP nor KNNP do explicitly optimize for a given quality metric.

7.3 Quality as function of training set size

Figure 12 shows how the quality of KNNP compares to that of NNP for different
training-set sizes. We see that the added-value of KNNP vs NNP is higher for fewer
training samples, particularly so for K = 5 neighbors. Hence, when the user can only
use a small training-set, the relative added-value of KNNP vs NNP increases.

7.4 Computational scalability

We next compare the speed of KNNP, NNP, and other well-known techniques for up to
1M test samples. All methods were run on a 4-core Intel E3-1240v6 at 3.7 GHz with 64
GB RAM and an NVidia GeForce GTX 1080 Ti GPU with 11 GB VRAM. Figure 13a
shows the projection time (log scale) as a function of the dataset size for parametric
techniques. We see that all techniques are linear with dataset size. NNP is the fastest
of all compared techniques, with KNNP using approximate nearest-neighbor (ANN)
search coming close. Figure 13b adds non-parametric techniques to the comparison,
specifically MDS [43], t-SNE, LSP [31], and LAMP [14]. We see the same trend as
before. Also, we see that KNNP is faster than all non-parametric techniques. Separately,
Figure 14 shows training time for the parametric techniques for up to 1M training
samples. Beyond 250K samples, UMAP failed to finish training. NNP and KNNP
with ANN search show basically the same speed, being both faster than KNNP with
brute-force search.
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Fig. 10. Comparison of the difference in four quality metrics NH, T , C, and R between
t-SNE and NNP, respectively t-SNE and KNNP. The comparison is done on the MNIST and
Dogs vs Cats datasets, for five K values, using both exact and approximate search, for three
architecture styles (wide, straight, bottleneck), each having three sizes (small, medium, large).
Red colors indicate cases which are farthest below t-SNE’s quality.

7.5 Projection scatterplots

Figure 15 shows samples of scatterplots created with t-SNE, NNP, and KNNP with
ANN and brute force search. We see that KNN creates scatterplots which are less
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Fig. 11. Comparison of quality metrics of KNNP vs NNP for the same datasets, architectures,
and parameters as in Fig. 10. Green indicates cases where KNNP performs better than NNP.

fuzzy than NNP, being very close to the ones that t-SNE creates. For test data, note
that both NNP and KNNP place point clusters at different locations than t-SNE. This
is expected since, as explained, t-SNE is non-parametric. We also see that KNNP
delivers visually identical plots for approximate vs exact search. Hence, we can use
the faster approximate (ANN) search without fear of quality loss.

8 Discussion and conclusions

In this paper, we presented an in-depth study aimed at measuring and improving the
quality of dimensionality reduction (DR) using deep learning supervised by existing DR
techniques. We first explored the design space of a recent deep learning method for DR
(NNP, [6]) along six dimensions: training-set size, network architecture, regularization,
optimizers, data augmentation, and loss functions. We sampled each dimension using
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Fig. 15. Projections created by t-SNE, KNN, and KNNP (approximate and exact search
variants) on MNIST and Dogs vs Cats datasets during training and testing (inference).
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several method types and, where applicable, method parameter values, and compared
the resulting NNP projections with the ground-truth (created by t-SNE) quantitatively,
using four quality metrics, and also qualitatively by visual inspection of the respective
scatterplots. Our exploration delivered an optimal hyperparameter setting that brings
NNP closer to the quality of the t-SNE ground truth. Separately, we showed that NNP
is stable with respect to all parameter settings, training-set size, and noise added to
the input data.

Secondly, we further improved NNP quality by proposing KNNP, a refinement
of the method that learns by projecting entire neighborhoods rather than individual
samples. While improving quality, KNNP keeps the same attractive features of NNP,
namely computational scalability, out-of-sample capability, and robustness to parameter
settings. We also inferred optimal parameter settings for KNNP (K = 5 nearest
neighbors found by approximate fast search) apart from the already established
parameters it inherits from NNP discussed above.

Our results complement recent evaluations [6, 7] and show that supervised deep
learning is a practical, robust, simple-to-set-up, and high-quality alternative to t-SNE
for dimensionality reduction in data visualization. More broadly, we believe that our
methodology can be directly used to reach the same goals (optimal settings and proof
of stability) for any projection technique under study, whether this technique is using
deep learning or not. We plan to extend these results in several directions. First, we
aim to generalize the (K)NNP approach to work without the need of supervision
given by a ground-truth projection. Secondly, we aim to extend (K)NNP to handle
dynamic (time-dependent) high-dimensional datasets while keeping its aforementioned
attractive points concerning stability, computational scalability, and ease of use.
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5. Engel, D., Hüttenberger, L., Hamann, B.: A survey of dimension reduction methods for
high-dimensional data analysis and visualization. In: Proc. IRTG Workshop. vol. 27, pp.
135–149. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2012)

6. Espadoto, M., Hirata, N., Telea, A.: Deep learning multidimensional projections. J.
Information Visualization (2020), doi.org/10.1177/1473871620909485

7. Espadoto, M., Hirata, N.S.T., Falcão, A.X., Telea, A.C.: Improving neural network-
based multidimensional projections. In: Proceedings of the 15th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 3: IVAPP,. pp. 29–41. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0008877200290041

8. Espadoto, M., Martins, R.M., Kerren, A., Hirata, N.S., Telea, A.C.: Towards
a quantitative survey of dimension reduction techniques. IEEE TVCG (2019),
doi:10.1109/TVCG.2019.2944182

9. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Automated Machine Learning.
Springer (2019)

10. Goldberger, J., Roweis, S., Hinton, G.E., Salakhutdinov, R.R.: Neighbourhood components
analysis. NIPS 17, 513–520 (2005)



Improving Deep Learning Projections by Neighborhood Analysis 25

11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)

12. Hoffman, P., Grinstein, G.: A survey of visualizations for high-dimensional data mining.
In: Information Visualization in Data Mining and Knowledge Discovery. pp. 47–82.
Morgan Kaufmann (2002)

13. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.: Efficient hyperparameter optimization
of deep learning algorithms using deterministic RBF surrogates. In: Proc. AAAI (2017)

14. Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine
multidimensional projection. IEEE TVCG 17(12), 2563–2571 (2011)

15. Jolliffe, I.T.: Principal component analysis and factor analysis. In: Principal Component
Analysis, pp. 115–128. Springer (1986)

16. Kehrer, J., Hauser, H.: Visualization and visual analysis of multifaceted scientific data:
A survey. IEEE TVCG 19(3), 495–513 (2013)

17. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)
18. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114

(2013)
19. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: NIPS. pp.

950–957 (1992)
20. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. AT&T Labs

http://yann.lecun.com/exdb/mnist 2 (2010)
21. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional

data: Advances in the past decade. IEEE TVCG 23(3), 1249–1268 (2015)
22. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word

vectors for sentiment analysis. In: Proc. of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies. pp. 142–150. Association
for Computational Linguistics (2011)

23. van der Maaten, L.: Learning a parametric embedding by preserving local structure. In:
Proc. AI-STATS (2009)

24. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. JMLR 15, 3221–3245
(2014)

25. van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. JMLR 9, 2579–2605
(2008)

26. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs (2016)

27. Martins, R., Minghim, R., Telea, A.C.: Explaining neighborhood preservation for multi-
dimensional projections. In: Proc. CGVC. pp. 121–128. Eurographics (2015)

28. McInnes, L., Healy, J.: UMAP: Uniform manifold approximation and projection for
dimension reduction. arXiv:1802.03426 (2018)

29. Nonato, L., Aupetit, M.: Multidimensional projection for visual analytics: Linking tech-
niques with distortions, tasks, and layout enrichment. IEEE TVCG (2018)

30. Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. J
Royal Stat Soc: Series B 69(4), 659–677 (2007)

31. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: A
fast high-precision multidimensional projection technique and its application to document
mapping. IEEE TVCG 14(3), 564–575 (2008)

32. Peason, K.: On lines and planes of closest fit to systems of point in space. Philosophical
Magazine 2(11), 559–572 (1901)
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