Investigating Desirable Properties of Inverse
Projections and Decision Maps

Yu Wangl[0000—0001—6066—0279] and Alexandru Teleal [0000—0002—1129—4628]

Department of Information and Computing Science, Utrecht University, 3584 CS
Utrecht, The Netherlands
{y.wang6, a.c.telea}@uu.nl

Abstract. Inverse projection techniques enable the creation of decision
maps which help the visual exploration of trained classification mod-
els. However, different inverse projections lead to significantly different
decision maps for the same model, leading to uncertainty in their in-
terpretation. Recent work compared three inverse projection techniques
from the perspective of their intrinsic dimensionality and showed that all
three techniques visualize only two-dimensional substructures in the data
space. We extend this evaluation in several directions. First, we consider
three additional inverse projections thereby covering, to our knowledge,
all such techniques in existence. Secondly, we correlate the quality of
the inverse projections with their ability to depict certain types of data
structures. Finally, we study the smoothness of the structures created
by inverse projections. Our results show that all inverse projection tech-
niques essentially cover only two-dimensional structures in the data space
and that the smoothness of such structures is inversely correlated with
their ability to approximate data points. Based on our findings, we also
propose ways to select inverse projections which lead to interpretable
decision maps.

Keywords: Dimensionality reduction - Inverse projections - Decision
maps - Intrinsic dimensionality.

1 INTRODUCTION

Dimensionality reduction (DR) methods, also called projections, map high-dim-
ensional data samples to a low-dimensional space (typically 2D or 3D for visual-
ization purposes) while aiming to keep neighborhood and/or distance relations
between the data samples. DR methods scale very well both in the number of
samples and number of dimensions, which has made them widespread candidates
for building visualization applications for high-dimensional data.

Inverse projections, also sometimes called backprojections, aim to reverse
— in a broad sense — the mapping produced by a DR method. Inverse projec-
tions have enabled multiple applications such as shape or image morphing [1],
data imputation [18], and constructing so-called classifier decision maps [39,43,
34] that depict the behavior of a trained machine learning (ML) model. Key

2 Y. Wang and A. Telea

DBM (UMAP+NNinv) SDBM DeepView

Fig.1. A first indication of the limitations of three inverse projection techniques
(NNInv [39], SDBM [34], DeepView [43]) outlined by Wang et al.[49]. For a Logistic
regression classifier trained on a simple 3D synthetic 6-blobs dataset, all three inverse
projections generate relatively smooth surfaces (embedded in the considered 3D data
space) which interpolate between the training-set samples. Both surfaces and samples
are colored to indicate the class labels at the respective locations in 3D space.

to all these applications of inverse projections is their ability to extrapolate the
low-to-high dimensional mapping away from the data points which are projected
from the high to the low dimensions by a DR technique. This ability is crucial
for all aforementioned applications — inferring data values in the ‘empty space’
between the points created by a projection, generating shapes or images that
‘morph’ (that is, interpolate) between a selected set of examples, and inferring
how a ML model behaves on data values outside a given training or test set.

Wang et al. [49] first explored the behavior of inverse projections by a sim-
ple experiment which depicted the decision maps of a linear regressor model
trained on a synthetic 3D dataset. All three inverse projections they examined
(NNInv [39], SDBM [34], DeepView [43]) created essentially smooth surfaces that
interpolate between the 3D samples (see Fig. 1). Practically, this means that de-
cision maps created by these methods will only show the model’s behavior on
a small 2D subset of the entire 3D data space the model works on, namely the
aforementioned surfaces. How the model behaves on samples away from these
surfaces is not shown.

In our recent work [50], we aimed to answer several questions to further ex-
plore the surface-like behavior of inverse projections observed by Wang et al.:

Q1 How do decision maps look like for different ML models than the one used
by Wang et al.?

Q2 How do the boundaries we see in Figure 1 relate to the actual decision
boundaries of a classifier?

Q3 Which parts of the data space do decision maps cover for data spaces having
many more than three dimensions?

Q4 How do different inverse projection techniques influence the answers obtained

for Q1-Q37

To answer Q1-Q4, we studied the behavior of NNInv, SDBM, and DeepView
on a combination of several datasets (of varying dimensionality) and classifica-
tion models. Next, we proposed a way to measure how far an inverse projection

Desirable Properties of Inverse Projections and Decision Maps 3

can produce structures away from a single surface using intrinsic dimension es-
timation [6, 10, 11, 4]. Jointly put, our findings showed that, for all datasets, all
three inverse projections essentially create surface like structures — with varying
local smoothness — when mapping all points of the 2D space, except for points
very close to the ones created by the direct projection.

However, the experiments in [50] leave several questions unanswered:

Q5 How are Q1-Q3 answered for additional direct and inverse projection tech-
niques?

Q6 How is the smoothness of the backprojection influenced by the direct-and-
inverse projection technique choice?

Answering Q5 is important for practitioners aiming to choose which (inverse)
projections to use for any of the aforementioned applications (imputation, mor-
phing, decision maps). In our work, we address this by studying several ad-
ditional combinations of direct projections (UMAP [31], MDS[8]) and inverse
projections (iLAMP [41], RBF[1], and iMDS[7]). Answering Q6 is important
as the earlier experiments in [50] showed, but did not explain, variations of the
backprojection smoothness. A smooth backprojection is essential for interactive
applications such as morphing where users want that small changes of a selected
2D point yield only small changes of the inferred data sample [41]. Conversely,
a backprojection that aims to cover as much as possible from the data space
will be more effective in e.g. creating decision maps that capture more of a ML
model’s behavior, but will be likely less smooth. Understanding the inverse pro-
jection’s smoothness is thus important for users to make informed choices for
such applications.

The structure of this paper is as follows. Section 2 introduces related work.
Section 3 presents our results for 3D datasets, for which direct visual evaluation
can be used to answer our questions. Section 4 extends our evaluation with new
methods that address high-dimensional data. Section 5 discusses our findings.
Finally, Section 6 concludes our paper.

2 BACKGROUND AND RELATED WORK

Definitions: We first introduce the notations and concepts further used in this
paper. Let x € R" be an n-dimensional sample or data point and D = {x,},
j=1,2,...,N, a dataset of N such samples.

A classification model (or classifier) is a function

f:R* > C (1)

that maps a sample x to a label f(x) in a given label-set C. A decision zone of
f, for class y € C, is the point set {x € R"|f(x) = y}; the boundaries separating
decision zones are called the decision (hyper)surfaces of f.

A projection, also called dimensionality reduction (DR), is a function

P : P(R") — P(RY), (2)

4 Y. Wang and A. Telea

where P denotes the power set. That is, P maps datasets D C R" to datasets
P(D) € RY, where ¢ < n. We further use the term projection to denote both
the operation P and also its output P(D) for a given input D, depending on
the context. For visualization purposes, one typically uses ¢ = 2. By abusing
notation, we denote P(x) to be the point in P(D) that corresponds to the sample
x € D. Tens of different projection techniques exist with different abilities to
capture data-space similarities R™ by corresponding similarities in the projection
space RY, computational speed, robustness to noise, out-of-sample ability, and
ease of use and implementation. Extensive surveys cover all these aspects [16, 32,
25,45, 15].
An inverse projection, or unprojection, is a function

P71 R? - R™, (3)

which aims to reverse the mapping of a given projection P for a given dataset D.
Typically P~ is constructed by minimizing errors of the form Y~ , [|P~*(P(x))
x||. In most cases, P~! is not the mathematical inverse of P since P may not
be injective i.e. it can map different samples in R™ to the same point in RY.
Moreover, P~ ! is definitely not surjective since P only maps the points in the
finite set D to RY. Hence, there is an infinity of points in R? that are not covered
by P but need to be handled by P~! to enable applications such as shape or
image morphing [41], data imputation [18], and constructing classifier decision
maps (detailed further below).

An important difference between direct and inverse projections follows from
the above. A direct projection aims to map a given, finite, set of samples from
high to low dimensions. Formally speaking, direct projections do not need to
be functions — they only need to produce the g-dimensional counterparts of a
n-dimensional sample set D while obeying certain quality criteria [16, 32]. For
example, DR techniques like t-SNE [28] are non-parametric (thus are not func-
tions) since, for the same input sample set D, they can generate different outputs
P(D). In contrast, inverse projections aim to produce a function that not only
reverses the effect of a direct projection for the aforementioned D, but also
smoothly extrapolates this effect to any point in the g-dimensional space in a
deterministic way.

While many direct projection algorithms exist [16], only a few inverse pro-
jection techniques have been proposed. This can be explained by the fact that
computing inverse projections is significantly harder than computing direct pro-
jections. The key problems are that (a) inverse projections need to create high-
dimensional data from a (very) low-dimensional input in a meaningful way;
and, even more difficult, (b) are used specifically to infer data samples for g¢-
dimensional points for which no ground-truth projection information is avail-
able. Concerning existing inverse projection methods, iLAMP [41] uses local in-
formation in P(D) to build affine transformations that map R? to R™. Although
iLAMP was proposed to reverse the LAMP projection technique [26], it can be
used to reverse other projections P with reasonable results [40, 20]. The same au-
thors next proposed an inverse projection method using Radial Basis Functions

Desirable Properties of Inverse Projections and Decision Maps 5

(RBFs) to gain continuity and global behavior. NNinv [20] constructs P~! by
deep learning to map the points of any given 2D scatterplot P(D), constructed
by any projection technique P, to corresponding samples in D. SSNP [19] uses
semi-supervised deep learning to construct both a P and its inverse P!, follow-
ing an autoencoder principle [24]. DeepView [43] customizes the UMAP projec-
tion [31] with a classifier to produce a discriminative projection while a modified
UMAP was used for inverse projection. More recently, Blumberg et al. [7] pro-
posed iMDS to invert MDS projections using multilateration with randomly
selected samples to estimate the inverse projections.

Decision maps aim to construct dense visualizations of a trained ML model
f as follows. Let I = {p € R?} be an image that samples the 2D zone containing
the projection P(D). A decision map is simply the image I whose pixels p
are colored to depict the labels f(P~1(p)) inferred by the model f. Same-color
areas in I thus show the decision zones of f; neighbor pixels of different colors
indicate the decision boundaries of f. The set I~1 = {P~!(p)|p € I}, optionally
colored as mentioned above, is called the backprojection of the decision map; the
surfaces in Fig. 1 are examples hereof. As such, Q3 and Q6 (see Sec. 1) relate
to how much of the data space does I~! cover, respectively how smooth is 71.
Decision maps assist many tasks in ML engineering such as understanding how a
model generalizes from a training set [20, 44, 43|, studying how different models
agree [18], dynamic data imputation [18], and studying a model’s brittleness [29].

In principle, decision maps can be constructed using any inverse projection
P~1, suitably constructed from any direct projection P. However, only a limited
number of (P, P~!) combinations have been used to this end, as follows. Es-
padoto et al. [17] tested 28 projection techniques P with iLAMP as the inverse
projection to construct decision maps and concluded that t-SNE and UMAP
were the best choices for P. Following this, DBM [40] used UMAP [31] or t-
SNE |28] for P and NNinv [20] for P~!. Recently, DBM was accelerated by using
bisection techniques to reduce the number of times that a given P~! needs to
be invoked [23]. Espadoto et al. [20] used UMAP and t-SNE for direct projection
while using iLAMP or RBF for the inverse one. DBM was improved to produce
less noisy images by filtering out poorly projected samples [39]. SDBM [34] uses
SSNP which, as already mentioned, provides both P and P~!. DeepView [43]
leverages discriminative dimensionality reduction [42] to enhance the direct pro-
jection UMAP [31], which also provides an inverse projection. Finally, the recent
inverse projection iMDS[7] can also potentially be used to construct decision
maps if P is set to MDS — though this was not tested in practice.

Evaluations of decision maps involve the following aspects:

— wvisual quality: Decision maps created by different methods are compared
against each other with the best one chosen based on agreement with ground-
truth information on the visualized model [40, 39, 34, 17];

— stability: Oliveira et al. [33] studied how much DBM and SDBM maps would
change in presence of small training set perturbations and concluded that
these methods are quite robust to such changes;

6 Y. Wang and A. Telea

— accuracy and speed: Wang et al. [49] provided a detailed quantitative evalua-
tion of the quality and speed of decision map methods by extending classical
ML performance metrics [43] with several visualizations;

— coverage: Wang et al. [49] also showed that, for the simple example of a linear
regressor trained on a 3D dataset, DBM, SDBM, and DeepView only depict
a surface (see again Fig. 1). We recently extended this evaluation to consider
datasets of varying dimensionality and several more complex classifiers [50].

3 VISUAL EVALUATION ON 3D DATA

To answer question Q5 (Sec. 1), we first extend the visual evaluation for 3D
datasets in [50] to use more inverse projection techniques. We next evaluate these
techniques on high-dimensional data (Sec. 4).

3.1 Method

Dataset: We conduct this evaluation using the well-known three-class Iris flower
dataset [22]. As explained in [50], the key idea of visual evaluation is to directly
draw the backprojected decision maps I~! and see how these actually cover
the data space of the trained ML model they are supposed to depict. To be
able to create such visualizations, we need our dataset to have maximally n =
3 dimensions. We achieve this by restricting the Iris dataset to its last three
features.

Decision map methods: Besides the three decision map methods used in [50],
i.e., DBM [40], SDBM [34], and DeepView [43], we also consider three additional
inverse projection techniques: iLAMP [41], RBF [20], and iMDS [7]. For all meth-
ods except SDBM and DeepView (which use their own direct projection tech-
niques, see Sec. 2), we now use MDS as direct projection. This is because (a)
one of the considered inverse projections, iMDS, only works with MDS as di-
rect projection; and (b) this setting allows us to minimize the number of direct
projection techniques we use and thus provide a more intuitive comparison.

Classifiers: We study the behavior of decision maps using six classifiers: Logistic
Regression [13], Support Vector Machines [12, SVM], Random Forests [9], Neural
Networks, Decision Trees, and K-Nearest Neighbors (KNN). All are implemented
using Scikit-Learn [38] with default parameters, except Neural Networks, which
uses three hidden layers each with 256 units. For each classifier, we not only
construct the backprojected decision maps I~1 (see Sec. 2) for the six studied
decision map techniques, but also visualize the actual decision boundaries in the
3D data space.

3.2 Results

Preliminary comparison: Figure 2 (top two rows) shows the backprojected
decision maps, each from two different viewpoints (for better interpretation), for

Desirable Properties of Inverse Projections and Decision Maps 7

the six studied direct-and-inverse projection combinations (columns). For ease
of interpretation of the results, we use here only the simple Logistic Regression
classifier. The corresponding 2D decision maps are shown in Fig. 2 (bottom row).
This preliminary investigation already reveals several interesting facts.

Firstly, we see that the backprojected decision maps for the first three meth-
ods (DBM, SDBM, DeepView) have very similar smooth-surface-like shapes as
the ones shown in Fig. 1 for the synthetic blobs dataset. The backprojected
surfaces of DBM and SDBM are quite smooth and, as such, cannot get very
close to (all) the actual data points; In contrast, DeepView creates a much more
noisy surface which ‘connects’ the data points better. This is also observed in
the actual 2D decision maps (bottom row in Fig. 2): The maps for DBM and
SDBM have far smoother decision boundaries than the DeepView map. This tells
us that DBM and SDBM can depict the classifier’s behavior further from the
training set (extrapolation), whereas DeepView shows this behavior close to and
inside this set (interpolation). Further on, we see that the backprojected decision
maps for MDS+iLAMP, MDS+RBF, and MDS+iMDS behave very differently
from the first three techniques. The latter two generate decision maps and back-
projections which are very similar to each other and also quite close to a planar
surface. Slight differences exist though: MDS-+RBF creates a quite smooth back-
projection that strictly passes through every sample x, i.e., P71 (x) = x for all
x € D. In contrast, MDS+iMDS creates a noisier backprojection that does not
strictly pass through the data samples. The most noticeable outlier is the re-
sult of MDS+iLAMP. It shows the appearance of a ‘triangle soup’ that exhibits
practically no smoothness. In contrast, its backprojection covers far more of the
3D data space than all other compared methods. It is worth mentioning here
that such discontinuities, originating from the iLAMP inverse projection, is pre-
cisely why the iLAMP authors next proposed the RBF inverse projection which
is continuous and smooth [1].

Detailed comparison: We now extend the findings obtained so far using the
Linear Regressor classifier to all six classifiers mentioned in Sec. 3.1. At the
same time, we extend the visual exploration used in Fig. 2 to show not only
the backprojections I~' but also the actual decision zones and decision surfaces.
As this creates quite complex imagery, we now restrict the Iris dataset to its
last two classes. This will decrease the amount of colors we need to use in our
visualizations to two. Note that these two classes are not fully linearly separable,
which makes our classification task more challenging than the synthetic blob
dataset used in Fig. 1.

Figure 3a shows the actual decision zones and decision boundaries and the
backprojected decision maps for the six classifiers mentioned in Sec. 3.1 and
the same six decision map methods already explored in Fig. 2. The actual 2D
decision maps are shown in Fig. 3b. We further study the differences between the
backprojected decision map and the actual decision zones and surfaces as follows.
We sample the 3D data space on a voxel grid of size 100? (to limit computational
effort); compute, for each voxel v, the predicted class f(v), and color code it;

8 Y. Wang and A. Telea

DBM(MDS+NNInv) SDBM DeepView MDS+iLAMP MDS+RBF MDS+iMDS

3D viewpoint 1

3D viewpoint 2

decision maps

Fig. 2. Top two rows: Backprojections of the decision maps constructed by 6 inverse
projection techniques (columns) with Logistic Regression on IRIS dataset, viewed from
two viewpoints. Bottom row: Corresponding (2D) decision maps.

and draw this color-coded volume half-transparently (Fig. 3a, bottom 6 rows).
The yellow, respectively purple, volumes are thus the actual decision zones of
f. For clarity, we show these volumes, without the backprojection I~!, in the
leftmost column in Fig. 3a. Also, we draw the actual decision boundary S that
separates the two decision zones in beige — see Fig. 3a, leftmost column, top cell
for an example.

Figure 3 leads us to several insights. First, we see that the backprojected de-
cision maps I~! (shaded surfaces in Fig. 3a, top row), i.e., the part of the data
space that a decision map visualizes, are roughly orthogonal to, and intersect-
ing, the actual decision surfaces (pale brown in Fig. 3a). That is, the boundaries
which we see in a decision map (curves where yellow meets purple in Fig. 3b)
are the intersection S N I~!. Separately, if we scan a column in Fig. 3a, we see
that the backprojections I~! are the same — or almost the same in the case of
MDS+iMDS and DeepView (the reason for this is discussed separately below).
However, as the classifiers change (rows), the decision boundaries change — see
Fig. 3a, leftmost column. Hence, the intersection of I~ with the actual deci-
sion boundary will change. As mentioned, this intersection is precisely what we
see as color boundaries in a 2D decision map. So, if the backprojection I~ is
not smooth, this intersection can change significantly, even when the visualized
classifier model changes only slightly. Simply put, this means that decision maps
whose backprojections look ‘crumpled’ (non-smooth) can be very unstable and
thus unsuited for practical use. Even stronger: the non-smoothness of the back-
projection can create the false impression that a classifier has complex decision
maps. Take for instance Logistic Regression, SVM, or Neural Networks; these
classifiers show very smooth decision boundaries (Fig. 3b, leftmost column).
However, their 2D decision maps created with DeepView or MDS+iLAMP show

Desirable Properties of Inverse Projections and Decision Maps 9

DBM (MDS+NNInv) SDBM DeepView MDS+LAMP MDS+RBF MDS+MDS

decision surface

backprojections

Neural Random Logistic
Network Forest SVM Regression

Decision
Trees

KNN

=
-]
L3
2 2
>
o i
3

3

Decision
Trees

b)

Fig. 3. Decision maps (a) backprojected in 3D; (b) original in 2D of six classifiers,
modified Iris dataset, computed by six techniques. The decision zones are yellow, re-
spectively purple; the decision surface separating them is beige. The shaded surfaces
are the backprojected decision maps. Figure extends Fig. 2 in [50].

10 Y. Wang and A. Telea

complex, non-smooth boundaries, which is clearly misleading. All in all, the
above insights argue in favor of e.g. (S)DBM and MDS+RBF as techniques for
creating decision maps and definitely against DeepView and MDS+iLAMP.

Secondly, we see that no decision map technique can actually depict the full
decision boundaries of any classifier. For example, the linear decision boundary
of Logistic Regression is not well captured, except by MDS-+iMDS. The other
decision maps show non-linear boundaries or even disconnected decision zones,
see e.g. DeepView and MDS+IiLAMP. Another example is for Decision Trees.
We see that the actual decision zone (purple) is split into two disconnected
components (top and bottom purple cubes (Fig. 3a, leftmost column)). However,
none of the tested decision map techniques shows two such separated purple
decision zones (Fig. 3b).

Finally, let us revisit the issue of the backprojection shapes generated by
a given technique. DBM, SDBM, iLAMP, and RBF produce exactly the same
shapes regardless of the classifier they depict — indeed, their P and P~! do not
depend on the classifier. In contrast, MDS+iMDS and DeepView can generate
(slightly) different shapes for different classifiers, for different reasons, as follows.
By design, DeepView uses discriminative dimensionality reduction [42], so its P
depends on f. As for the reason why MDS+iMDS has different shapes for rows,
this is because iMDS uses random selections of samples to compute its P~!.
While one can argue that DeepView’s design shows more information on f,
controlling how DeepView’s decision maps actually sample the data space as a
function of f is unclear. As such, we believe that the approaches of (S)DBM,
iLAMP and RBF where this sampling only depends on the training set, are more
intuitive and stable.

4 EVALUATION ON HIGH DIMENSIONAL DATA

We next extend the quantitative evaluation of inverse projections and decision
maps for high-dimensional datasets in [50] to use all six inverse projection tech-
niques listed in Sec. 3.1. Additionally, we substitute UMAP for MDS when using
it in combination with the inverse projection techniques NNInv, RBF, and iL-
AMP, as UMAP is far better suited to handle high-dimensional data than MDS.
We also present additional quantitative measurements that gauge the quality
of the studied inverse projections and corresponding decision maps, as well as a
visual exploration of the smoothness of the studied inverse projection techniques.

4.1 Method

Since decision maps fundamentally depend on inverse projections, it makes sense
to first and foremost quantify the quality of P~!. Further on, for n > 3 dimen-
sional data, we cannot directly draw the backprojected images 17!, as already
mentioned in Sec. 3.1. Recall now our question Q3 (Sec. 1). To answer it, we
measure how far I=! is, locally, from a two-dimensional manifold embedded in
R™. For this, we use intrinsic dimensionality (ID) estimation [4] with a linear

Desirable Properties of Inverse Projections and Decision Maps 11

method, i.e., Principal Component Analysis (PCA), due to its intuitiveness,
computational efficiency, ease of use, and popularity [16, 4, 46]. Finally, we use
the gradient map technique [18] to get insights into the decision maps’ smooth-
ness. All these steps are detailed further below.

Datasets. We use five synthetic and real-world datasets, all having N = 5000
samples (Tab. 1). The synthetic datasets, with dimensionality n of 10, 30, and
100, consist of each of C' = 10 isotropic Gaussian blobs. Using isotropic blobs
ensures that the ID is the same as the dimension count n for these datasets. As
real-world datasets, we use HAR [2] and MNIST [27]. The intrinsic dimensionality
of these datasets has been estimated by prior work [14, 21, 3,5]. We use Logistic
Regression as an example classifier f. Note that this does not affect the ID
estimation, as f is not involved in P~!’s construction.

Dataset n N |C|

Blobs 10D (synthetic) 10 5000 10

Blobs 30D (synthetic) 30 5000 10

Blobs 100D (synthetic) 100 5000 10

HAR [2] 561 5000 6

MNIST [27] 784 5000 10
Table 1. Datasets used for ID estimation. For each dataset, we list the provenance,
dimensionality n, sample count N, and class count |C|. Table taken from [50].

Error of the Inverse Projection. We measure the quality of an inverse pro-
jection P! for a given dataset D and its projection P(D) by the mean squared
error (MSE) of the backprojection D' = P~1(P(D)) which is defined as

MSE = 5 3 x = P (PGO) ()
xeD

As explained in Sec. 2, an ideal inverse projection P~! should yield P~}(P(x)) =
x for all x € D, i.e., have zero M SE. Conversely, if this error is large, then the
inverse projection is likely poor and will lead to meaningless decision maps.

Intrinsic Dimensionality Estimation. Let X be a dataset in R™ with S(x)
being its k nearest neighbors in X. Let A = (A1, A2, ..., \,) be the n eigenvalues
of S(x)’s covariance matrix, sorted decreasingly. Wang et al. [50] proposed to
define the ID of S(x) as the smallest d value so that the sum of the first d
eigenvalues is larger than a given threshold 6, where 6 was set to a value close
to 1, specifically 0.95 in their experiments. This method is also known under the
name total variance [46]. When using the total variance method for computing
d;, we found that, in the case of iILAMP (an inverse projection method they

12 Y. Wang and A. Telea

didn’t study but we do), sometimes the first two eigenvalues capture a significant
portion of the variance (e.g., 85%); however, to arrive at 95%, one would need a
large number of additional eigenvalues (e.g., over 500 on MNIST dataset), each
contributing less than 1% to the total variance. Obviously, this is not desirable,
as it would highly overestimate the intrinsic dimensionality. To cope with this, we
adopted the alternative definition of intrinsic dimensionality known as minimal
variance which solves precisely this problem [46] — that is, we define ID as the
number of eigenvalues each accounting for at least 6 percent of the data variance,
where 6 is set typically to a small value.

Algorithm 1 shows our computation of ID values. We set # = 0.01, thereby
identifying the principal components that capture more than 1% of the total
variance as significant for the intrinsic dimensionality. The size k of the local
neighborhood S(x) needs careful setting. A too large k leads to overestimating
the local ID. Conversely, too small k values lead to noisy estimations. Note that
d + 1 independent vectors are required to span d dimensions, so k should be at
least equal to the actual ID of S(x)[47]. We have ID estimations ranging from
13 to 33 for MNIST [21,3,5]; and from 15 to 61 for HAR, depending on the
estimation method [14]; our synthetic datasets have known ID values of 10, 30,
and 100 (see Tab. 1). To cover all the above cases, we globally set k = 120.

Algorithm 1: Intrinsic Dimensionality Estimation

Data: X, set of data points in R™ (can be D, D', or I™!); neighborhood size
k = 1205 threshold 6 = 0.01
Result: d, the estimated ID of X (average among all local neighborhoods)

1 begin

2 for x € X do

3 Find the k nearest neighbors S(x) of x; in X;

4 Compute the covariance matrix Cov of S(x);

5 Compute the eigenvalues A = (A1, A2, ..., \,) of Cov;
6 Sort A in descending order;

7 Calculate ID d(x) of S(x) as

We perform two different ID estimations, as follows. First, for a given dataset
D and its 2D projection P(D), we compute the average ID of the backprojection
D' = P~1(P(D)) over all neighborhoods S(x), denoted I Dp,. We then compare
1D pr with the ground-truth average ID of D, denoted IDp. Both IDp and IDp:
are computed using Alg. 1 with D and D’ as inputs, respectively. For an ideal
inverse projection P! that perfectly reverses the effects of a direct projection
P on D, we would obtain IDp, = IDp. Secondly, to study how well a decision

Desirable Properties of Inverse Projections and Decision Maps 13

map covers the data space it aims to depict (see Q3, Sec. 1), we create a pixel
grid I of size 5002 and backproject it by P~! to obtain a sample set I=!. We
next measure the ID at each sample p € I~! using Alg. 1 with I=! as input.
Let the resulting value at p be called ID,. Finally, we color the image I by the
values ID, and also compute the average ID,, over all pixels in I.

dataset D projection P(D)
R / P R2
ogo°o°°°°/ \AOO0 Dggo
[DD ‘ °o oo °°o°° o oo
IDD' ‘ ‘e o ‘““. ", \ﬁ—/ :igo:
D, +| - S | —EE
backprojection 7-! P! pixels 7
backprojection D’

Fig. 4. Computing the intrinsic dimensionality of data, backprojection of data, and
backprojection of pixels. Image taken from [50].

Figure 4 depicts all the above processes: Given a dataset D, we compute
its 2D projection P(D). We inversely project these points via P~! to get the
backprojection D’. Separately, we inversely project all pixels in the image I to
get the sample set 1~!. In this example, the intrinsic dimensionality IDp is the
same to IDps for the yellow areas in D; and higher than I Dp/ for the green
areas in D, respectively.

Gradient Maps. To study the smoothness of the computed decision maps, we
use the gradient map technique [18], which works as follows. Since I~ is a func-
tion of two variables (the z and y coordinates of R?), we can estimate its gradient
magnitude ||VI~1| = /(0I-1/0x)% + (0I-1/0y)? using central differences as

or! p) = P~ '(p+ (w,0)) = P~'(p — (w,0))

o () - 9 ’
oI Pp+(0,0) — P~ (p— (0,w))

G(p) = V1 (0)] = ¢ (2 w) (%))

where w is a small step size, set to the size of one pixel for all our experiments.
Areas in a decision map where G is large mean that neighboring pixels are
backprojected by I~! far away from each other in the data space, hence the map
is unreliable at those locations. Conversely, areas in a decision map with low G
mean that neighboring pixels sample the R™ space at close locations. Assuming
a (relatively) smoothly evolving classifier f over R™, such areas will accurately
capture the local behavior of f.

14 Y. Wang and A. Telea

4.2 Results

Error Assessment. Table 2 shows the MSE results for all our datasets and
decision map computation methods. Values for the iLAMP and RBF inverse pro-
jections are exactly zero since these methods enforce that P~1(P(x;)) = z; for all
x; € D by construction. We see that the MSEs of DBM, SDBM, and DeepView
are quite low and comparable across all datasets, indicating that these inverse
projections are similar and reliable. In contrast, the MSE of MDS+iMDS is sig-
nificantly higher. On the synthetic datasets (Blobs), the errors of MDS+iMDS
are 2 to 3 orders of magnitude higher than for the other tested methods, which
may be acceptable in the limit. However, on the real-world datasets (HAR and
MNIST), the errors of MDS+iMDS become much higher. This indicates that
the backprojections of MDS+iMDS, and thus the corresponding decision maps,
are likely meaningless. Figure 5 confirms this by running a simple test on the
MNIST dataset. For 14 images x; in this dataset (top row), we show the cor-
responding inverse projections P~!(x;) computed by DBM, SDBM, DeepView,
and MDS+iMDS. The first three methods yield very similar images to the orig-
inal ones, as expected due to the low MDS thereof. In contrast, MDS+iMDS
yields basically noise.

Blobs 10D Blobs 30D Blobs 100D HAR MNIST

DBM 1.83x 1073 213 x 103 2.16 x 10~> 5.30 x 10~2 3.67 x 1072
SDBM 2.22 x 1072 2.06 x 1073 2.16 x 1072 8.69 x 1072 5.28 x 1072
DeepView 1.42 x 1072 1.67 x 1072 1.90 x 1072 4.40 x 1072 2.92 x 1072
UMAP+iLAMP 0 0 0 0 0
UMAP+RBF 0 0 0 0 0

MDS+iMDS 1.07 x 107" 6.11x 107" 571 x 10° 5.15 x 10** 6.19 x 10°
Table 2. MSE of the backprojection for the studied datasets.

Fig. 5. Selected samples from MNIST and their corresponding backprojections using
different P~! methods. Compare with the MSE values in Tab. 2.

Desirable Properties of Inverse Projections and Decision Maps 15

Intrinsic Dimensionality Estimation. To answer Q3, we first test how well
an inverse projection P~ covers the data space D it aims to depict. For this, we
compare the estimated ID of the actual data (IDp) with that of the round-trip
consisting of the direct and inverse projections (I Dp-). As explained in Sec. 4.1,
an ideal inverse projection would yield IDp, = IDp. Table 3 shows the results
for our five studied datasets. A first consistency check is to see how good the
estimated I Dp is. We see that these values align well with the expected (ground-
truth) ID values for most datasets. The largest difference occurs for Blobs 100D,
which is due to the fact that this dataset isotropically spreads in 100 dimensions
at every blob by construction (see Sec. 4.1); the ID estimation by PCA (Alg. 1)
is heavily affected by the well-known curse of dimensionality.

Given the above, we can next compare the estimated IDp with the round-
trip estimation IDp to gauge the inverse projection quality (see Tab. 3). Just
as for the 3D data discussed in Sec. 3.2, we see that (S)DBM creates basically a
two-dimensional, surface-like, structure in the data space. DeepView is slightly
better in capturing the IDp of the data — which matches the fact observed for
3D datasets that its backprojected surfaces have more complex shapes that aim
to connect the data samples (Fig. 3). Still, DeepView’s IDp. values are much
lower than the estimated IDp. Note that iLAMP and RBF are not included in
the comparison as they have P~1(P(x;)) = x; for all x; € D by construction,
which means IDp = IDp. Finally, for MDS+iMDS, we see that IDp/ is much
closer to the estimated I Dp than for all other methods. This may suggest that
MDS-+iMDS is better at capturing the data space. Yet, as observed earlier, this
method has a very high MSE (Tab. 2) and also generates meaningless inverse
projections (Fig. 5). As such, the high I Dp, for this method is rather an indica-
tion of its random sampling pertaining to its implementation (see [7] for details)
than its intrinsic higher quality. The authors of iMDS also noted that this inverse
projection may not be effective for datasets of high intrinsic dimensionality. Our
experiment here confirmed this observation.

Blobs 10D Blobs 30D Blobs 100D HAR MNIST

Expected ID 10 30 100 15-61 13-33
IDp 10.00 29.03 39.63 24.62 20.04
IDp DBM 2.04 2.10 2.04 3.56 4.71
I1Dp, SDBM 2.23 2.14 2.11 2.09 2.47
IDp: DeepView 4.98 4.71 4.63 8.25 7.60

IDpr UMAP-+ILAMP - - - - -

IDp UMAP+RBF - - - - -

IDpr MDS+iMDS 10.00 22.95 37.69 11.77 28.68
Table 3. Estimated intrinsic dimensionalities I/ Dp and I Dp/ for our studied datasets.
The expected ID values for HAR and MNIST are taken from prior studies [14, 21, 3, 5].

To further answer Q3, we want to know how well a decision map image covers
the entire data space of the classifier it aims to visualize. We measure this by

16 Y. Wang and A. Telea

comparing the ID of the backprojected decision map image ID,, at each pixel
(see Sec. 4.1) with the IDp of the dataset D the classifier is trained (or tested)
on. Areas where I D), is close to I Dp indicate that the decision map covers well
the local distribution of D; areas where ID, < IDp indicate that the decision
map can only capture a part of this local distribution.

Figures 6—8 show this comparison. In each figure, the top row shows the
actual decision maps computed by our six decision map techniques for the studied
Logistic Regression classifier. Colors in these images indicate the inferred class by
the trained model f at each pixel; brightness encodes the confidence of f at those
locations (dark values indicate low confidence); for details of this computation,
see [40, 39]. These decision map images are only provided for illustration purposes
e.g., showing the location of decision boundaries and the data clusters; the ID
analysis presented next does not depend on the classifier choice.

The second rows in Figs. 6-8 show the estimated /D, at each decision map
pixel, with the average value I D,, over the entire map shown bottom-right in the
images. The results are very interesting to examine.

For DBM and SDBM, the estimated ID,, are exactly 2 almost everywhere,
which means that these decision maps precisely correspond to surfaces in the
data space. This extends our earlier findings (Sec. 3.2) to n > 3 dimensions.
DeepView yields higher ID,, values (but still much lower than IDp, peaking at
10 for the HAR dataset) close to the actual data points; and values roughly equal
to 2 further away from these points, with an IiDp over all datasets of 2.49+0.03.

For UMAP-+RBEF, in areas close to the data points, the estimated I.D,, is high
(about the same as IDp), see the red-colored spots in Figs. 6-8 (second rows).
This is expected by the design of the RBF method, as mentioned earlier. Between
the data points, the estimated ID,, for this method is exactly 2. UMAP+iLAMP
shows more complicated patterns: This method also yields high 1D, values (ba-
sically equal to IDp) close to the data points areas, as expected by construction
for this method, as explained earlier. Between the data points, this method yields
an estimated ID,, roughly equal to 2. However, in contrast to all other methods,
UMAP-+LAMP shows strong radial-like patterns of high estimated ID, that
‘fan out’ from the data points. These radial patterns in the 1D, images match
similar ones in the decision maps (Figs. 6-8, first rows). We see here again an
instance of iILAMP’s behavior discussed in Fig. 3 for the 3-dimensional dataset
case: iILAMP covers the data space better than other methods (thus answers Q3
better) but does this at the expense of continuity — that is, it produces decision
maps which can be hard to interpret.

To further understand the high I.D,, values for iLAMP in image areas far away
from data samples, we select an area having such high values for the MNIST
dataset (Fig. 8, second row, white square). We next oversample this area at
a resolution of 5007 pixels to compute ID,. The result (Fig. 8 bottom row)
shows that /D, is actually almost 2 in such areas as well, apart from very
close to the data points. Hence, the observed higher intrinsic dimensionality
ID, for iLAMP (and, actually, all other tested methods) is only an effect of the
image resolution; all methods have the low ID, values they exhibit virtually

Percentage of variance
accounted by
the first 2 PCs

Percentage of variance
accounted by
the first 2 PCs

Desirable Properties of Inverse Projections and Decision Maps 17

Blobs 10D

DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF MDS+MDS

Decision map

Estimated ID

Gradient map

—————

25 50 75 100 5 10 10 20 2000 4000 20 40 60 500 1000
Blobs 30D

DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF MDS+MDS

Decision map

Estimated ID

Gradient map

942.73 .4 1886.85
L ——————

2000 4000 6000 50 4000

Fig. 6. Decision maps and ID estimation, Blobs 10D and 30D.

18 Y. Wang and A. Telea

Blobs 100D

DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF MDS+MDS

Decision map

41

33

Estimated ID

0.8

0.6

0.4

the first 2 PCs

0.2

Percentage of variance
accounted by

Gradient map

2000 4000 6000 200 10000 20000

DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF MDS+MDS

= : 3 a1

-z 33

. . 25

v e |17

: 9

4 2.43 ! 4 1350 | Y

7 x 1.0

§ 0.8

0.6

0.4

> 0.2
522.96 51.42 4.28e+19

—— e —_———)
0 2000 4000 500 1000 1500 2 4
0

accounted by
the first 2 PCs Estimated ID Decision map

Percentage of variance

Gradient map

le2

Fig. 7. Decision maps and ID estimation, Blob 100D and HAR.

Desirable Properties of Inverse Projections and Decision Maps 19

MNIST

DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF

accounted by
Estimated ID Decision map

Percentage of variance
the first 2 PCs

Gradient map

1000 2000 3000 1000 2000 3000

Zoom-ins of selected details (see white squares in UMAP+LAMP column above)

0.95
0.90
0.85
0.80
0.75
0.70

Decision Map Estimated ID Percentage of variance Gradient Map
accounted for by the first 2 PCs

Fig. 8. Decision maps and ID estimation, MNIST Bottom images show selected detail
zones sampled at a high resolution of 500% pixels.

20 Y. Wang and A. Telea

everywhere except infinitesimal neighborhoods around the data points. Further,
an interesting observation is that the aforementioned radial patterns seem to
be less noisy as the data dimensionality increases — compare the Blobs 10D,
30D, and 100D images in Figs. 6-7. Indeed, as the data is increasingly higher
dimensional, iLAMP has more difficulties to ‘cover’ the entire data space with a
two-dimensional map, even close to the data points.

Finally, MDS-+iMDS shows a quite different result: The ID, values it pro-
duces are nearly identical over the entire image and also roughly equal to I Dp.
The fact that 1D, is nearly constant matches the linear behavior of this inverse
projection method that we discussed for the 3D dataset case (Sec. 3). Separately,
the fact that 1D, ~ IDp is due to the random sampling process used by iMDS,
see Sec. 2. We also see that the decision maps for this method are quite dark in all
areas, even in those near the actual samples. This correlates with the relatively
high MSE of MDS+iMDS (Tab. 2). Intuitively put, these findings indicate that
this inverse projection quickly ‘goes away’ from the data samples x; for pixels
which are not very close to the locations P(x;). Again, this is due to the linear
nature of iMDS — the backprojected surface I~! cannot, by construction, follow
the likely curved manifolds on which the samples x; are spread. Separately, we
see strong noise in the decision maps for this method, which is due to the afore-
mentioned random sampling process. Again, we see here the earlier-mentioned
trade-off between coverage and continuity.

As iMDS has a global linear behavior, we can study it in further detail as
follows. We compute the covariance matrix for the whole set of backprojected
points I~1 and then analyze its eigenvalues A1, ..., Ao (Fig.9). We observe that
there is always a clear drop from the second to the third eigenvalue, indicating
that the backprojected points are also dominated by a 2D planar-like structure.
This matches the visual observation for the 3D dataset shown in Fig. 3. Hence,
the earlier discussed fact that ID, is overall high (Figs. 6-7, second rows) is
purely due to the random sampling of iMDS. Separately, we see that as the
dimensionality of the data increases, this drop becomes less significant. This
suggests that the structure becomes more dominated by noise as the dimension-
ality increases, which correlates with the fact that the MSE of MDS+iMDS is
significantly higher for higher-dimensional data (Tab.2).

The third and fourth rows in Figs. 6—8 refine the above insights. The third
rows show the percentage of data variance in a neighborhood S captured by
the eigenvectors corresponding to the two largest eigenvalues A; and A,. Yellow
values indicate that almost all the data variance is captured by these two eigen-
values, so the inverse projection creates locally planar structures there. Dark
blue values indicate that the opposite, i.e., the inverse projection creates high-
dimensional structures in the respective areas. The fourth rows in the figures
show the gradient maps of the inverse projections. Dark values in these maps
indicate low values of G (Eqn. 5), i.e., areas where the backprojection changes
slowly and smoothly. Bright areas indicate the converse phenomenon — rapid and
potentially non-smooth changes in the backprojection. The computation details
are described in Sec. 4.1.

Desirable Properties of Inverse Projections and Decision Maps 21

Blob 10D Blob 30D Blob 100D
$ 0.12 A
E 010 0.015
g 0.3 1 :
b5 0.08 -
o 0.010
W 0.2 i
s 0.06
N 0.04
T o1l : 0.005
1S 0.02 1
o
Z 0'07 T T T 0l007 T T T 0'0007 T T T
Al AS Alﬂ Al Als A30 Al ASO AIOO

Fig. 9. Eigenvalues of the covariance matrix of the whole set of backprojected points
I~ for MDS-+iMDS.

These visualizations lead us to additional interesting observations. First, we
see that, in nearly all cases, all inverse projection methods except MDS+iMDS
create large yellow areas far away from the data points (third rows in Fig. 6—8) —
that is, they essentially create two-dimensional surface-like backprojections I~!.
In contrast, MDS+iMDS shows dark blue values nearly everywhere in these
images, i.e., it creates nearly everywhere a high-dimensional sampling of the
data space. As explained earlier, this is due to the random sampling process
inherent to this method.

A second observation pertains to the presence of 1D dark filament-like linear
structures that connect the projected data points which we notice for DeepView
and UMAP-+HLAMP. These filaments seem to connect the projected points much
like a Delaunay triangulation. These structures match quite well high values in
the corresponding gradient maps. Taken together, these findings indicate that the
backprojections of DeepView and UMAP-+ILAMP consist of a set of planar-like
facets, separated by sharp creases or gaps. This generalizes our earlier findings
on the ‘crumpled’ aspect of these backprojections, observed for 3D datasets
(Fig. 3a) to higher dimensions.

The gradient maps allow us to draw some other insights on the behavior of the
inverse projections. For (S)DBM, these maps have high values that align quite
well with the corresponding decision boundaries shown in Figs. 6—38, first rows. In
contrast, UMAP+RBF has high gradients systematically close to the projected
data samples only. UMAP-+iLAMP shows an almost complementary behavior
to UMAP+RBF, that is, high gradient values on the aforementioned filaments
connecting the projected data points and relatively low gradient values close to
the data points. Overall, these insights tell that the studied inverse projection
methods have very different smoothness behaviors: (S)DBM is relatively smooth
overall except close to the decision boundaries; UMAP-+RBF is also quite smooth
except close to the data samples; and UMAP+iLAMP is overall smooth except
close to lines that connect neighboring data samples. All these findings match
our earlier observations in the visual study of these backprojections for the 3D
dataset case (Fig. 3a).

22 Y. Wang and A. Telea

5 DISCUSSION

We next discuss our findings on the interpretation, added value, and found lim-
itations of decision maps and their accompanying inverse projections, and sum-
marize our answers to the questions Q1-Q6 listed in Sec. 1.

5.1 Surface behavior of inverse projections and decision maps

All six inverse projection pipelines we studied essentially generate surface-like
structures embedded in the high-dimensional data space, with some local dif-
ferences. (S)DBM tends to create relatively smooth and compact surfaces that
closely interpolate the data samples. UMAP-+RBF does the same but passes ex-
actly through the data samples while being slightly less smooth. DeepView and
UMAP+ILAMP create highly twisted surfaces with a similar type of trade-off,
i.e., DeepView interpolates the data points less accurately but yields smoother
surfaces, while UMAP-+iLAMP interpolates the data points exactly but yields
very non-smooth results. Finally, MDS-+iMDS yields a structure which formally
speaking has higher intrinsic dimensionality than a surface, upon closer exami-
nation, we see that this structure is essentially a plane jittered by high amounts
of noise (Q1, Q4, Q5). We also saw that this surface-like property does not de-
pend on the intrinsic or total dimensionality of the studied datasets (Q1), the
studied classifiers (Q1), or resolutions of the decision map images (see Figs. 5).

5.2 Coverage of decision maps

Given the aforementioned surface property, we conclude that current decision
maps only depict a small part of the behavior of a given classifier (Q3). The
only (relative) exception here is MDS+iMDS which succeeds in covering a higher
proportion of the data space. However, this is done by using a random sampling
mechanism which leads to high inverse projection errors (Tab. 2) and noisy
results in both the inverse projections (Fig. 5) and decision maps (Figs. 6, 7).
We conclude that this method is not suitable for creating general-purpose inverse
projections and decision maps for high-dimensional data.

The boundaries shown by the studied decision maps (1D curves separating
same-color regions in e.g. Fig. 3) are actually the intersections of the aforemen-
tioned surfaces with the actual decision boundaries in high-dimensional space
(Q2). Intuitively put, a decision map thus shows a ‘slice’ through the high di-
mensional data space — its pixels are located on the aforementioned 2D surface;
and its decision boundaries are 1D curve subsets of the actual decision sur-
faces. It is tempting to argue that, since inverse projections take a 2D space as
input, they will always produce also a 2D surface as output and not a higher-
dimensional object. Yet, this does not need to be so. Space-filling curves [37] and
space-filling surfaces [36] can map low-dimensional sets to higher-dimensional
ones in a continuous fashion. By combining such primitives, we could in princi-
ple create continuous mappings of intervals between any two dimensions ¢ and n,
q < n. Our study — in particular, the ID and gradient map estimations — showed

Desirable Properties of Inverse Projections and Decision Maps 23

that all evaluated inverse projections (DBM, SDBM, DeepView, iLAMP, RBF,
iMDS) do not even get close to such behavior — which can be explained by the
fact that they are constructed by differentiable mappings which cannot in prin-
ciple exhibit fractal behavior. iMDS has the highest coverage but, as we saw,
this is achieved by random sampling, which completely loses continuity.

5.3 Comparing decision map methods

Different decision map techniques sample the high-dimensional space quite differ-
ently (Q4). As such, they produce different maps for the same classifier (which,
obviously, has a unique set of actual decision surfaces). Each such map provides
its own insights for the same classifier (see e.g. Figs. 3, 6, 7, 8), each with its own
advantages and limitations. At a global level, we see a clear trade-off between
smoothness and precision (Q6). Methods that generate the smoothest surfaces
(DBM, SDBM) cannot approximate very well the data samples. Conversely,
methods that pass very close or exactly through the data samples (DeepView,
UMAP+IiLAMP) generate non-smooth surfaces. UMAP+RBF falls somewhere
in the middle of these two types. These aspects affect in turn the interpretabil-
ity and ultimately usability of the corresponding decision maps. Smooth-surface
methods yield maps which are easier to interpret and show better how a classi-
fier extrapolates from its training set but are harder to control in terms of where
they are actually constructed; tighter-surface methods approximate data sam-
ples better and, for the case of DeepView, are also easier to control in terms of
where they sample the data space. However, they only interpolate the classifier
behavior close to and between the training points, and can create decision maps
which are hard to interpret (UMAP-+iLAMP). Summarizing the above, we be-
lieve that smooth-surface methods are overall preferred to tight-surface ones —
they ultimately yield decision maps which are easier to interpret at the small
cost of not perfectly approximating the data samples.

As a separate point, we note that none of the studied techniques aims to
explicitly sample a classifier close to its actual decision boundaries — which,
arguably, are the most interesting areas to understand (Q2). For this task, new
inverse projections and/or decision map methods need to be devised.

5.4 Limitations caused by the low dimensionality of decision maps

Inverse projection tasks are structurally similar to data reconstruction or data
generation tasks — all of these aim to output high-dimensional data from low-
dimensional representations. From the perspective of data reconstruction, the
projection and inverse projection pipeline (P, P~1) can be seen as a special case
of an encoder-decoder structure, where the bottleneck, or latent space, is two-
dimensional. Existing works show that the dimensionality of the latent space,
which is analogous to the input of P!, is a critical factor for the reconstruction
or generation quality [48, 30, 35].

Inspired by these findings, we wonder how the dimensionality ¢ of the latent
representation affects the quality (MSE and ID) of an inverse projection. To

24 Y. Wang and A. Telea

explore this, we ran DBM (UMAP+NNInv) and SDBM (SSNP) with ¢ values
in the range 2 to 25. We chose these methods since they are easily modifiable
to use a different latent dimensionality than 2 and also since, following our
earlier results, they seem to offer a good balance in terms of desirable properties
of inverse projections. For each ¢ value, we recorded the IDp and MSE of
the inverse projection again on D. The results, shown in Fig. 10, reveal that,
although DBM and SDBM exhibit similar surface behavior, their outcomes differ.
The MSE of both methods decreases with ¢ increasing, which is expected — a
higher ¢ is closer to the data dimensionality n, so both P and P~! have an
easier task. This drop in MSE is however more pronounced for DBM. The I Dp:
of both methods increases until reaching a plateau around 10-20 (for DBM) and
5 (for SSNP). This tells that the inverse projection task is fundamentally harder
than the direct projection — indeed, even when having a much higher number of
dimensions ¢ than two as input for P, it is not always possible to fully recover
the full dimensionality n of the data.

Blobs 10D Blobs 30D Blobs 100D HAR MNIST
—e— DBM 0.05 1

. 1 0.0020 4 0.008 1
0.0020 SSNP 0.0022

th 0.0015 —e— DBM —e— DBM —e— DBM 0.04 —o— DBM
= 0.0015 SSNP | 0.0020 SSNP 0.006 SSNP SSNP
0.0010 o0s]
00003 %, i T T T 0] T T T 00041 T T T T T T
|

0.0010 -+~

109 204
154 8 104
8 154
a —=— DBM = DBM 104 = DBM 64 = DBM 81
9 SSNP 104 SSNP SSNP SSNP 61
4]

5 41 | —#- DBM
(SSNP

u|

10 20 2 10 20

o

20 2 10 20

N}
=
o

10 20

o

Fig.10. How M SE and IDps change with p changes for DBM (UMAP+NNinv) and
SDBM (SSNP).

From this experiment, we infer that the 2D bottleneck of a (P, P~1) trans-
formation strongly affects the quality (error and ID) of the inverse projections.
Increasing the number of dimensions ¢ available as input for inverse projections
can increase the quality of their output, but only up to a given limit. Moreover,
from a practical viewpoint, increasing g is not evident — after all, we need to have
q € {2,3} if we want to use direct visualization of the decision maps. Exploring
how this barrier can be overcome, e.g., by more sophisticated inverse projection
methods, are an important direction for future work.

5.5 Limitations

Our results are limited in their power by several factors. We used only two real-
world datasets. Datasets having different characteristics, e.g., local intrinsic di-
mensionality, data distribution, sparsity, or dimensionality, could potentially lead

Desirable Properties of Inverse Projections and Decision Maps 25

to new insights on how the tested decision maps and inverse projections work.
A challenge here is to find datasets having ground-truth estimations of their in-
trinsic dimensionality. Separately, apart from the technical estimation of MSE,
ID estimation, and gradient maps, we gauged the suitability of decision maps to
practical applications only by qualitatively interpreting the visual smoothness of
the resulting decision zones and boundaries. It is expected that, for the tested
datasets and classifiers, such zones and boundaries should be smooth [33]. A
more powerful ranking of decision maps would need to consider their actual use
in ML engineering scenarios such as data augmentation or adversarial attacks,
see e.g.[29].

6 CONCLUSIONS

We have analyzed the limitations of current inverse projection and decision map
techniques used to visualize the behavior of machine learning classification mod-
els. Specifically, we compared the decision zones and boundaries depicted by six
inverse projection techniques (and corresponding decision maps), with the actual
zones and boundaries created by six classifiers on a three-dimensional real-world
dataset. We found out that, in all cases, all the studied maps essentially capture
a 2D structure embedded in the data space. We further extended our analysis
to high-dimensional data by comparing the intrinsic dimensionality of the data
with that of the inverse projection and backprojection of the map to the data
space. We found that, as for the 3D data case, all studied map techniques still
only cover essentially two-dimensional structures in the data space (modulo a
certain amount of noise). We found that this surface-like limitation is particu-
larly visible in areas located between the projected data points. Apart from this
common aspect, we found several differences between the studied methods in
terms of smoothness of the generated surface and accuracy by which it approxi-
mates the data points. Our work extends the earlier study on the same topic [50]
by studying three additional techniques (iLAMP, RBF, and iMDS); correlating
the MSE of the inverse projection with its exhibited behavior; and analyzing the
inverse projection smoothness using gradient maps.

Our conclusion is that, when selecting inverse projection methods for con-
structing decision maps, methods which create smoother surfaces, i.e., DBM,
SDBM, and UMAP+RBF, are preferred in terms of predictability and ease of
interpretation of the resulting maps, to methods that create tighter-fitting, less
smooth, surfaces, and thus harder to interpret decision maps, i.e., UMAP-+iLAMP
and DeepView. Finally, we showed that the recent MDS-+iMDS inverse pro-
jection method is not suitable for constructing meaningful decision maps. Our
work highlights fundamental limitations of all studied decision map techniques
in terms of how much of a classifier’s behavior they capture, but also where
and how they choose to capture this behavior. These limitations are essential to
understand when choosing which such technique to use in practice to construct
decision maps but also when actually interpreting the resulting maps.

26 Y. Wang and A. Telea

Future work can advance in a number of directions. The key one, we be-
lieve, is overcoming the ‘surface limitation’ of current decision map techniques.
Likely, capturing a full high-dimensional space in a 2D map is not possible in
general. Rather, one can focus on capturing specific areas in this space which
are important to ML engineering, such as low-dimensional (curved) subspaces
which contain most of a given dataset; areas close to the actual decision zones,
where a classifier is most interesting to study; or areas where a classifier exhibits
poor testing performance. An alternative way is to involve interacting allowing
the user to move the current backprojected surfaces so as to sweep interesting
zones of the data space, by e.g. generalizing the approach of Sohns et al. [44],
which interactively explores decision boundaries by the simple but limited PCA
projection. Last but not least, acceleration techniques, in the spirit of [23], can
be further designed to compute decision maps at interactive rates, a prerequisite
to the interactive exploration mentioned above.

References

1. Amorim, E., Vital Brazil, E., Mena-Chalco, J., Velho, L., Nonato, L.G., Samavati,
F., Costa Sousa, M.: Facing the high-dimensions: Inverse projection with radial
basis functions. Computers & Graphics 48, 35-47 (2015)

2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine. In: Proc. Intl. Workshop on ambient assisted living. pp. 216—223. Springer
(2012)

3. Aumiiller, M., Ceccarello, M.: The Role of Local Intrinsic Dimensionality in Bench-
marking Nearest Neighbor Search (2019), arXiv:1907.07387 [cs]

4. Bac, J., Mirkes, E.M., Gorban, A.N., Tyukin, I., Zinovyev, A.: Scikit-Dimension: A
Python Package for Intrinsic Dimension Estimation. Entropy 23(10), 1368 (2021)

5. Bahadur, N., Paffenroth, R.: Dimension Estimation Using Autoencoders (2019),
arXiv:1909.10702 [cs, stat]

6. Bennett, R.: The intrinsic dimensionality of signal collections. IEEE Trans. Inform.
Theory 15(5), 517-525 (1969)

7. Blumberg, D., Wang, Y., Telea, A., Keim, D.A., Dennig, F.L.: Inverting Multi-
dimensional Scaling Projections Using Data Point Multilateration. In: EuroVis
workshop on visual analytics (EuroVA). The Eurographics Association (2024)

8. Borg, 1., Groenen, P.J.F.: Modern multidimensional scaling: theory and applica-
tions. Springer series in statistics, Springer, 2nd ed edn. (2005)

9. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5-32 (2001)

10. Camastra, F.: Data dimensionality estimation methods: a survey. Pattern Recognit.
36(12), 2945-2954 (2003)

11. Campadelli, P., Casiraghi, E., Ceruti, C., Rozza, A.: Intrinsic dimension estimation:
Relevant techniques and a benchmark framework. Math. Probl. Eng. 2015, 1-21
(2015)

12. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297
(1995)

13. Cox, D.R.: Two further applications of a model for binary regression. Biometrika
45(3/4), 562-565 (1958)

14. El Moudden, I., El Bernoussi, S., Benyacoub, B.: Modeling human activity recogni-
tion by dimensionality reduction approach. In: Proc. IBIMA. pp. 1800-1805 (2016)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Desirable Properties of Inverse Projections and Decision Maps 27

Engel, D., Hiittenberger, L., Hamann, B.: A survey of dimension reduction methods
for high-dimensional data analysis and visualization. In: Proc. IRTG workshop.
vol. 27, pp. 135-149. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)
Espadoto, M., Martins, R., Kerren, A., Hirata, N., Telea, A.: Toward a quantitative
survey of dimension reduction techniques. IEEE TVCG 27(3), 2153-2173 (2019)
Espadoto, M., Rodrigues, F.C.M., Telea, A.: Visual analytics of multidimensional
projections for constructing classifier decision boundary maps. In: Proc. IVAPP.
SCITEPRESS (2019)

Espadoto, M., Appleby, G., Suh, A., Cashman, D., Li, M., Scheidegger, C.E.,
Anderson, E.W., Chang, R., Telea, A.C.: UnProjection: Leveraging Inverse-
Projections for Visual Analytics of High-Dimensional Data. IEEE TVCG pp. 1-1
(2021)

Espadoto, M., Hirata, N., Telea, A.: Self-supervised Dimensionality Reduction with
Neural Networks and Pseudo-labeling. In: Proc. IVAPP. pp. 27-37. SciTePress
(2021)

Espadoto, M., Rodrigues, F.C.M., Hirata, N.S.T., Hirata Jr, R.: Deep Learning
Inverse Multidimensional Projections. In: Proc. EuroVA. p. 5 (2019)

Facco, E., d’Errico, M., Rodriguez, A., Laio, A.: Estimating the intrinsic dimension
of datasets by a minimal neighborhood information. Sci Rep 7(1), 12140 (2017)
Fisher, R.A.: Iris Plants Database (1988), uCI Machine Learning Repository
Grosu, C., Wang, Y., Telea, A.: Computing fast and accurate decision boundary
maps. In: EuroVis workshop on visual analytics (EuroVA). The Eurographics As-
sociation (2024)

Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504-507 (2006)

Huang, X., Wu, L., Ye, Y.: A review on dimensionality reduction techniques. Int.
J. Pattern Recognit. Artif. Intell. 33(10), 1950017 (2019)

Joia, P.; Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine
multidimensional projection. IEEE TVCG 17(12), 2563-2571 (2011)

LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database (2010),
http://yann.lecun.com/exdb/mnist

Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11), 2579-2605 (2008)

Machado, A., Behrisch, M., Telea, A.: Exploring classifiers with differentiable de-
cision boundary maps. Computer Graphics Forum (2024)

Marin, I., Gotovac, S., Russo, M., Bozi¢-Stuli¢, D.: The effect of latent space dimen-
sion on the quality of synthesized human face images. Journal of Communications
Software and Systems 17(2), 124-133 (2021)

Mclnnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction (2018), arXiv:1802.03426 [cs, stat]

Nonato, L., Aupetit, M.: Multidimensional projection for visual analytics: Linking
techniques with distortions, tasks, and layout enrichment. IEEE TVCG 25, 2650—
2673 (2018)

Oliveira, A.A.A.M., Espadoto, M., Hirata, R., Telea, A.C.: Stability Analysis of
Supervised Decision Boundary Maps. SN COMPUT. SCI. 4(3), 226 (2023)
Oliveira, A.A.A.M., Espadoto, M., Hirata Jr, R., Telea, A.C.: SDBM: Supervised
Decision Boundary Maps for Machine Learning Classifiers. In: Proc. IVAPP. pp.
7787 (2022)

Padala, M., Das, D., Gujar, S.: Effect of Input Noise Dimension in GANs. In:
Neural Information Processing. pp. 558-569. Lecture Notes in Computer Science,
Springer International Publishing (2021)

28

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Y. Wang and A. Telea

Paulsen, W.: A Peano-based space-filling surface of fractal dimension three. Chaos,
Solitons & Fractals 168 (2023)

Peano, G.: Sur une courbe, qui remplit toute une aire plane. Mathematische An-
nalen 36(1), 157-160 (1890)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: Machine learn-
ing in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011)

Rodrigues, F.C.M., Espadoto, M., Hirata, R., Telea, A.C.: Constructing and Visu-
alizing High-Quality Classifier Decision Boundary Maps. Information 10(9), 280
(2019)

Rodrigues, F.C.M., Hirata, R., Telea, A.C.: Image-based visualization of classifier
decision boundaries. In: Proc. SIBGRAPI. pp. 353-360. IEEE (2018)

dos Santos Amorim, E.P.; Brazil, E.V., Daniels, J., Joia, P., Nonato, L..G., Sousa,
M.C.: iLAMP: Exploring high-dimensional spacing through backward multidimen-
sional projection. In: Proc. IEEE VAST. pp. 53-62 (2012)

Schulz, A., Gisbrecht, A., Hammer, B.: Using discriminative dimensionality reduc-
tion to visualize classifiers. Neural Process. Lett. 42, 27-54 (2015)

Schulz, A., Hinder, F., Hammer, B.: DeepView: Visualizing Classification Bound-
aries of Deep Neural Networks as Scatter Plots Using Discriminative Dimension-
ality Reduction. In: Proc. IJCAL pp. 2305-2311 (2020)

Sohns, J.T., Garth, C., Leitte, H.: Decision Boundary Visualization for Counter-
factual Reasoning. Comput. Graph. Forum 42(1), 7-20 (2023)

Sorzano, C.0.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction
techniques (2014), arXiv:1403.2877 [stat.ML]

Tian, Z., Zhai, X., van Driel, D., van Steenpaal, G., Espadoto, M., Telea, A.: Using
multiple attribute-based explanations of multidimensional projections to explore
high-dimensional data. Comput. Graph. 98, 93-104 (2021)

Verveer, P.J., Duin, R.P.W.: An evaluation of intrinsic dimensionality estimators.
IEEE PAMI 17(1), 81-86 (1995)

Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neu-
rocomputing 184, 232-242 (2016)

Wang, Y., Machado, A., Telea, A.: Quantitative and Qualitative Comparison of
Decision-Map Techniques for Explaining Classification Models. Algorithms 16(9),
438 (2023)

Wang, Y., Telea, A.: Fundamental Limitations of Inverse Projections and Decision
Maps. In: Proc. IVAPP. vol. 1, pp. 571-582 (2024)

