
Scalable Visual Exploration of 3D Shape
Databases via Feature Synthesis

and Selection

Xingyu Chen1,2 , Guangping Zeng1 , Jǐŕı Kosinka2 ,

and Alexandru Telea3(B)

1 University of Science and Technology Beijing, Beijing, China
2 University of Groningen, Groningen, The Netherlands

3 Utrecht University, Utrecht, The Netherlands
a.c.telea@uu.nl

Abstract. We present a set of techniques to address the problem of
scalable creation of visual overview representations of large 3D shape
databases based on dimensionality reduction of feature vectors extracted
from shape descriptions. We address the problem of feature extraction by
exploring both combinations of hand-engineered geometric features and
using the latent feature vectors generated by a deep learning classification
method, and discuss the comparative advantages of both approaches. Sep-
arately, we address the problem of generating insightful 2D projections of
these feature vectors that are able to separate well different groups of sim-
ilar shapes by two approaches. First, we create quality projections by both
automatic search in the space of feature combinations and, alternatively,
by leveraging human insight to improve projections by iterative feature
selection. Secondly, we use deep learning to automatically construct pro-
jections from the extracted features. We show that our three variations of
deep learning, which jointly treat feature extraction, selection, and projec-
tion, allow efficient creation of high-quality visual overviews of large shape
collections, require minimal user intervention, and are easy to implement.
We demonstrate our approach on several real-world 3D shape databases.

Keywords: Content-based shape retrieval · Multidimensional
projections · Feature selection · Deep learning · Visual analytics

1 Introduction

Recent advances in modeling, authoring, and scanning tools for 3D data have led
to wealth of 3D models available to their interested users. As a consequence, this
has led to the creation and deployment of specialized shape databases [9,26] for
managing the available content. A key challenge of these databases is to allow
users to easily browse and search them to find models of interest.

As such shape databases grow in size and variability of the stored shapes,
so does the users’ effort required to explore them [33]. Typical techniques that
support exploration include keyword based search, browsing the database along
predefined hierarchies or taxonomies, and content-based shape retrieval (CBSR).

c© Springer Nature Switzerland AG 2022
K. Bouatouch et al. (Eds.): VISIGRAPP 2020, CCIS 1474, pp. 153–182, 2022.
https://doi.org/10.1007/978-3-030-94893-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94893-1_7&domain=pdf
http://orcid.org/0000-0002-3770-4357
http://orcid.org/0000-0003-0494-3877
http://orcid.org/0000-0002-8859-2586
http://orcid.org/0000-0003-0750-0502
https://doi.org/10.1007/978-3-030-94893-1_7

154 X. Chen et al.

While certainly useful, all these techniques have limitations: Keyword search
assumes that shapes are labeled with relevant keywords, and that users are famil-
iar with these keywords. Hierarchy browsing is most effective when it matches the
user’s mental model of how shapes are organized. Finally, CBSR works well when
one wants to query for shapes similar to an example that one already avails of.

A particularly important use case which is not well covered by the above
mechanisms involves users who want to first get a good overview of what a
database contains. This helps understanding whether the database contains
shapes of interest to the user – in which case, the user may decide to select a
relevant subset thereof to explore in more detail via classical search mechanisms.
Keyword, hierarchy, and CBSR techniques are not optimal for the overview task:
They either show a small part of the database at a given time and/or ask the
user to perform lengthy navigations to create a mental map of the database
itself, much like when one navigates a web domain.

To address the overview task, our previous work [4] constructs a visual
depiction of a full shape database, with shapes organized by similarity, using a
dimensionality-reduction (DR) technique. This method offers details-on-demand
mechanisms to enable users to control the separation quality of the similar-
shape groups in the visual overview, understand what makes selected shapes
similar (or different), and find features that have high, respectively little, value
for creating the overview. This approach is simple to use, requires no prior knowl-
edge of the organization of a shape database, nor does it require shapes to be
labeled. The proposed visualization targets both end users (who aim to explore
a shape database) and technical users (who aim to engineer features to create
such overviews, or, further, to query or classify shapes in such databases).

However although visually effective, the above approach has a few limitations:
(1) The hand-engineered features it uses may not always best capture shape
similarity, and also are delicate to compute for poor-quality (non-watertight,
self-intersecting, and/or variable-resolution meshes); (2) The feature extraction
and DR steps are computationally quite slow, and cannot scale to real-world
databases containing tens of thousands of shapes or more; (3) The underlying
DR technique used is non-deterministic, meaning that overviews created from the
same database (let alone databases where a few shapes change) will be different,
which makes it hard for users to maintain their mental map.

In this paper, we improve the approach of [4] with the following contributions
to all the above-mentioned limitations:

– We extract features from shapes using deep learning, thereby better capturing
the shape’s similarities (1);

– We use deep learning for both feature extraction and DR, thereby being able
to handle large shape databases efficiently (2);

– We use a deterministic DR projection, thereby ensuring consistent creation
of the visual overviews even when the shape database changes (3).

This paper is structured as follows. Section 2 outlines related work in explor-
ing 3D shape databases. Section 3 details our first proposed pipeline, based on
hand engineered features which can be interactively selected to construct cus-
tom overviews. Section 4 presents results of this pipeline. Section 5 presents our
second proposed pipeline, which uses deep learning for jointly addressing the

Scalable Visual Exploration of 3D Shape Databases 155

problems of feature extraction and dimensionality reduction, and illustrates the
advantages of this approach. Section 6 discusses our overall proposal. Finally,
Sect. 7 concludes the paper.

2 Related Work

Several mechanisms for searching and exploring 3D shape databases exist. Most
such databases often provide only a subset of them rather than supporting them
all. We describe below the most frequently-met such mechanisms.

Keyword search allows users to search for shapes with annotation labels by
text words. It is the most popular method for searching for digital data – that
is, not only 3D content, but also images and other multimedia types. As such, it
is a familiar tool for most users. It is also simple to provide, therefore many 3D
databases, such as Aim@Shape [1] and TurboSquid [37] support searching shapes
by keywords. On the upload side, shapes can be saved in the database with
associated keywords – either picked from a predefined ontology or freely provided
by users – to be next searched. Yet, keyword search is not always accurate. One
reason is that keyword lists are defined by humans. In many databases, uploaders
make the keyword lists of shapes long and/or redundant to increase exposure rate
of their favorite content. This mechanism works better for specialized databases,
such as [16], which contains only shapes related to space exploration. In this case,
keywords are restricted to a predefined dictionary of specialized terms which is
easier to use when uploading and/or searching. Another approach to handle
keyword search is to allow users to type in search terms freely, and then process
these to extract semantic vectors which are used as the actual search keywords.
This is the technology underlying several of Google’s search mechanisms. While
this allows users to search without being aware of the actual ontology used
to organize shapes (or other searchable content), topic extraction is typically
non-transparent for users and can cause both false positives and false negatives
during search, as anyone using text-base search techniques is aware of.

Overall, keyword search is widespread and works well for users familiar
with a database’s organization (in particular, the ontology defining associated
keywords), but also needs large manual effort and is less effective for overall
exploration.

Hierarchical exploration systems use a predefined taxonomy of 3D shapes
to organize databases. Taxonomies typically come in the form of hierarchies of
shape types and included subtypes, which allow the user to directly explore both
the shape collection and associated organization of shape types. Such systems
often use thumbnail galleries to allow one to explore the database. Users can
browse the hierarchy of such databases just like browsing a computer file sys-
tem. Many databases such as the Princeton Shape Benchmark [29], Aim@Shape
[1], and the ITI 3D search engine [9] support hierarchy browsing. However, hier-
archical exploration has several limitations. First, it typically only allows one to
explore a single path in the hierarchy at a given time, and hence is less suited for
providing a global overview of a full database. Secondly, unlike keyword indexing
– where a shape could be indexed by, and thus searched via, multiple keywords
– hierarchical exploration typically only allows using a single such hierarchy

156 X. Chen et al.

at a time. Indeed, it would be confusing and complex to allow one to visually
browse multiple interlinked hierarchies. As such, the effectiveness of this method
is linked to how well the provided hierarchy matches the user’s mental map of
the shape universe under exploration.

Content based shape retrieval (CBSR) frees the user from the task of spec-
ifying keywords or navigating along the constraints of a predefined (hierarchical)
taxonomy. Rather, users specify content directly, either in terms of a query shape
or a shape proxy, such as a simplified version of the actual shape to search for,
for example, a 2D sketch thereof. Next, shapes in the database are ranked based
on a computed similarity function to the query, and the best matching ones are
returned to the user. Unlike keyword search and hierarchical exploration, CBSR
frees users from having to know how shapes and/or their keywords are organized
in the database. Many CBSR methods are proposed by previous research [3,33].
At a high level, all these methods extract a high-dimensional feature vector
from both the shapes in the database and the query, and then use a suitable
distance metric in the descriptor shape to find the most similar shapes to the
query. Many methods to extract such shape descriptors exist and each has its
own advantages. Geometric descriptors aim to capture the actual geometry or
form of the shape. They can be divided into global descriptors, such as shape
elongation, eccentricity, and compactness; and local descriptors, such as saliency,
curvature, shape contexts, and shape thickness. Global descriptors are easy and
fast to compute, but cannot separate shapes which differ only at a local levels.
As such, they are typically used in a pre-filtering phase to accelerate the search.
Local descriptors [24,27,31,34] capture more fine-grained, local, aspects of the
shape, and are used to refine the search process. Topological descriptors, such as
using 3D curve skeletons [11] or 3D surface skeletons [8] capture the part-whole
structure of a shape, and are particularly good for queries which require pose
invariance. Finally, view-based descriptors [5,28] describe shapes based on views
thereof taken from multiple viewpoints. As such, they do not require shapes
to be described by high-quality meshes (which are often required for comput-
ing the other aforementioned descriptors). Moreover, view-based descriptors can
also integrate additional properties such as color, reflectance, and texture, when
these are deemed interesting to drive the search. Descriptors of several of the
above types can be combined in the search process [12]. Apart from such hand-
engineered descriptors, deep learning solutions have shown to be very effective
in all tasks related to processing shape databases by means of extracted feature
vectors [22,32]. These include several tasks such as shape classification (which
can be used standalone or as a help in designing labels for taxonomy creation)
and also shape database querying. One salient method in this area is Point-
Net [22] which was used to obtain highly accurate classifications of complex 3D
shapes represented as point clouds. We discuss this method, and its adaption to
our goals, further in Sect. 5.

As already mentioned, CBSR makes searching easier than keyword search
or hierarchical exploration. However, CBSR typically can only be used if one
already avails of a query instance to search for. As such, CBSR is not designed to
support the more general task of exploration of a shape database. Indeed, while
CBSR shows which database shapes are similar to a given query, exploration
should show how all database shapes are similar to each other.

Scalable Visual Exploration of 3D Shape Databases 157

Concluding the above, keyword search, hierarchical exploration, and CBSR
are complementary tools for exploring a shape database, and optimize each for
different tasks and use cases. They can be easily combined in a 3D database
exploration system. However, even when combined, none of these methods does
offer a compact and detailed overview of an entire database showing how all its
shapes relate to each other in terms of similarity. Such an overview functionality
is essential in contexts where one does not know what to search for, as it helps
‘boostrapping’ the search by telling the user upfront what is in the database and
how things are organized. Separately, we note that the above mechanisms do not
aim to explain why a set of shapes – e.g., the ones returned by a query – are
found similar. Such explanations are useful for shape-database engineers who
want to understand how the search process works to e.g. fine tune its underlying
feature extraction and/or feature comparison (similarity function) to optimize
its accuracy or computational speed. This has been shown by Rauber et al. [23]
in the context of classification of 2D image databases. Our work in Sect. 4.3
uses similar interactive feature selection mechanisms as Rauber et al.. However,
as we will discuss there, our goal is entirely different – that is, the creation of
customized overviews of 3D shape databases rather than the optimization of an
image classifier’s accuracy.

3 Feature Selection Method

We detail our first approach to creating visual overviews of shape databases,
which uses hand engineered features which can be interactively selected by users
to create custom overviews. For simplicity of reference, we call this approach the
feature selection method next.

Let us introduce a few notations. A shape is described as a mesh m = (V =
{xi}, F = {fj}), i.e., a collection of vertices xi ⊂ R

3 and triangular faces fj .
Hence, a shape database is a set of meshes M = {mk}. Shapes can be of different
kinds, sampling resolutions, and require no extra organization or annotations,
e.g., class or hierarchy labels or keywords.

We aim to create a visual overview of M in which every shape mk is depicted
by a thumbnail rendering thereof. In this overview, similar shapes should be
placed close to each other. Detail views can be invoked interactively via the
thumbnails to show specific shape details. This combination of overview and
details follows Shneiderman’s visual exploration mantra [30] to enable both free
and targeted exploration of the shape database along the use-cases outlined in
Sect. 2.

We create our visual overview follows. First, we preprocess all meshes in M
to normalize their sampling resolution and size (Sect. 3.1). Secondly, we extract
local features from each mesh, thereby capturing the geometry of the respective
shapes (Sect. 3.2). Next, we extract a fixed-length feature vector from each shape
by aggregating the above-mentioned local features (Sect. 3.3). Finally, we use
dimensionality-reduction to project the shapes, encoded by their feature vectors,
to create a 2D scatterplot (Sect. 3.4). We describe all these steps next.

158 X. Chen et al.

3.1 Preprocessing

Shapes in a database M can, in general, have any sampling resolution, orientation
(pose), and scale. Such variations are typically irrelevant for shape similarity
and also induce unwanted variability when computing shape descriptors [3]. To
alleviate this, we first remesh all shapes in M to a target edge-length of 1% of
m’s bounding-box diagonal. Next, we translate and uniformly scale the remeshed
shapes to tightly fit in the [−1, 1]3 cube.

3.2 Local Feature Computation

We characterize shapes by several so-called local features. These features describe
the shape in the neighborhood of every vertex xi ∈ m and are hence good at
capturing local geometry characteristics. We compute seven local features, as
follows.

Gaussian Curvature (Gc): Gaussian curvature describes the overall deviation
from flatness of a shape at a given point. We compute the Gaussian curvature
of every vertex x ∈ m as

Gc(x) = 2π −
∑

f∈F (x)

θx,f , (1)

where F (x) is the set of faces in F containing x and θx,f is the angle of the
two edges of f that contain x. A perfectly flat triangle-fan around x will have
Gc(x) = 0. Conversely, an infinitely sharp spike on m at x will have Gc(x) = 2π.

Average Geodesic Distance (Agd): Let d(x,y) be the length of the geodesic
curve located on the surface of m between a pair of vertices x and y of m. Given
this, we estimate the average geodesic distance of a vertex x as

Agd(x) =

∑
y∈V d(x,y)

|V | . (2)

Intuitively, Agd tells how close to a ‘tip’ or protrusion (or its concave equivalent)
a vertex x is. For example, for a hand model, points on the finger tips will have
high Agd values, whereas points on the palm will have lower Agd values. Agd can
thus discriminate shapes which have many protrusions (thus, high variations of
Agd over their points), like the hand model, from overall rounder shapes (thus,
very small variations of Agd over their points), like a ball.

We approximate the geodesic distance d(x,y) as the geometric length of the
shortest path in the edge connectivity graph of m between x and y. This length
can be easily and efficiently estimated using Dijkstra’s shortest-path algorithm
with A* heuristics and edge weights equal to edge lengths. More accurate esti-
mations of the geodesic distance between two points on a polygonal mesh exist,
including computing the distance transform DT (x) of x over F and tracing
a streamline in −∇DT (x) from x until it reaches y [20]; minimization of the
length of a cut created by a rotating slice plane passing through x and y [10]; or
hybrid search techniques [38]. While more accurate than the Dijkstra approach
we use, these methods are considerably more complex to implement, slower to

Scalable Visual Exploration of 3D Shape Databases 159

run (except the GPU-based method in [10]), and require careful tuning and/or
specialized platforms (GPU support). For a detailed comparison of geodesic esti-
mation methods on polygonal meshes, we refer to [10]. In our case, the added
value of accurate geodesic computation is not needed. Indeed, as discussed next
in Sect. 3.3, we only use aggregates (histograms) of all Agd values computed
over an entire mesh. Hence, less accurate, but fast and easy to compute Dijkstra
length estimation is sufficient for our purposes.

Normal Diameter (Nd): This descriptor aims to capture the local thickness
of a shape at a given vertex. For this, we first estimate the surface normal at a
vertex x as

n(x) =

∑
f∈F (x) n(f)θx,f

2π
, (3)

where n(f) is the outward normal of face f . Let r be a ray starting at x and
advancing in the direction −n(x). The normal diameter Nd(x) is then the dis-
tance along r from x to the face f ∈ F \F (x) that r intersects. Note that, besides
this ray tracing approach, local shape thickness can be computed by other meth-
ods, such as medial surfaces [35] or view-based approaches [25]. However, these
approaches are not suitable in our context since they require voxel models rather
than meshes [35] or require a complex and expensive view-based computation
pipeline [25]. As for the Agd estimation, our ray-based Nd estimation is arguably
less accurate than alternative approaches but, since ultimately aggregated via
histograms, strikes a good balance between quality and computation ease and
speed.

Normal Angle (Na) and Point Angle (Pa): These features describe how
vertices x ∈ V are distributed over the shape’s surface. Let e1 be the major
eigenvector of the shape covariance matrix given by all vertices V . As known,
e1 gives the direction in which V spreads the most. For every vertex x ∈ V , we
define the normal angle Na(x) as the dot product between e1 and the surface
normal n(x); and the point angle Pa(x) as the dot product between e1 and
c − x, where c is the barycenter of m, respectively.

Shape Context (Sc): The shape context descriptor [2] is a 2D histogram
that describes how distances and orientations of all vertices in V to a fixed,
given, vertex x ∈ V , vary. To compute Sc, we first build a local coordinate
system at every vertex x ∈ V , using the eigenvectors of the shape covariance
matrix in the neighborhood of x. This aligns the local coordinate system with
the shape, making one of its axes coincide with the normal n(x) and the two
other axes tangent to the surface of m at x. Next, we discretize the orientations
around x into the eight octants of the local coordinate system. We also dis-
cretize distances using a set of distance ranges (ti, ti+1) defined by a distance-set
T = {0, t1, t2, . . . , tn, 1}, n ∈ N+. In practice, we use T = [0, 0.1, 0.3, 1], given
that our shapes are normalized in [0, 1]3. Hence, for each vertex x, Sc(x) is a
vector with 8 × 3 = 24 elements.

Point Feature Histogram (PFH): PFH [24] is a complex descriptor that
captures the local shape geometry in the neighborhood of a vertex. Given a pair
of vertices y and y′, where y′ is a neighbor of y, we first define a local coordinate
frame (u,v,w) as

160 X. Chen et al.

u = m, v = (y′ − y) × u, w = u × v, (4)

where m is the vertex normal at y. Next, the variation of the shape geometry
between y and y′ is measured by three polar coordinates

α = v · m′, φ = u · y′ − y
‖y′ − y‖ , θ = arctan2(w · m′,u · m′), (5)

where m′ is the vertex normal at y′. We build three histograms to capture the
distributions of α, φ, θ for a given vertex x by considering all pairs (y,y′) ∈
Nx,k ×Nx,k in the k-nearest neighbors Nx,k of x. In practice, we set k = 30 and
use 5 bins for each histogram. This delivers, for each vertex x, a PFH feature
vector of 53 = 125 entries.

Fast Point Feature Histogram (FPFH): While PFH models a neighborhood
Nx,k by all its point-pairs, the Simplified Point Feature Histogram (SPFH) mod-
els Nx,k by the pairs (x,y)|y ∈ Nx,k. That is, PFH considers k2 pairs, whereas
SPFH considers only k pairs. To compute FPFH, we proceed analogously to
binning the α, φ, θ distributions (Eq. 5) in three 11-bin histograms, obtaining a
feature vector of 3 × 11 = 33 elements. With this vector, we finally compute the
FPFH value of a vertex x following [24] as the distance-weighted average of the
SPFH values over Nx,k as

FPFH(x) = SPFH(x) +
1
k

∑

y∈Nx,k

SPFH(y)
‖x − y‖ . (6)

3.3 Feature Vector Computation

The eight features introduced in Sect. 3.2 take different values for every mesh
vertex x ∈ V , as they indeed aim to capture the shape characteristics close to
x. To compare entire meshes to each other, we need to abstract from these local
descriptors. We do this by computing, from all local descriptors of a shape, a
single global descriptor, or feature vector, which (1) has the same length for
all shapes, regardless of their vertex count, and (2) is invariant on the ordering
(numbering) of vertices in the mesh. For this, we aggregate the values of every
local descriptor, at all vertices of a mesh, into a fixed-length (10 bin) histogram.
Note that some descriptors are by definition high-dimensional—for instance, the
shape context Sc has d = 24 dimensions. For such d-dimensional descriptors, we
compute a histogram having 10d bins, thus using 10 bins per dimension. Table 1
shows the local features, their dimensionality, and the number of bins used to
quantize each. Summarizing, we reduce every shape m to a 1870-dimensional
feature vector F .

3.4 Dimensionality Reduction

The feature extraction process described so far essentially reduces a shape
database M to a set of |M | 1870-dimensional feature vectors. We next achieve
our goal of creating a visual overview of the database by projecting these vec-
tors in 2D using the well-known t-SNE dimensionality reduction technique [13].

Scalable Visual Exploration of 3D Shape Databases 161

NH
 va

lu
e

hig
h

lowB

A

features: Gc, Na, Pa, Agd, PFH NHs: 0.859
plier: 1.0
teddy: 0.985
cup: 0.98
ant: 0.975
fish: 0.945
chair: 0.895
glasses: 0.88
airplane: 0.875
table: 0.87
human: 0.855
hand: 0.805
fourleg: 0.765
bird: 0.66
octopus: 0.53

Fig. 1. Three views of the optimal projection scatterplot for the Princeton Shape
Database, depicting classes and their NHc values and the overall plot quality NHs (A),
per-shape NH values (B), and actual shape thumbnails (C). Figure taken from [4].

That is, t-SNE constructs a scatterplot P (M) = {P (mk)}, where every shape
mk ∈ M is mapped to a point P (m) ∈ R

2, so that the distances between scatter-
plot points reflect the similarities of their feature vectors. Next, for visual clarity,
we render these points P (m) to show thumbnails, or other data attributes, of
their respective shapes m.

As outlined in Sect. 1, we aim to use this visual representation to explore the
database M . Hence, P (M) should accurately reflect the similarities computed
via feature vectors. Many metrics exist that compute the quality of projections –
for a detailed overview, we refer to [17]. However, most of these are not applicable

Table 1. Local features, their dimensionalities, and their binning. Table taken from [4].

Name Dimensionality Bins

Gaussian curvature (Gc) 1 10

Average geodesic distance (Agd) 1 10

Normal diameter (Nd) 1 10

Normal angle (Na) 1 10

Point angle (Pa) 1 10

Shape context (Sc) 24 240

Point Feature Histogram (PFH) 125 1250

Fast Point Feature Histogram (FPFH) 33 330

Total 1870

162 X. Chen et al.

to our context, since they assume the feature vector data as ground truth, i.e.,
correct and accurate. In our case, we actually extract such data from the actual
3D meshes. Hence, we address projection quality computation by using class
(label) information from the shapes, as follows. We assume that each class m
has a categorical label c(m) ∈ C, where C is a set of categories (e.g., keywords
describing the different shapes in a database). Next, we define the neighborhood
hit NH(m) as the proportion of the k-nearest neighbors of P (m) that have the
same label c(m) as m itself [19]. In practice, we set k = 10, following related
applications that gauge projection quality [19]. With this, we can next define
the neighborhood hit of an entire class c ∈ C as

NHc(c) =

∑
m∈M :c(m)=c NH(m)

|m ∈ M : c(m) = c| . (7)

Finally, at the highest aggregation level, we define the neighborhood hit for an
entire scatterplot P (M) for a shape database M as

NHs(M) =
∑

m∈M NH(m)
|M | . (8)

The intuition behind the above metrics is as follows. NH(m) describes how
uniform the projection is, in terms of class labels, around the projection of mesh
m. We do not use this metric directly in our evaluation, but only as a means to
define the more aggregated NHc and NHs metrics. NHc shows whether a group
of points (in the projection) representing same-class meshes is well separated
from point groups representing meshes of different classes. This is desirable, since
we want next to use the scatterplot to answer questions like “How many shape
classes are in a database, and how similar are they to each other?”. Finally, NHs

shows how well a whole scatterplot can represent an entire shape database, and is
thus a simple metric to use to compare the quality of different scatterplots. Both
NHc and NHs range between 0 and 1, with higher values indicating better class
separation, which is preferred. Note, importantly, that we do not use the class
label information for anything related to the construction of the visual overview
– as mentioned earlier, we can construct such projections using only unlabeled
data. We only use class labels as a proxy to gauge the quality of the projection
for typical tasks involving reasoning about the different types of shapes in a
database.

4 Applications

We next illustrate our visual exploration on a subset of the Princeton Shape
Benchmark [29] (280 meshes from 14 shape classes, 20 meshes from each class).

4.1 Optimal Scatterplot Creation

As mentioned in Sect. 3.4), creating a high-quality scatterplot is important for all
exploration tasks it addresses next. To gauge this, we answer next the following
questions:

Scalable Visual Exploration of 3D Shape Databases 163

Fig. 2. NHc statistics for the 14 classes in the shape database for all 255 projection
scatterplots. Figure taken from [4].

Q1: How can we create a good projection?
Q2: Which features are best for grouping similar shapes (and separating different

shapes) in the projection?
Q3: Which is the minimal set of features needed to generate a good-quality

projection?

The easiest way to proceed would be to create a t-SNE projection using
the full 1870-dimensional feature vectors we extracted (Sect. 3.3). However, we
do not know that all our features effectively capture shape similarity well; some
may be redundant, thus only add computational complexity with no extra value;
others may be even confusing, that is, decrease the projection quality. Moreover,
using high-dimensional feature vectors makes the t-SNE projection task harder
[39]. Hence, we first explore the idea of projecting subsets of the 1870 feature
vector. We have 8 feature types (Table 1), so one idea would be to create all
28 − 1 = 255 possible projections using combinations of these 8 feature types.
We compute all these projection and next select the one having the highest NHs

quality. Note that this is related to the well-known scagnostics principle [36,40]
of generating a superset of all possible scatterplots from a multivariate dataset
and next select for inspection the ones which show interesting details. In our
case, however, we do the selection based on the projection quality NHs.

Figure 1 shows three views of the optimal projection scatterplot. Image A
shows the scatterplot with points (shapes m ∈ M) colored by their class value
c(m). The title above this image shows the feature subset used for this optimal
scatterplot (highest NHs = 0.859 value), namely (Gc, Na, Pa, Agd, PFH). The
bar chart in image A shows the NHc values for all classes, with high values (well
separated classes) at the top. We see that pliers are perfectly separated from all
other classes (NHpliers = 1), while octopus is least well separated (NHoctopus =
0.53). Image B shows the optimal scatterplot colored by NH values for all shapes,
ranging between red (low NH) to yellow (high NH). Red points show shapes
which are not projected well—that is, placed close to different-class shapes. We
see that there are such points in a variety of classes. Finally, image C shows
the optimal scatterplot with shapes depicted by thumbnails. We see here, better
than in image A, that pliers, teddies, cups, ants, and fishes are well projected;
but birds are mixed with airplanes, and fourlegs are mixed with humans and
hands. The octopus class is visually split in the projection into several parts.
While this optimal scatterplot is not perfect, it is the best one we can create by

164 X. Chen et al.

combinations of our 8 available features. While class separation is not perfect,
closely-projected shapes are still similar. For example, ants are surrounded by
octopuses, which is arguably logical, since both shape types have many thin and
spread legs, i.e., a high variability of Agd. Similarly, airplanes and birds are close
to each other; both have wings and are quite flat.

Gc
Sc
Na
Pa
PFH
FPFH
Agd
Nd

0.83

0.0

NHs
Feature
Legend

best projectionworst projection top 30% best projections

Fig. 3. Bar chart showing the NHs scores of 255 projections, sorted on increasing
value (best projections to the right, worst ones to the left). The color blocks under a
bar show which features are used for that projection (the feature color legend on the
right). Bars which are not blue only use one feature, whose identity colors the bar.
Scanning the color matrix below the bars row-wise tells us which projections use which
features. We see that PFH (orange) and FPFH (purple) are good features since their
blocks are close to the right. Conversely, Sc (green) is not a very useful feature since
its blocks are spread to the left. Figure taken from [4]. (Color figure online)

Besides seeing the optimal projection (Fig. 1), we also want to understand
how far are all other 254 projections from this optimum. Figure 2 shows this
by whisker plots of the NHc values for all 255 projections, grouped per class.
We see here that some classes (cup, plier) have a low NHc variance around a
very high value. Hence, optimal projection selection is not that relevant for these
classes – they would be well separated in virtually any projection computed by
any feature combination. However, for other classes (ant, hand), the variance
is larger. Hence, computing an optimal projection is important if we want to
separate these classes well from the others. We also see that birds and octopuses
have quite low NHc values. This strengthens the insights obtained from Fig. 1,
telling that it is hard to separate these classes in any projection.

To address Q2 and Q3, Fig. 3 shows how features affect the quality of all
produced projections. Each bar represents one of the 255 projections, with the
bar length encoding that projection’s NHs value. Bars are sorted on this value
left to right, so best projections are shown right. The matrix plot under the bar
chart shows which features (color coded as in the legend at the right) are used
in each projection. We also highlight this in the top bar chart: Projections using
more than one feature have blue bars; projections that use only one feature
have bars colored by that feature. This figure tells us several stories: (1) The
difference between the best and worst projections is significant (NHs 0.831 vs
0.38). (2) Some features, e.g. PFH (orange) and FPFH (purple), are crucial for
high quality, since they appear frequently to the right of the matrix plot; other

Scalable Visual Exploration of 3D Shape Databases 165

features actually decrease quality, e.g. Sc (green) which appears only in the left
half of the matrix plot. (3) The right of the matrix is denser than its left part,
i.e., using more features yields better projections, although the relation is not
monotonic. (4) The highest-quality projections (roughly, right third of the bar
chart) consistently use the same feature mix (Gc, Na, Pa, PFH, FPFH, Agd,
Nd). (5) Different features have different patterns in the matrix plot, meaning
there are no redundant features in the considered feature set.

Algorithm 1 . Computing near-optimal feature sets.

Require: Set of features F ; maximal size s, 1 ≤ s ≤ |F|, of feature-set to search for,
Ensure: Near-optimal feature set C,
1: C := ∅, Cnew := ∅;
2: repeat
3: C := Cnew

4: for each Fsub ⊆ F, |Fsub| ≤ s do
5: Ctemp := (C ∪ Fsub) − (C ∩ Fsub)

6: if NHs(Ctemp) > NHs(Cnew) then

7: Cnew := Ctemp;

8: end if
9: end for
10: until (Cnew = C);
11: return C;

4.2 Fast Computation of Near-optimal Projection Scatterplot

When the feature set F is large, computing all possible projections to select the
optimal one (Sect. 4.1) is expensive. We accelerate this by a greedy algorithm
(Algorithm 1). The parameter s gives the maximum size of the feature-set to
search for. For every search iteration,

(
s

|F|
)

feature combinations are examined,
retaining the one yielding the highest NHs value. Better solutions in terms of
NHs are obtained for larger s values, at the expense of higher search times. In the
limit, when s = |F|, Algorithm 1 compares all possible 2|F| feature combinations.
From our tests, good NHs values can be obtained by setting s = 1. For this
setting, the time complexity of our algorithm is O(|F|2).

Table 2 shows timing results of our search algorithm, executed 5 times, to
account for t-SNE’s stochastic nature. For every round, we show the time taken
by exhaustive search vs our greedy search, and also the number of t-SNE projec-
tions being evaluated. We see that our greedy search yields practically the same
NHs as exhaustive search, but is roughly 5 times faster.

4.3 User-Driven Projection Engineering

Section 4.2 showed how to automatically compute a good-quality projection (that
separates different-class shapes well) by automatic feature selection. We saw
that, even when testing all possible 8-feature combinations, we cannot obtain an
ideal projection – some classes are easier to separate than others (see also Fig. 2).
This is not surprising, given that our automatic search selects, or discards, all
features of the same type, e.g., the 24 shape-context Sc features are either all
used, or all ignored, when constructing the projection. We next aim to address
the creation of a good projection differently. The key observation here is that

166 X. Chen et al.

Table 2. Performance of the greedy algorithm for near-optimal projection construction.
Table taken from [4].

Round Search method NHs Time (secs) t-SNE runs

1 Exhaustive 0.831 459.74 255

Greedy 0.831 103.49 56

2 Exhaustive 0.830 452.12 255

Greedy 0.830 84.98 48

3 Exhaustive 0.829 453.70 255

Greedy 0.820 70.24 40

4 Exhaustive 0.832 445.47 255

Greedy 0.832 111.71 64

5 Exhaustive 0.824 447.66 255

Greedy 0.824 97.39 55

1.
mo

de
l a

nd
 fe

atu
re

 se
lec

tor

2. original scatterplot
6. separation

control

4. scoring
methods

5. refined scatterplot

3. feature scoring view

Fig. 4. User-driven projection engineering tool and its six views (Sect. 4.3). Figure
taken from [4].

Scalable Visual Exploration of 3D Shape Databases 167

a) glasses: (Sc:1,PFH:1) b) ant: (Pa:1,FPFH:1,FPH:1) c) teddy: (Nd:2,Gc:1) d) cup: (Agd:1,FPFH:1) e) pliers: (PFH:1)

glasses

ant

teddy cup

pliers

cup teddy table hand ant chair human airplane glasses fish fourleg octopus bird plierscupClasses:

Fig. 5. Finding the minimal number of feature-bins able to separate five shape classes
from the rest of the database. Notation name:i indicates that i bins of feature name
are used. Figure taken from [4].

there are cases when one wants to optimize for separation of certain classes,
depending on use-case specifics. Hence, user input in deciding which feature
combination leads to a good projection is crucial.

We thus rephrase question Q2 as: How can we pick ‘good’ feature-bins (from
the total set of 1870 bins) that separate classes in the way we desire in a specific
context? To do this, we propose an interactive tool based on feature scoring
(Fig. 4) which contains several views (1–6) that allow one to explore how features
drive separation of shape classes and also select feature subsets to lead to a
customized projection. These views support an overview-and-details-on-demand
workflow, as follows:

Model and Feature Selector (1): The user starts by selecting the shape
classes and feature types of interest in this view. If users are interested only in a
few classes, these can be selected here; if one wants to separate equally well all

a) hand (10, 0, 0.584) b) table (5, 0, 0.745) c) airplane (3, 0, 0.750) d) octopus (11, 0, 0.816) e) fish (5, 0, 0.815)

f) glasses (5, 0, 0.825) g) bird (1, 0, 0.837) h) airplane, fish, bird
 (5, 0, 0.870)

i) airplane (10, 0, 0.880) j) all (4, 8, 0.873)

Fig. 6. Incremental creation of high-quality projection scatterplot that separates all
classes well. In each step, a few feature-bins (having high scores, count indicated in
green) are selected to separate one or several classes from the rest, and a few feature-
bins (having low scores, count indicated in red) are removed from the selection. NHs

at each step are rendered blue. Figure taken from [4]. (Color figure online)

168 X. Chen et al.

classes, then all should be selected. For instance, from our earlier experiments
(Sect. 4.1), we saw that birds are hard to separate from airplanes. The user can
then select only these two classes in view (1) to explore how to increase their
separation. One can also select feature types (from the 8 computed ones) to use
for creating the projection. This helps examining, or debugging, the effect of
each feature type. Classes are categorically color-coded, and the same colors are
used in the scatterplots (2, 5). Feature types are also categorically color-coded
with the same colors used in the feature scoring view (3).

Original Scatterplot (2): This view shows a scatterplot using all shape classes
vs all feature types chosen in the selector (1). It is used to gauge the effects of the
selection performed in view (1) in terms of class separation or overall suitability
of the scatterplot to the task at hand. The projection shown here can be next
refined to e.g. increase separation between desired classes or instances (shapes)
using the feature scoring views (3, 4) discussed next. Scatterplots in view (2)
are computed either with the t-SNE or UMAP [15] projection methods. t-SNE
spreads similar points better over the available 2D space, but is slower. UMAP
creates more compact clusters, but is faster than t-SNE. A detailed comparison
of these techniques is presented in a recent survey [7].

Feature Scoring Views (3, 4): One can use the feature selector (1) to tog-
gle on or off every feature and gauge its effect on the projection (2). However,
this process can be opaque and requires sustained trial and error until a desired
effect is obtained. To alleviate this, the barchart (3) shows the discriminative
score of every element fi of the 1870-dimensional feature vector, i.e., how much
fi contributes to separating class ci from a few or from all other classes cj �= ci
selected in view (1), depending on the separation control (6, discussed below).
Colors show to which feature types the elements fi belong. For instance, the
several purple bars in Fig. 4(3) correspond to the 330 bins of the FPFH fea-
ture (purple in Fig. 4(1)). Scores are computed with six scoring methods [23]:
chi-squared, one-way ANOVA, Randomized Decision Trees (RDT), Randomized
Linear Regression (RLR), iterative relief (IR), and Recursive Feature Elimina-
tion (RFE), which are commonly used for assessing classifier performance. The
desired scoring method can be chosen by the user in panel (4). This barchart
supports two tasks: First, it shows how the many bins of each feature contribute
to the separation power of that feature. Secondly, it allows fine-grained exami-
nation of the effect of each such bin on class separation: Users can freely select
specific bins (from the 1870 ones) to create a new projection. Selected bins are
outlined with a blue border and listed, in decreasing score order, before the uns-
elected ones, in the barchart. The new projection created by the user-selected
bins is shown in view (5).

Refined Scatterplot (5): This projection shows instances from the classes
selected in view (1), projected using the feature-bins selected in the barchart
(3). This is thus a refined view of the original projection (1). By comparing the
refined and original scatterplots one can see how the fine-grained selection of each
of the 1870 features improves (parts of) the projection. In other words, obtaining
an optimal projection is achieved in two steps: First, one selects feature types
(in view 1). This is similar to the search process described in Sect. 4.1, except
that it is driven by the user rather than automatic. Upon obtaining a suitable

Scalable Visual Exploration of 3D Shape Databases 169

projection by this selection, one refines it by (de)selecting individual bins for
the used feature types. This corresponds to considering or ignoring ranges of the
values of the features under exploration.

Separation Control (6): As mentioned, feature scoring gauges how well
selected features separate a class ci from other classes cj �= ci. The view (6)
allows controlling this. The view shows all shape classes ci in the database. If
all classes are selected in (6), scoring measures how well each class ci is sepa-
rated from each other class cj �= ci. If only one class ci is selected in (6), scoring
measures the separation of ci from all other classes ∪j 	=icj . This allows one to
flexibly measure the separation of arbitrary groups of classes rather than only
the separation of individual classes themselves.

4.4 Use-Cases

We demonstrate our user-driven projection engineering (Sect. 4.3) by answering
two practical questions. More use-cases are described in the original paper [4].

A. How to find the smallest number of features that separate a given shape class
from all others? (Q3, Sect. 4.1)
Figure 5 answers this question for classes glasses (a), ant (b), teddy (c), cup (d),
and pliers (e). We select each of the aforementioned classes in the model selector
(Fig. 4(1)) and use the feature scoring view (Fig. 4(3)) and separation control
(Fig. 4(6)) to find feature values (bins of the 1870-dimensional feature vector)
that best separate this class from the other 13 ones. We gauge separation via the
refined projection (Fig. 4(5)) and its NHs score. For the specific class examples
listed here, Fig. 5 shows that these can be separated very well from the rest of
the database by maximally three, and sometimes just one, feature bin(s) of the
1870 computed ones.

B. How to create a projection that separates well all classes? (Q1, Sect. 4.1)
Figure 6 shows a typical workflow for answering this question. We start with a
default projection that uses all 1870 features. Next, we search, using the fea-
ture scoring view (Fig. 4(3)), for feature-bins that are most discriminatory, i.e.,
have highest scores, for each of the classes in our database, starting with the
hand class (we can start from any other class). As we study additional classes,
we keep adding feature-bins that are discriminatory for them. When we have
visited all classes, we have a candidate feature-set. We next clean (reduce) this
set by removing from it features that have low scores, i.e., have how discrimi-
nation power or even work adversely. The entire process can be done in a few
minutes. The images in Fig. 6 show us how the projection quality NHs almost
continuously improves as we add more feature-bins when considering new classes.
During this process, we can visit a given class several times (e.g. airplane), as
features that score high for it can appear several times during the exploration
as we study other classes. The final result (Fig. 6j) contains all 14 classes, has
a quality score NHs = 0.873, and uses only 51 feature-bins of the total of 1870
ones. It is important to note that our final NHs value is higher than the one
found by exhaustive search (NHs = 0.831, Table 1). Indeed, our manual search
is more fine-grained, as it allows us to select or discard individual feature-bins
(of the 1870 ones); in contrast, automatic search only considered entire features

170 X. Chen et al.

(of the 8 in total). Obtaining a similar-quality result to the one manual search
led to, by using exhaustive search, would be prohibitively expensive, as it would
involve searching all 21870 feature-bin combinations.

5 Feature Learning Method

Our proposal so far showed how we can construct good-quality projections for
exploring 3D shape databases, either by exhaustive search or by user-driven
projection design. However, our solution has several limitations:

– input quality: Computing the features in Sect. 3.2 involves many con-
straints. For instance, computing Agd requires the meshes to have a sin-
gle connected component; computing Gc requires meshes to be manifold and
water-tight. Overall, poor-quality meshes (containing self-intersections, holes,
and/or non-uniform sampling) cause serious problems for feature computa-
tion;

– user effort: The feature selection process (Sect. 4.1), although able to lead
to good-quality projections, is time consuming for the user and involves a
non-negligible amount of trial and error;

– replicability: The used projections (t-SNE and UMAP) are non-parametric.
That is, projecting the same (let alone slightly changed) shape database will
lead to different scatterplots, thereby not helping users to maintain their
mental map of the database;

– scalability: For large databases (more than a few hundred shapes), the fea-
ture extraction and projection takes considerable amounts of time; moreover,
if we consider using more features, both the greedy search and the user-driven
projection engineering become slower and more complex to execute;

– ease of use: Implementing and setting up the extraction of hand-engineered
features (Sect. 3.2) is a highly involved process. Adding more features to the
set of existing ones only complicates this process further.

We address all the above issues jointly by using a deep learning approach
for both feature extraction (also next feature learning, following deep learn-
ing terminology) and projection. Concretely, we adopt PointNet [22] for feature
extraction and NNproj [6] for projection. We next outline this approach and its
two main components.

PointNet is a deep-learning model used to classify 3D shapes represented as
point clouds with very high accuracy [22] (see Fig. 7, blue part). For our visu-
alization goals, and as a replacement of the hand-engineered features described
in Sect. 3.2, we use the latent features extracted by PointNet (see Fig. 7, yellow
part), after training it for its original classification task using the labels present
in the shape database. NNproj is also using deep learning to create high-quality
DR projections of arbitrary high-dimensional data [6]. It is trained by providing
it with several 2D scatterplots of corresponding feature vectors, created by any
desired DR technique, e.g., t-SNE. NNproj can create projections of nearly the
same quality as the ground-truth ones it learns from, is thousands of times faster
than t-SNE, has a very simple implementation, and is not sensitive to parameter
settings or small changes in the input data. We use NNproj to replace t-SNE
and UMAP in our visualization construction.

Scalable Visual Exploration of 3D Shape Databases 171

P1
P2

training inference

P3

PointNet feature extraction

Combined network NNproj network

tSNE
projection

Output
projection

used to
train P2used by P1

Input
shape
database

us
ed

by
 P

3

Legend

Fig. 7. Architecture of proposed networks P1, P2, P3.

Our framework proposes three pipelines (P1, P2, P3) to create shape-
database overviews, as follows. The legend in Fig. 7 shows which models (net-
works) are part of the training, respectively, inference, of each pipeline. P1
includes PointNet feature-extraction followed by standard t-SNE projection
thereof. P1 can already create overviews, but these do not support incremental
updating, since t-SNE is non-parametric. Hence, we use P1 mainly for train-
ing P2 and P3, as outlined next. P2 runs P1, then trains NNproj to imitate the
thus-constructed t-SNE projections, and then uses the trained NNproj instead of
t-SNE to create the final projection. P3 drops the classification part of PointNet
and trains the joint PointNet-NNProj network. To train P3, we use projections
for the training-set shapes created with P1 or P2. In other words: The three
pipelines are not different solutions for the same end goal. Rather, P1 is a lower-
level pipeline, needed to train PointNet for feature extraction; while P2 and P3
are, functionally identical pipelines that users can choose to use for the final
projection construction. The difference between P2 and P3 is simply whether
feature extraction and projection are learned separately (P2) or jointly (P3).

For training all models described above, we use the ShapeNet [26] database,
which has 14921 shapes from 16 classes. We divide it into a training set (12137
shapes) and a test set (2784 shapes). As this database is quite large, and we
have several models to train, we conducted experiments to find how large the
training sets of all our deep learning models need to be for sufficient projection
accuracy. Specifically, these are:

– NP : the number of shapes for training PointNet,
– NN : the number of feature vectors to train NNProj, and
– NC: the number of shapes for training P3.

We tested 13 values for each of NP , NN and NC, ranging from 320 to 12137.
All networks were trained with 250 epochs and early stopping.

172 X. Chen et al.

5.1 Experiments and Results

We now present the results of our three pipelines (P1, P2, P3) introduced above
and how these depend on the sizes of their respective training sets NP,NN , and
NC. We evaluate results both qualitatively (by examining the output projec-
tions) and quantitatively, by the NH metric (Sect. 3). Since our scatterplots are
now larger than those discussed in Sect. 4, we use now a correspondingly larger
value k = 20 to compute NH. We structure our evaluation along several points,
as follows.

Results: Figure 8 shows the overview projection created by P2, with shape icons
added to a subset of the database shapes, to limit occlusion. The full projection is
shown in the top-left inset as a scatterplot colored by class label. We see that the
projection matches our overall expectations: Shapes from different classes are sep-
arated well, and similar shapes are close to each other. As with any feature extrac-
tor, including the original PointNet, some anomalies exist however. For exam-
ple, we see a green chair model (A) surrounded by laptop shapes; and a purple
lamp model (B) surrounded by table models. This clearly happens since these
two shapes are geometrically very similar to the respective classes. Separately, the
overview helps us seeing structure within classes. For instance, the tables class
appears to be visually split into four-legged (FL), round (RO), and bureaus or
desks (BU). Note that this information is not available in the original labels of
the shape database; it is only the projection that helped us find it.

How much data (NP) is needed to train PointNet? Table 3 shows the test
accuracy AC of PointNet for different training-set sizes NP . As NP increases,

Fig. 8. Overview projection created by pipeline P2.

Scalable Visual Exploration of 3D Shape Databases 173

Table 3. PointNet training accuracy (AC) and NH values for pipeline P1 when train-
ing (P1Train) and testing (P1Test). The two color legends at the bottom show accu-
racy (green shades) and NH values (yellow-red) respectively in this table and the
following ones.

low AC high AC
low NH high NH

AC also increases until reaching a local maximum (AC = 97.1%) for NP = 6000
shapes. The global maximum AC = 97.6% is achieved, as expected, when using
all NP = 12137 shapes in the training set. We also see that for NP = 2000 we
already get a very good accuracy AC = 95.4%, sufficient for our visualization
goals. With the trained PointNet, we next extract features and project them
using t-SNE (pipeline P1). Table 3, row P1Train shows the NH projection
quality metric for P1 on its training sets of various sizes NP . Next, row P1Test
shows the same NH metric, this time for the test set. While NH is slightly
higher for the training set (as expected), the NH values for the test set are also
quite high, indicating that P1 produces good quality projections.

How much data (NP,NN) is needed to train P2? Training P2 requires
training PointNet with NP shapes and next training NNproj with NN feature
vectors (Fig. 7). So, P2’s quality depends on both NP and NN . Table 4 (a–c)
shows this dependency. In detail: Table 4(a) shows the NH value of t-SNE when
projecting different sizes NN of feature vector sets extracted by PointNet. We
notice that there are some NH fluctuations on the second row where NN = 320.
However, when NP and NN are both greater than 1000, the t-SNE projections
all yield good NH values (above 94%). The highest NH value (99.8%) appears
for NP = NN = 6000. We also see that the colors in the upper-right triangle
half of Table 4(a) are darker than in the lower-left triangle half: NH is slightly
higher when NP ≥ NN . Indeed, when NP ≥ NN , the input data of t-SNE is
a subset of PointNet’s training data. In contrast, when NP < NN , t-SNE runs
with some shapes that are not in PointNet’s training set.

After creating the ground-truth scatterplots by t-SNE, we use them to train
NNProj. After this, P2 is ready to be used. Table 4(b) shows the NH of P2
trained with different NN and NP values, when projecting NNproj’s training-
data. The values in Table 4(b) are very close to their counterparts in Table 4(a),
being roughly 0.1% to 2% lower. This means that NNproj was trained success-
fully, so P2 can project well its training data.

Table 4(c) shows NH values when using P2 to project test data (2784 shapes).
Although the NH values are slightly lower than those in Tables 4(a) and (b),
all of them, except the first one (NP = 320, NN = 320) outperform those
delivered by our earlier feature engineering. Also, we see that NN = 2000 and
NP = 3000 are already enough to deliver sufficiently high NH values, thus,
high-quality projections. The overall highest NH is obtained for NP = 6000,
same as in Tables 4(a, b). An interesting phenomenon happens when NP is
small (320 or 1000). In this case, we train PointNet with few shapes. We can see

174 X. Chen et al.

Table 4. NH projection quality for (a) ground-truth of pipeline P2; (b) P2 training;
(c) P2 testing; and (d) P3, for different values of the respective training-set sizes NP ,
NN , and NC. Color mapping follows the one in Table 3.

(a)

P2
 gr

ou
nd

-tr
uth

(b)

P2
 tr

ain
ing

(c)

P2
 te

sti
ng

(d)

P3

NH

that this does not yield high NH values. However, when next using more shapes
to train NNproj (NN increases), NH also increases. That is, we can use a small
labeled dataset to train PointNet, and then use a larger unlabeled dataset to
improve P2’s performance.

How much data (NC) is enough to train P3? Table 4(d) shows the NH
results of P3, trained using P1 for different training set sizes NC, and compares
them with those of P1 and P2. To ease comparison, the values in rows P2Train
and P2Test in Table 4(d) come from the diagonals of Tables 4(b, c) for NC =
NN = NP . Rows P1Train and P1Test show the NH values of P1 projecting
its training, respectively test, data. Rows P3Train and P3Test show the NH
values for P3 on training, respectively test, data. From Table 4(d), we see that P3
performs similarly to P2 on both training and test data, with good NH values
when having at least NC = 3000 training shapes.

How does PointNet’s accuracy influence P1 and P2? As explained, Point-
Net was originally designed for classification. However, we use here PointNet’s

Scalable Visual Exploration of 3D Shape Databases 175

feature vectors for projection. So, it is interesting to see if the classification-
related accuracy (AC) and projection-related quality (NH) are correlated. Sep-
arately, we ask ourselves if there is a relationship between the NH of ground
truth t-SNE and the NH of projections created with P2 and P3. To explore
this, we draw scatterplots of these values and compute their Pearson Correla-
tion Coefficients (PCC). Figure 9(a) shows the AC vs P1 NH and AC vs P2 NH
scatterplots. The plot contains 13 point-groups, one for P1 (blue), and the other
12 for an NN setting of P2 each (green color-coded on NN). These point-groups
are visually indicated by different colors and also connected by lines for easing
reading. The dotted line shows ideal perfect correlation, for reference. We see
that the PCCs of all these lines—each representing an instance of P1 or P2—
are close to 1, so P1 and P2’s NH metric directly correlates with PointNet’s
accuracy.

Next, Fig. 9(b) shows scatterplots of P2 and P3’s NH vs t-SNE’s NH val-
ues. The plot contains 13 point-groups, one for P3 (red), and the other 12 for
a NN setting of P2 each (green color-coded on NN). The PCCs of these lines
are also close to 1, so P1 and P2’s NH quality is directly correlated with the
ground-truth (t-SNE)’s quality. A similar correlation—albeit for a different deep
learning model for performing projections—was mentioned in [6], but not for-
mally assessed by means of PCC. The data for P3 (red line) may seem at first
sight far worse than that for P2 (green lines). However, this is due to a single
point for the lowest t-SNE NH value. For all other values, the red line is practi-
cally in the same area as the green lines, telling that P2 and P3 are very similar
from the perspective ov t-SNE vs deep-learning-network produced NH values.

How can we use classification accuracy to interpret projections? In P1
and P2, we trained PointNet for classification. Besides a feature vector, this deliv-
ers a confidence value for the classification. We can use this value for our visual
exploration goal, as follows. Figure 10 (top) shows the training-set projected by
P2, with point luminances encoding their classification confidences (dark = low,
bright = high confidence). We immediately see that confidence is high within
same-class clusters and low on the cluster borders. Also, as we increase the num-
ber of training samples NP for the PointNet classifier, we see how the confidence
nears 1.0 for most samples; although, the lowest-confidence ones still remain on

a) PointNet accuracy vs NH of P1, P2 pipelines b) t-SNE NH quality vs NH of P2, P3 pipelines

AC t-SNE NH

NH
 of

 P
1,P

2

NH
 of

 P
2,P

3

Fig. 9. a) Correlation of PointNet’s accuracy AC with the NH quality of pipelines P1
and P2. b) Correlation of t-SNE’s NH quality with the NH quality of pipelines P2
and P3.

176 X. Chen et al.

NP=320 NP=3000 NP=6000
Tr

ain
ing

Te
sti

ng
 (in

fer
en

ce
)

0.883 1.0 0.999 1.0 0.999 1.0

0.766 1.0 0.999 1.0 0.999 1.0

Fig. 10. Classification confidence values (dark= low, bright= high confidence), during
training (top) and testing (bottom) for the P2 pipeline trained with three NP values.

cluster borders. Figure 10 (bottom) shows the same visualization for a test-set
projected by the trained P2. For a small test set NP = 300, we see that con-
fidence is significantly lower than on the training set. For NP ≥ 3000, test set
confidence is basically the same (nearly one) as training set confidence. Impor-
tantly, we see that confidence is relatively lowest on the cluster borders also for
the test data. We can use these visualizations (on the test data) to assess how
confident we are that the shape database projection indeed faithfully reflects
the similarities of the underlying shapes. As expected, shapes close to cluster
borders are harder to classify, thus, have less discriminant feature vectors and
are in turn harder to project well. Upon seeing such images, users can decide to
e.g. further explore additional information concerning shapes having low classi-
fication confidence. This type of insight is crucial when interpreting projections
as it is well known that such methods cannot always place all their input data
correctly [7,14,17].

5.2 Computational Performance

We discuss next the computational performance of our three pipelines P1-P3.
For this, we split effort into setup effort, i.e., the time needed to perform all
operations required to have the pipeline ready for inference; and inference effort,
i.e., the time a pipeline needs to create the projection of a shape database.

Scalable Visual Exploration of 3D Shape Databases 177

Table 5. Setup time, pipelines P1–P3 (top). Setup time of P2 as function of NP and
NN (bottom).

Se
tup

 tim
e P

1-
P3

Se
tup

 tim
e d

eta
ils

 fo
r P

2

time
(secs)

Setup Time: Table 5(top) shows the setup time for all three pipelines. Columns
N indicate the training set size for the three pipelines, i.e., NP for PointNet,
NN for NNproj, and NC for P3, respectively. Row P1 shows the setup time for
P1, identical to PointNet’s training time. Row P2 shows the setup time for P2
when NN = NP (Table 5 (bottom) gives more detailed information, see next).
The setup time for P2 includes training PointNet, feature extraction, ground
truth generation (t-SNE), and training NNproj. Comparing the first two rows in
Table 5 (top), we see that training PointNet is dominating the setup of P2. Row
P3 shows the setup (training) time of P3 when we already have a ground truth
projection. We see that training P3 is slightly faster than training P1 since P3’s
network is slightly simpler. Finally, row P3′ shows the setup time for P3 when we
use P1 to create the ground truth needed for training it. Table 5 (bottom) shows
the setup time of P2 for all combinations of NP and NN in our experiments.
Values in this table increase rapidly with NP and slightly with NN . That is,
training NNProj is negligible compared to training PointNet.

Inference Time: Figure 11 shows the projection (inference) time for three
pipelines as a function of how many shapes they need to project. We see that all
three pipelines have linear time complexity. P1 and P2 are really close and they
are about 5 times faster than P1. The high relative cost of P1, and its deviations
from a perfect line, are explained by the fact that P1 uses t-SNE, whose cost (a)
is high and (b) varies depending on its stochastic initialization, this explaining
the wiggles in the blue line in Fig. 11 (for a related analysis, see [7]). In contrast,
P2 and P3 show a perfect linear relation with the shape database size, as these
are purely deep-learning model executions.

These three pipelines are all much faster than our feature selection method
which takes about 127 h to extract the 8 features we listed in Table 1 for 320
shapes.

178 X. Chen et al.

Fig. 11. Projection time comparison for pipelines P1, P2, P3.

6 Discussion

We discuss next several aspects of our proposal, as follows.

Feature Selection vs Feature Learning: We have presented two approaches
for creating shape-database projections: selecting features from a pre-computed
set based on feature engineering (Sect. 3) vs using an automatically learned fea-
ture vector using deep learning (Sect. 5). We call these next the feature selection
(FS) and the feature learning (FL) approaches. Both approaches share the same
aims, listed as Q1-Q3 in Sect. 4.1. From this viewpoint, each approach has its
own advantages and limitations. As mentioned at the beginning of Sect. 5, FS
has some clear limitations with respect to input shapes, user effort, replicability,
scalability, and ease of use – thus, it does not fully address Q1. The FL approach
scores very highly on all these points: It accepts any point cloud shape as input,
so has no constraints on mesh quality (input shape independence); it works fully
automatically, not requiring any specific user input (low user effort); it creates
projections deterministically, thus stably upon small-to-medium input changes
(replicability); it scales linearly with the input size, being 4 orders of magnitude
faster than FS; and it is very easy to deploy, being based on standard deep learn-
ing libraries [18]. Also, FL addresses Q2 (Sect. 4.1, i.e., which is the minimal
feature-set needed for a good projection, in a different way than FS: Its deep
learning approach does not care about feature selection, but rather synthesizes
features which are best for good projection creation. The results in Sect. 5.1
show quite clearly that FL can create high-quality projections this way, without
having to worry about feature selection. In contrast, FS must consider feature
selection, since it is by construction restricted to a fixed number of predefined
features.

However, FS has two interrelated advantages upon FL: First, it allows users
to see and select how features affect the projection (Q2, Sect. 4.1). The bar chart
view (Fig. 3) allows users to find and select features to optimize the projection
quality. Secondly, the FL feature scoring view (Fig. 4) interacts with the projec-
tion view to enable users to select specific features that explain the similarity of
shapes in a group and/or the separation of several groups, and, more importantly,

Scalable Visual Exploration of 3D Shape Databases 179

to generate custom projections in which separation of specific classes is favored.
Using these views for the same tasks with the FL features is not straightforward,
since NNproj is trained on an entire feature set and would need re-training if this
set changes. Also, the FL features are abstract, i.e., they do not have a concrete
meaning for users, thereby making reasoning about them extremely challenging.
Hence, globally put, FL is better when one wants a full control (and understand-
ing) of how features drive the projection creation; whereas FS is better when one
wants a fully automatic, easy to use, and scalable method that creates overall
good separation.

Selecting the Best Feature Learning Approach: We have studied and
presented two approaches for jointly doing feature learning and projection, called
P2 and P3. Which one is best? Our results (Sect. 5.1 shows that P2 and P3
produce very similar results, quality-wise, given the same (amounts of) training
data. P3 exhibits slightly higher quality than P2, which makes sense, as P3
trains jointly for both feature extraction and projection. Separately, the results in
Sect. 5.1 show very little variation in performance of all pipelines as a function of
their training set sizes. In practice, as we discussed there, setting NP , NN , and
NC around 3000 shapes gives good results for all pipelines, with only minimal
improvements obtained when tweaking these training-set size values.

Learning Projections: Currently, we train NNproj with all the 1024 PointNet
features to create projections. We could reduce this dimensionality to a lower
value using an intermediate autoencoder stage, or alternatively using a feature-
selection optimization technique as presented in Sect. 4.1. This would possibly
make NNproj’s task of learning projections easier in terms of training set size
required to obtain a certain class separation (NH) and/or epochs needed for
convergence. Concerning the choice of projection techniques, we used t-SNE to
train NNproj. However, learning other projection techniques such as UMAP may
lead to ultimately better, easier to interpret, projections.

Scalability: Both the FS and FL approaches depend linearly on the number
of shapes in the database to be explored and the number of features which are
extracted from each shape. Yet, as explained already, FS is 4 orders of magni-
tudes slower. For handling real-world databases of tens of thousands of shapes,
like ShapeNet, the FL approach is clearly more suitable. Note that both FS
and FL approaches can be applied offline, i.e., when shapes are changed and/or
new shapes are added to the database. Shape databases do not change with a
high frequency, so offline extraction can be done without highly affecting the
performance for the end user. We compute the t-SNE projection using scikit-
learn, which projects several hundreds of instances in a few seconds; the UMAP
implementation, provided by the authors [15], works in real time for this dataset
size. If needed, other, faster projections can be used [21]. From a visualization
viewpoint, the scatterplot, barchart, and matrix plot metaphors we use scale
well to hundreds of thousands of points (shapes) and tens of features.

Evaluation: One important aspect concerning our proposal is evaluating its
effectiveness for different types of tasks and users. In detail, we identify end
users, for whom tasks involve getting an overview of a shape database, finding
similar groups of shapes, finding which features make two shape groups similar
(or different), and finding outlier shapes; and technical users, for whom tasks

180 X. Chen et al.

involve selecting a small set of features able to create effective visualizations for
the first user group. We consider such evaluations to be part of future work.

7 Conclusion

We have presented a set of techniques for creating 2D visual representations for
exploring 3D shape databases for CBSR applications. Our approach is based,
first, on reducing shapes to feature vectors, followed by using dimensionality
reduction to create, and explore, 2D scatterplots that encode the shapes’ similari-
ties. We support both above steps (feature extraction and projection creation) by
two different mechanisms. First, we use a feature engineering approach, followed
by a scagnostics approach to create near-optimal projections, and accelerate the
automated search for good feature combinations using a greedy technique. To
refine the created projections beyond what the automatic search can do, we pro-
pose a visual analytics workflow that enables users to customize the obtained
projections in terms of separating specific classes or generating high-separation
projections for all classes, based on the separation power of all available features.
We show that our user-driven approach can create projections with better sepa-
ration than the automatic one, and also helps finding discriminating features (to
be used in a CBSR system) and confusing features (of little value for such sys-
tems). Our second approach uses deep learning approach to jointly cover feature
extraction and dimensionality reduction. This makes the end-to-end pipeline
automatic, easy to use, robust to database changes, and computationally scal-
able. Both our approaches can be applied to any 3D shape database, allowing
CBSR engineers to streamline the process of designing and selecting effective
features for shape classification and retrieval. We demonstrate our work on two
real-world 3D shape databases.

This work can be extended in several directions, as follows. Performing a
user study to measure how well our techniques can support typical exploration
tasks related to 3D shape databases, either in opposition to, or as an addition to,
existing exploratory tools for such databases, would be of evident added value.
Secondly, our techniques are generic, being able to handle any data collections
that can be described in terms of high-dimensional feature vectors. Hence, it
is interesting to consider its deployment in supporting the exploration of other
data types, such as image and/or text collections or scientific data collections.

References

1. Aim@Shape: Aim@shape digital shape workbench 5.0 (2019). http://visionair.ge.
imati.cnr.it

2. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape
matching and object recognition. In: Proceedings of the NIPS, pp. 831–837 (2001)

3. Bustos, B., Keim, D., Saupe, D., Schreck, T., Vranic, D.: Feature-based similarity
search in 3D object databases. ACM Comput. Surv. 37(4), 345–387 (2005)

4. Chen, X., Zeng, G., Kosinka, J., Telea, A.: Visual exploration of 3D shape databases
via feature selection. In: Proceedings of the 15th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications
- Volume 3: IVAPP, pp. 42–53. INSTICC, SciTePress (2020). https://doi.org/10.
5220/0008950700420053

http://visionair.ge.imati.cnr.it
http://visionair.ge.imati.cnr.it
https://doi.org/10.5220/0008950700420053
https://doi.org/10.5220/0008950700420053

Scalable Visual Exploration of 3D Shape Databases 181

5. Cyr, C.M., Kimia, B.B.: 3D object recognition using shape similiarity-based aspect
graph. In: Proceedings of the IEEE ICCV, pp. 254–261 (2001)

6. Espadoto, M., Hirata, N., Telea, A.: Deep learning multidimensional projections.
J. Inf. Vis. (2020). https://doi.org/10.1177/1473871620909485

7. Espadoto, M., Martins, R., Kerren, A., Hirata, N., Telea, A.: Towards a quantita-
tive survey of dimension reduction techniques. IEEE TVCG (2019). https://doi.
org/10.1109/TVCG.2019.2944182

8. Feng, C., Jalba, A.C., Telea, A.C.: Improved part-based segmentation of voxel
shapes by skeleton cut spaces. Math. Morphol. - Theory Appl. 1(1) (2016)

9. ITI DB: The informatics & telematics institute database (2019). http://3d-search.
iti.gr/3DSearch/index.html

10. Jalba, A., Kustra, J., Telea, A.: Computing surface and curve skeletons from large
meshes on the GPU. IEEE TPAMI 35(6), 783–799 (2013)

11. Jalba, A., Kustra, J., Telea, A.: Surface and curve skeletonization of large 3D
models on the GPU. IEEE TPAMI 35(6), 1495–1508 (2012)

12. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and
labeling. ACM TOG 29(4) (2010)

13. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-SNE. J.
Mach. Learn. Res. 9, 2579–2605 (2008)

14. Martins, R., Coimbra, D., Minghim, R., Telea, A.: Visual analysis of dimensionality
reduction quality for parameterized projections. Comput. Graph. 41, 26–42 (2014)

15. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv:1802.03426 (2018)

16. NASA: Nasa 3D resources (2019). https://nasa3d.arc.nasa.gov
17. Nonato, L., Aupetit, M.: Multidimensional projection for visual analytics: linking

techniques with distortions, tasks, and layout enrichment. IEEE TVCG (2018).
https://doi.org/10.1109/TVCG.2018.2846735

18. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing
Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf

19. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projec-
tion: a fast high-precision multidimensional projection technique and its applica-
tion to document mapping. IEEE TVCG 14(3), 564–575 (2008)

20. Peyre, G., Cohen, L.: Geodesic computations for fast and accurate surface remesh-
ing and parameterization. In: Bandle, C., et al. (eds.) Elliptic and Parabolic Prob-
lems. PNLDE, vol. 63, pp. 151–171. Springer, Heidelberg (2005). https://doi.org/
10.1007/3-7643-7384-9 18

21. Pezzotti, N., Lelieveldt, B.P., van der Maaten, L., Höllt, T., Eisemann, E.,
Vilanova, A.: Approximated and user steerable t-SNE for progressive visual ana-
lytics. IEEE TVCG 23(7), 1739–1752 (2017)

22. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for
3D classification and segmentation. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017

23. Rauber, P.E., da Silva, R.R.O., Feringa, S., Celebi, M.E., Falcão, A.X., Telea,
A.C.: Interactive image feature selection aided by dimensionality reduction. In:
Proceedings of the EuroVA, pp. 19–23 (2015)

24. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D
registration. In: Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 3212–3217 (2009)

25. Schmidt, W., Sotomayor, J., Telea, A., Silva, C., Comba, J.: A 3D shape descrip-
tor based on depth complexity and thickness histograms. In: Proceedings of the
SIBGRAPI (2015)

https://doi.org/10.1177/1473871620909485
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2019.2944182
http://3d-search.iti.gr/3DSearch/index.html
http://3d-search.iti.gr/3DSearch/index.html
http://arxiv.org/abs/1802.03426
https://nasa3d.arc.nasa.gov
https://doi.org/10.1109/TVCG.2018.2846735
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/3-7643-7384-9_18
https://doi.org/10.1007/3-7643-7384-9_18

182 X. Chen et al.

26. ShapeNet: ShapeNet online repository (2019). https://www.shapenet.org
27. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeleton-

isation using the shape diameter function. Vis. Comput. 24(4), 249–262 (2008)
28. Shen, Y.T., Chen, D.Y., Tian, X.P., Ouhyoung, M.: 3D model search engine based

on lightfield descriptors. In: Eurographics 2003 - Posters. Eurographics Association
(2003). https://doi.org/10.2312/egp.20031031

29. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape bench-
mark. In: Proceedings of the SMI, pp. 167–178 (2004). http://shape.cs.princeton.
edu/benchmark

30. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp.
336–343 (1996)

31. Shtrom, E., Leifman, G., Tal, A.: Saliency detection in large point sets. In: Pro-
ceedings of the IEEE ICCV, pp. 3591–3598 (2013)

32. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3D shape recognition. In: Proceedings of the IEEE ICCV, pp.
945–953 (2015)

33. Tangelder, J., Veltkamp, R.: A survey of content based 3D shape retrieval methods.
Multimed. Tools Appl. 39(3), 441–471 (2008)

34. Tasse, F., Kosinka, J., Dodgson, N.: Cluster-based point set saliency. In: Proceed-
ings of the IEEE ICCV, pp. 163–171 (2015)

35. Telea, A., Jalba, A.: Voxel-based assessment of printability of 3D shapes. In: Soille,
P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 393–404.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8 34

36. Tukey, J., Tukey, P.: Computer graphics and exploratory data analysis: an intro-
duction. In: The Collected Works of John W. Tukey: Graphics: 1965–1985 (1988)

37. TurboSquid Inc: Turbosquid shape repository (2019). https://www.turbosquid.
com

38. Verma, V., Snoeyink, J.: Reducing the memory required to find a geodesic shortest
path on a large mesh. In: Proceedings of the ACM GIS, pp. 227–235 (2009)

39. Wattenberg, M.: How to use t-SNE effectively (2016). https://distill.pub/2016/
misread-tsne

40. Wilkinson, L., Anand, A., Grossman, R.: High-dimensional visual analytics: inter-
active exploration guided by pairwise views of point distributions. IEEE TVCG
12(6), 1363–1372 (2006)

https://www.shapenet.org
https://doi.org/10.2312/egp.20031031
http://shape.cs.princeton.edu/benchmark
http://shape.cs.princeton.edu/benchmark
https://doi.org/10.1007/978-3-642-21569-8_34
https://www.turbosquid.com
https://www.turbosquid.com
https://distill.pub/2016/misread-tsne
https://distill.pub/2016/misread-tsne

	Scalable Visual Exploration of 3D Shape Databases via Feature Synthesis and Selection
	1 Introduction
	2 Related Work
	3 Feature Selection Method
	3.1 Preprocessing
	3.2 Local Feature Computation
	3.3 Feature Vector Computation
	3.4 Dimensionality Reduction

	4 Applications
	4.1 Optimal Scatterplot Creation
	4.2 Fast Computation of Near-optimal Projection Scatterplot
	4.3 User-Driven Projection Engineering
	4.4 Use-Cases

	5 Feature Learning Method
	5.1 Experiments and Results
	5.2 Computational Performance

	6 Discussion
	7 Conclusion
	References

