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Abstract

We present a set of interactive techniques for the visual analysis of multidimensional categorical data. Our approach
is based on Multiple Correspondence Analysis (MCA), which allows one to analyze relationships, patterns, trends
and outliers among dependent categorical variables. We use MCA as a dimensionality reduction technique to project
both observations and their attributes in the same 2D space. We use a treeview to show attributes and their domains,
a histogram of their representativity in the dataset, and as a compact overview of attribute-related facts. A second
view shows both attributes and observations. We use a Voronoi diagram whose cells can be interactively merged to
discover salient attributes, cluster values, and bin categories. Barchart legends help assigning meaning to the 2D
view axes and 2D point clusters. We illustrate our techniques with real-world application data.

1. Introduction

Categorical dimensions are frequent in nowadays business
data. Studying, analyzing and visualizing such data is criti-
cal for understanding the underlying business processes. Re-
cent work on both multivariate and categorical data [ZSS09,
AGMS11, TLLH12] acknowledges the importance for tools
that support understanding these kinds of datasets.

Various interactive visualizations for multivariate data have
been proposed, e.g., permutation matrices [Ber77], table
lenses [RC94], worlds within worlds [FB90], and parallel coor-
dinates [Ins97]. In statistics, multivariate data is studied using
Principal Component Analysis (PCA) [Cau29, Pea01, Hot33]
and its extensions such as (Multiple) Correspondence Analy-
sis (CA, MCA) [Hir35, BB76]. Such techniques share a com-
mon problem: Interpreting the results of an otherwise valuable
analysis can be hard. This limits their adoption in business con-
texts where users quickly need to interpret results and may not
have the time or knowledge needed to map abstract multivari-
ate analysis results to their concrete problems.

We present a set of interactive visualization techniques for
multivariate data targeted at analysts and business users. Our
solution is built around MCA to focus on categorical data anal-
ysis. Such data is less covered by MDS or PCA techniques.
Our goal is to expose the often complex correlations in cate-
gorical data, and answer questions such as: How do values of
one attribute (or variable) relate to values of the same, or other,
attributes? How to find clusters of similar observations? And
how do such clusters relate to a certain value of an attribute?
For this, we propose several linked views which blend exist-
ing and new visualization techniques. While the complexity of

MCA analysis is introduced gently to end users, we still allow
refining MCA results to extract additional insight. The main
contributions of this paper are as follows:

• A space-filling visualization for the analysis of relationships
between the inherent dimensions of categorical data;
• An interactive legend which helps explaining the meaning of

dimensions extracted by MCA in terms of dataset attributes;
• An enhanced treeview which integrates raw-data informa-

tion with the MCA analysis results;
• Interaction techniques that reduce the amount of informa-

tion shown in the above views and help finding salient data
point groups and inherent data dimensions.

In Section 2, we discuss related work. Section 3 presents
MCA and its interpretation challenges. Section 4 presents our
interactive views. Section 5 evaluates our method on an ad-
ditional dataset and via a user study. Section 6 discusses our
approach. Section 7 concludes the paper.

2. Related Work

High-dimensional data visualization involves limiting the
number of data dimensions to a number that can be visu-
ally accommodated. For categorical data, two approaches ex-
ist [FJ11]: CatVis methods are specifically designed for cate-
gorical data and are more effective for frequency-related tasks.
Quantization models represent categories by numerical val-
ues and is effective for similarity analysis tasks. Our work
falls into this second type. Quantization methods reduce the
number of dimensions in a meaningful way for visualization:
One aims to find a projection of several N-dimensional data
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points, or observations, in K <N dimensions which keeps rela-
tionships (e.g., distances, similarities, or correlations) between
data points. The above N dimensions are also called attributes.
When K ≤ 3, the projection can be directly shown using scat-
terplot or point cloud techniques. Several dimensionality re-
duction techniques exist [Fod02]. From these, we next focus on
multidimensional scaling (MDS), principal component analy-
sis (PCA) and correspondence analysis (CA).

MDS projects N-dimensional points in K < N dimensions
while trying to keep distance ratios between projected point
pairs and original point pairs. Distances are typically com-
puted by (weighted) Euclidean metrics. Although MDS has
been successfully used in visual analytics [PNML08, BG05],
several problems exist. First, while MDS helps finding point
groups, it does not explicitly tell what the groups mean. To an-
swer this, users resort to iterative brushing, color mapping, and
other interaction tools. This requires a non-trivial effort and is
hard when the projected K dimensions consist of a mix of orig-
inal N dimensions, i.e., when points are grouped due to simi-
larities in more than one dimension. Secondly, MDS directly
works only on numerical, not categorical, datasets.

PCA is one of the widest used multivariate statistical anal-
ysis techniques [AW10b]. PCA extracts salient information
from a multivariate dataset into a new set of orthogonal at-
tributes called principal components, eigenvectors, or factors
ei, sorted by variance. Data projections on eigenvectors are
called eigenvalues or factor scores. Eigenvectors ei are com-
puted so that they are orthogonal to more important eigenvec-
tors e j, j<i and also capture the largest possible projected data
variance. To help interpreting PCA, the loading, or correlation
between a factor and an attribute can be computed. This esti-
mates how much information a factor and an attribute share.

CA generalizes PCA by using the importances of all ob-
servations and attributes to discriminate between observa-
tions [Gre07]. CA computes two sets of factor scores, one for
observations and one for attributes. Since both score sets share
the same variance, they can be both shown in the same 2D
scatterplot, which helps the reading of such plots [AW10b].

Multiple Correspondence Analysis (MCA) extends CA to
handle categorical data [AV07]. Several MCA variants exist,
all leading to the same equations as pointed out by [TY85].
MCA operates by first converting data from categorical to nu-
merical form. Naively assigning a numerical value to each pos-
sible categorical value of an attribute can create artificial, arbi-
trary, distances between two values, which can cause misinter-
pretations. In contrast, MCA encodes each categorical attribute
with a bitmask, one bit for each possible category value. For
example, for the attribute car ∈ {Audi,BMW,VW}, the value
Audi is encoded as [100] and the value VW as [001]. This ef-
fectively adds several new (binary) attributes to the original
dataset. These binary attributes, stored in a so-called indica-
tor matrix, are next processed with standard CA. In sociology,
MCA has been promoted by Bourdieu [Bou79] to find hidden
relationships between various sociological factors.

Many visualizations exist for categorical data, as reviewed
by Friendly [Fri00a]. Fore-fold tables [Fri00b] show two-by-
two tables. Mosaic plots and mosaic matrices show multi-
way tables with tiles proportional to the frequency [Fri00b,
Fri94, Fri99]. Parallel sets extend parallel coordinates by re-
placing individual data points by a frequency-based represen-
tation [KBH06]. The contingency wheel shows categories as
sectors in a ring chart where sector sizes map the marginal

frequency and rows that have a count for that frequency are
drawn as nodes in the sectors [AGMS11]. CatTrees [KW01]
extend treemaps [JS91] to show hierarchical categorical data.
These techniques mainly address frequency related tasks. In
contrast, we want to enable data correlation exploration and
data classification at a granularity that suits the user. We also
want to support exploration of individual observations, which
excludes all techniques which are purely based on contingency
tables. MCA (and PCA) results can be visualized using scat-
ter plots. CA Maps [Gre07] map each category to a plot point.
(CA) biplots [Gab71,Gre07] map both categories and observa-
tions to plot points. Our work next extends this bi-plot with in-
teractive visualizations to reduce interpretation effort and help
non-scientists answer the questions outlined in Sec. 1.

3. Multiple Correspondence Analysis

Figure 1 outlines our approach. We start with a table of cate-
gorical and/or numerical attributes. To use MCA on such data,
we first bin numerical (ratio and interval) attributes to convert
them to ordinal attributes. For example, an Age attribute can be
binned to a five-class ordinal attribute [0 :< 20, 1 : 20..30, 2 :
30..40, 3 : 40..50, 4 :≥ 50] (years). The number of bins, or
categories, and the binning method (constant range or constant
area in histogram) is configurable for all numeric attributes.
The binning settings are application-specific. For details, we
refer to [JJJ08] where an interactive technique is presented for
quantification of numerical and categorical attributes.

From this refined table, we construct an indicator matrix
(Sec. 3.1). MCA extracts correlation information from this ma-
trix, which we use to create our visualization (Sec. 4). We next
briefly overview the MCA technique, to form a basis for under-
standing our visualization, and to show the MCA interpretation
problems that our visualization addresses next. For a thorough
understanding of (M)CA, we refer to [AW10a,AV07] on which
our implementation is based.

3.1. MCA Algorithm

For a table with I tuples, each with K attributes which in turn
have Jk levels or distinct values {v1

k , . . . ,v
Jk
k }, 1 ≤ k ≤ K, let

X be the I× J indicator matrix, where J = ∑
K
1 Jk. Applying

CA on X gives a row factor score and a column factor score.
These factor scores are the projections of observations (rows)
and attribute values (columns) on the eigenvectors.

MCA starts by computing the probability matrix Z =
N−1X, where N is the grand total of the matrix X. Let r and c
be the vectors containing the row, respectively column, totals
of Z. Let Dc = diag{c} and Dr = diag{r} be matrices with
diagonals c and r respectively. We compute the factor scores
by solving the Singular Value Decomposition (SVD) [Abd10]:

D−1/2
r

(
Z− rc>

)
D−1/2

c = P∆Q> (1)

with

P>P = Q>Q = I (2)

Here, A is the left side of Eqn. 1; ∆ is the diagonal matrix
of eigenvalues of AA>; P are the eigenvectors of AA>; and
Q are the eigenvectors of A>A. From the SVD we compute
the row factor scores F = D−1/2

r P∆ and column factor scores
G=D−1/2

c Q∆ by projecting attributes on the respective eigen-
vectors.
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Input table Binned table

{ei}: eigenvectors

{xi}: projections of

       observations

{yi}: projections of

       values

{wi}: weights

{li}:   loadings  

Bin MCA Vis.

MCA results

What are the attributes

and their categories?

What do I see on Y?

What do I see on X?

Which attributes are not captured in this plot?

Figure 1: MCA visualization pipeline. Input: multidimensional table with numerical and categorical data. Numerical columns
(e.g., salary in three levels: L, M and H) are binned. MCA is done on the binned table. MCA results are used for visualization.

Visualizing the MCA results now follows the classical scat-
terplot technique used for MDS: We take the two factors ex
and ey along which the data has most variance, and plot all
data point projections, i.e., factor scores, along ex and ey. In
contrast to MDS, we can also draw the attributes in the same
plot: These are simply the projections of the J points having
one for a particular attribute value and zero for all others.

3.2. MCA Interpretation Challenges

As outlined above, MCA creates a plot containing both obser-
vations and attributes. Interpreting this plot is based on prox-
imity of points of the same kind: Two observations plotted
close to each other imply that they have similar attribute val-
ues or, for categorical data, that they share several attribute
values (since two categorical values can either be equal or dif-
ferent). Attributes plotted close to each other are interpreted
differently in CA and MCA. In CA, columns are actual dif-
ferent attributes in the input data. Hence, when two attribute
points are close, observations tend to be similar with respect to
these attributes. In MCA, columns can be either (categorical)
values of the same attribute or values of two different attributes
from the original data, given the bit structure of the indicator
matrix X (Secs. 2, 3.1). Close plotted points for values from
different attributes imply that observations tend to select these
values together. Close plotted points for different values of the
same attribute imply that observations select either of these
values and are similar with respect to the other attributes.

Although the mathematics of MCA is relatively straightfor-
ward, interpreting MCA plots is clearly not. This is firstly due
to the abstract nature of the computed quantities, which do not
directly map to the user’s world (observations and attributes).
Secondly, for many observations and/or attributes, 2D scatter-
plots of observation and attribute factor scores get cluttered.
Thirdly, on a technical level, data outliers can influence the fac-
tors (eigenvectors): The 2D plot space gives too much space to
outliers and too little space to ‘interesting’ observations.

Without adequate tooling, potential insights delivered by
MCA risk being lost. Hence, we want to provide intuitive in-
teractive visualizations of MCA analysis results, to address the
following questions:

• How to link the MCA results (factors, factor scores) to the
meaning of the original data (observations and attributes)?
• How to show the meaning of the projected dimensions?
• How to explain the grouping of projected observations?
• How to eliminate irrelevant (outlier) dimensions or outlier

values of a dimension?
• How to get an overview of values that occur together?

Examine specific
attribute or value

Legend for
attributes and values

Level of detail

Projections view Dimensions view

Figure 2: MCA visualization overview.

4. Visualization Overview

To address the above goals, we propose a visualization with
two main views: the dimensions view (Sec. 4.1) and the pro-
jections view (Sec. 4.2). These support the steps of observation
classification and observation exploration: First, one wants to
classify data to a granularity level suitable for the task at hand.
For example, in a car insurance dataset, finding that students,
expensive cars, and many accidents are strongly correlated,
leads one to classify such observations as “students causing
accidents in expensive cars”. Once users have a clear picture
of the classes occurring in the data, they next explore the ob-
servations to give sense to clusters and understand outliers.

The dimensions view shows the attributes and their domains.
It serves both as an analysis entry point and as a legend for the
more complex projections view. The projections view shows
the factors computed by MCA; it targets questions related to
correlations and variances of observations and attributes. The
two views are linked via shared colormaps and selection, to
support asking questions in one view and using the other view
to understand the results (Fig. 2). As an example, we next use a
set of 5000 US car insurance quotations, with 19 attributes per
observation. Table 1 shows these attributes, and how numerical
attributes have been reduced to categories by binning.

4.1. Dimensions View

The dimensions view (Fig. 3) shows the attributes present in
the raw dataset which is the input of the MCA analysis.

Recall that a K-dimensional dataset yields an indicator ma-
trix with J binary attributes, where each binary attribute shows
whether an observation selects a given value (Secs. 2, 3.1). We
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Dimension or attribute Type Bins Binning
ageInYears (age) integer 4 < 35,35..53,54..72,> 72
airbagStatus category 4 none, driver only, front seats, all
antilockBrakes boolean 2 true, false
approved boolean 2 true, false
coverageType category 3 basic, collision, extensive
daylightRunningLights (lights) boolean 2 true, false
driversEdCourse boolean 2 true, false
drivingUnderInfluence boolean 2 true, false
fulltimeStudent (student) boolean 2 true, false
gender category 2 male, female
highRiskDriver boolean 2 true, false
licenseSuspendedOrRevoked boolean 2 true, false
married boolean 2 true, false
numAccidents integer 4 0, 1, 2, >= 3
numTrafficTickets integer 4 0, 1, 2, >= 3
quote USD 4 < 310, 310..619, 619..1043, > 1043
state category 50 AL, AK, AZ, . . ., WY
vehicleType (vehicle) category 9 compact, sedan, luxury, sport, pickup

SUV, sport-luxury, collection, van
vehicleVandalizedOrStolen boolean 2 true, false

Table 1: Data types for the US car insurance dataset. Names
between brackets are the labels used in images.

Figure 3: Dimension view for the insurance dataset

show the raw data using a two-level tree: attributes and val-
ues. The first level shows all original attributes. On the second
level, each attribute has Jk children, i.e., all its categorical val-
ues {vi

k}. Attribute nodes are colored as follows. First, we sort
attributes based on decreasing relevance, and assign them col-
ors cyclically from a fixed categorical colormap with C = 10
hues [BH11]. Next, we set the nodes’ color saturations to their
attributes’ relevance. Given the attribute sorting, even if two
nodes have the same hue (for datasets with more than C at-
tributes), their colors will differ in saturation: Most important
attributes are bright, and less important ones are dull. We stress
that color mapping is not a main contribution of our work: If
available, better techniques should be used. Attribute nodes are
labeled by their dimension names. Value nodes are labeled by
a textual description, see, e.g., the ageInYears integer attribute
(Fig. 3 top) which is binned in 4 values (< 35, 35..53, 54..72,
> 72 years). Value nodes show three additional properties:

• The percentage of observations with that value, as a bar.
This shows which values occur most in the dataset. We later
refine this insight to find if such values are indeed discrimi-
native for the correlation of observations or not (Sec. 4.2).
• The attribute value weights w j, or relevances, computed as

in [AW10a]. Large weights show attribute values which are
important for discriminating between observations.
• Value and attribute merging (see next Sec. 4.3).

Sorting the dimensions view on the value usage column
shows the distribution of values for a particular attribute. To
find attributes and values which discriminate between obser-
vations, the view can be sorted on the relevance column. This
relates to value column: Values which are rarely used by the
observations may provide more information for discriminat-
ing between observations and are therefore more relevant; fre-
quently used values are less interesting [AW10a].

The dimensions view serves as a legend for the more com-
plex projections view, which we present next.

4.2. Projections View

This view displays projections of both observations and at-
tributes computed by MCA. It helps finding correlations and
variances in the input data, i.e., answer questions such as which
attributes contribute to a given factor; along which attributes
are certain observations most (or least) similar; and what is
the meaning of a factor. We use the classical MDS approach:
We draw a scatterplot by projecting all observations xi and at-
tribute values vi

k (Sec. 4.1) on the two most important factors
computed by MCA (Sec. 3.1). We next add several visual en-
hancements to this plot, as follows.

Recall that close projections of values of the same attribute
mean that observations selecting any of these values are simi-
lar vs their other attributes (Sec. 3.2). Close projections of val-
ues of different attributes imply that observations tend to have
these values for the respective attributes together. In both cases,
we want to find (a) the relative distances between projected
values and (b) how these values are grouped within categories.

We support this task by drawing a Voronoi partitioning of
the 2D plot space, with the projected values as sites. Cell
colors show their categorical attribute, as in the dimensions
view (Fig. 3). To separate small cells of similar colors, we use
parabolic shaded cushions, akin to [TvW01]. Finally, we la-
bel cells with their categorical values. Labels are centered and
clipped to fit in the inscribed circle in each cell. Tooltips with
the full labels are shown when brushing over the cells. Addi-
tionally, brushing links the projection and dimensions views.

Fig. 4 shows the projection view for the car insurance
dataset. As the state attribute (light blue) has many values (50)
relative to other attributes, we see many such cells. In the cen-
ter we see a cluster of small non-state cells (different hues than
light blue) surrounded by state cells (light blue). Among these
non-state cells are quote: < 310, quote: 310..619, vehicle type:
sport, vehicle type: van, and #accidents: < 1. Since these cells
are small, their projected values are close, so we infer that
many observations select these values together. Further, we
infer that customers from states surrounding these cells, e.g.,
CA, FL, NJ, tend to have such a profile, while customers from
states that are at the periphery, e.g., SD, AK, NV , have differ-
ent profiles. Note that the distance metric is important here:
the exact locations of the Voronoi cell borders vs the observa-
tion projections is not decisive; the distance from the attribute
projections to the observation projection is.

In Fig. 4 right, we see cells for the values (daytime running)
lights: true, airbag status: all seats, and vehicle type: SUV, lux-
ury, sport-luxury. On the left, we see lights: false, airbag sta-
tus: none, and vehicle type: collection, compact, pickup. This
shows that the X axis of this view maps the car class (left =
cheap cars with few options, right = expensive cars with many
options). This pattern could be related to wealth of the insured

submitted to Eurographic Conference on Visualization (2012)



Bertjan Broeksema / Visual Analysis of Multidimensional Categorical Datasets 5

persons. Since wealth is not an attribute in our data, this is an
interesting finding.

At the top of Fig. 4 we find cells for the age categories 35..53
and 54..72 and married people. At the bottom, we find people
below 35 and who are full-time students. Hence, the Y axis
maps the phase of life people are in. Finally, outlier cells, such
as students (Fig. 4 bottom-left), show that observations that
select this value, i.e full-time students, share less values with
the other observations as compared to observations that select
values in the central cells.

In brief, the attribute plot can be interpreted as follows:

• values in central cells are used by the average person type;
• values in periphery cells are used by outlier persons;
• the Y axis reflects life phase, with senior people at top and

young people at the bottom;
• the X axis reflects car prices, with more expensive cars at

right and cheaper ones at left.

Figure 4: Projections view with attribute values. Labels and
arrows are added here manually for illustration purposes.

4.3. Finding meaningful clusters by value cell merging

The projection view (Fig. 4) can easily get crowded, since it
shows as many cells as there are different attribute values in the
input dataset (104, in our case). One task we want to address
is classify data in clusters at a level that is meaningful for the
analysis goals at hand. To support this, we provide four ways
to cluster and filter data:

• Leave out attributes from the analysis;
• Cluster attributes in the attributes view based on distance;
• Cluster values of one user-selected attribute (Sec. 4.4);
• Filter observations based on attribute value (Sec. 4.4).

An attribute can be left out when it is of no importance for
the analysis. This creates more space for the remaining values.
For instance, when we remove the state attribute from Fig. 4,
there are 50 cells less in this view. However, this may result in
information loss, so users should decide which attributes are
relevant for each analysis on a case-by-case basis.

As explained, values who project closely show that observa-
tions are very similar with respect to these values. Hence, we
are not interested to examine such values separately – instead,
we want to find clusters of values at various levels of detail,
which show us the properties that define a homogeneous sub-
set of our observations.

To find such clusters, we add a level-of-detail option, con-
trolled by the slider shown under the projections view (Fig. 2).
The slider maps a distance δ in 2D (projection) space. When
the user changes δ, we iteratively merge pairs of value-
projections which are closer than δ into a new cell whose
barycenter is the average of the merged cells’ barycenters.
Fig. 5 shows the effect of merging: Most small cells at the cen-
ter of Fig. 4 have now been merged, by grouping attribute val-
ues which are selected by the average person. The merged cells
can now represent (a) either values of the same categorical at-
tribute, or (b) values of different categorical attributes. Outlier
cells, however, stay roughly unchanged. Hence, we use less
cells to show the concept of average person, but keep the cells
that show outlier persons.

Figure 5: Projection view with merged value cells. White label
added manually for illustration purposes.

To show which values get merged, we draw a set of con-
centric rings around the merged cells’ sites. The number of
rings equals the number of merged values within a cell. Cells
containing only values of the same attribute are colored using
that attribute’s hue, as before, and the rings are colored black.
For example, in Fig. 5 we see a cell grouping all states CT ,
FL and PA. Cells containing values of different attributes are
colored in light-gray, a reserved color not used in the attribute
colormap, to show that they groups different attributes. Rings
in such cells are colored by the colors of the merged attributes.
We read this visual encoding as follows:

• cells with many rings contain many attribute values;
• non-light gray cells with many rings contain merged values

of the same attribute; the cell’s color shows the attribute;
• light gray cells contain merged values of different attributes;

the rings’ colors show the attributes;
• cells with no rings encode individual, non-merged, values.
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In Fig. 5, the light gray cell (under the mouse) contains
many rings, i.e., many merged values. The rings’ colors show
that this cell groups values from the attributes coverageType,
drivingUnderInfluence, and vehicleType. The tooltip shows de-
tails on demand, i.e., the merged values: coverageType: col-
lision, drivingUnderInfluence: false, and vehicleType: sedan.
From this data, we infer that this cell groups people who drive
safely (no accidents, no traffic tickets, not caught for driving
under influence) but who still request a collision-coverage in-
surance, which is an interesting finding. We also show merging
information in the dimensions view. Fig. 3 shows how (at a dif-
ferent merging level) collision is merged with 6 values from 6
attributes. When clicking on a cell in the projections view, val-
ues merged in this cell get highlighted in the dimensions view.

4.4. Value filtering and merging

Merging value cells reduces the cell count while keeping the
information encoded by the merged cells in the view. However,
the user controls this process only globally, via the projection
distance. For finer-grained ways to reduce the cell count, we
provide a filter/merge view (Fig. 6). Filtering and merging fol-
lows three simple steps: (1) select an attribute; (2) select one
or more values thereof; (3) perform filtering or merging.

When an attribute vk is selected by clicking on its cell in
the projection view or tree item in the dimensions view, the fil-
ter/merge view shows all values vi

k of v along with their cell
sizes in the projections view. Sorting this list lets one pick
the largest cells, which typically appear at the periphery of the
Voronoi diagram, and thus take considerable space that could
be used to show more detail in the crowded areas. After the de-
sired attribute values are selected, one can filter or merge the
data based on this selection.

attribute

attribute values cell sizes

Figure 6: The merge/filter view.

Filtering removes observations which have any of the se-
lected attribute values. For example, to get more insight in stu-
dent characteristics, we select the fulltimeStudent: false cell,
filter, and thus remove all non-students from the view. After fil-
tering, MCA is recomputed automatically on the filtered data.
This updates the views with a new projection with removed
outliers, thus more space for the interesting observations. In
our example, our analysis will now only concern students.

Merging simplifies the visualization by replacing several
values vi

k of an user-selected attribute k with one new value
vnew

k . Like for filtering, MCA is done anew after merging and
all views are updated. Unlike filtering, merging n attribute val-
ues will remove exactly n− 1 cells from the projections view,
since there is exactly one cell per attribute value. For example,
consider the states attribute, which has 50 values. Recalling the

analysis in Sec. 4.2, we have found cells on the right of Fig. 4
as high-income-related, and cells to the left as low-income-
related. If we accept this meaning, we can now merge states on
the right of Fig. 4 to a new value high-income states, states to
the left into a new value low-income states, and the remaining
(center cells) states moderate-income states. Fig. 7 shows the
updated view. The view has a similar layout as before merg-
ing (modulo a rotation which is an unfortunate side-effect of
MCA), but offers now more space to other values than states,
since we now have 3 state values instead of 50.

Relevance

state has now only three valuesstate: mid income

state: high income
state: low income

Figure 7: Merging states into three different groups.

The relevance metric for attribute values, shown in the di-
mensions view (Fig. 7 right), serves here two purposes. First,
we can use it to select which attribute values we want to filter
or merge – the less relevant ones. Secondly, this metric tells us
how attributes change their relevance (for distinguishing be-
tween observations) after a filter or merge was applied. This
helps iteratively reducing the dimensionality of the dataset by
incrementally merging less relevant values into higher-level
concepts, and also helps users focus on the most relevant con-
cepts at a given level of detail.

4.5. Projection legends

Dimensionality reduction techniques like MDS or MCA typi-
cally project the data along K ∈ {2,3} eigenvectors, and draw
projections as K-D scatterplots. However, such plots can be
hard to read by many business users. One issue is that axes
have no explicit meaning: These are factors, coming from the
SVD in the MCA case. Ideally, we would like to explain the
axes in terms of the variance of attributes and attribute values.

For this, we proceed as follows. Given an observation xi =
(x1

i , . . .x
J
i ), i.e. a row of X, the quantities

bi, j =
mi f 2

i, j

∑
I
k=1 mk f 2

k, j
where 1≤ i≤ I, 1≤ j ≤ L (3)

give the so-called contributions of xi to the jth factor, i.e., how
important is xi for factor j. Here, fi, j are the elements of the
row factor score matrix F and L is the number of non-zero
singular values, or number of columns of F (Sec. 3.1), and
mi = ∑

J
k=1 xk

i is the so-called mass of row i of X. We are, how-
ever, interested in the contributions of attributes, rather than
observations, to the factors. This is easy to compute: We extend
the input matrix X by J supplementary rows rsup

i , one row for
each attribute value v j

i , containing zeros for all columns except
the attribute value’s own column, which contains a one. Next,
we project these supplementary rows using the SVD already
computed by MCA from the observations, and obtain one sup-
plementary factor score row fi for each rsup

i . The values fi, also
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called loading in the literature, are used to compute the contri-
butions via Eqn. 3. For details, we refer to [AW10a, AV07].

Figure 8: Zoomed-in projection legends from Fig. 4 with at-
tribute contributions.

We now have two contribution vectors bx = {bi
x} and by =

{bi
y} for the two factors used to draw our 2D scatterplot. The

values bi
x and bi

y give the contributions of all values of attribute
i attribute to the x and y plot axes. We can now explain what
the x and y axes mean in terms of a mix of attribute values from
the input data. Still, bx and by are not in the optimal form for
interpretation: Since MCA uses one column for each attribute
value, our vectors bx and by have J elements, one for each
attribute value. We simplify the contribution vectors by sum-
ming up all values that correspond to the same attribute. The
resulting contribution vectors b̃x and b̃y have now K elements,
i.e. as many as the number of input attributes. Their elements
indicate the contribution of each separate attribute (and not at-
tribute value) to the plot axes.

We show these values by barchart legends on the x and y plot
axes. This approach is somewhat similar to [ODH∗07]. How-
ever, we only show the plots for the projected factors and add
interaction to the barcharts, as explained next in Sec. 4.6. Each
bar is colored by the hue of its corresponding attribute, as in
the dimension view (Sec. 4.1) and projections view (Sec. 4.2).

Fig. 8 shows a zoom-in of the projection legends for the
insurance dataset in Fig. 4. The x legend has two large bars
for the attributes antilockBrakes and daytimeRunningLights. If
we brush the view, we see indeed that these attributes have
extreme values at the left and right of the x axis respectively –
see e.g., the cell daytimeRunningLights: true right in Fig. 4.

MCA shows the input data projected along the two most rel-
evant factors. However, datasets may be inherently of higher
dimensions than two [PNML08]. Hence, an MCA (or similar)
2D projection may convey false insights if much of the data
variance occurs along the ’discarded’ dimensions. We show
this by a third barchart: the error legend (Fig. 8). This barchart
is built similarly to our previous ones, but it shows the sum of
contributions of all factors except the two used for the actual
projection. We read this chart as follows: Short bars show at-
tributes whose variance is well captured in the 2D projection.
Long bars show attributes whose variance is captured mainly
by factors not used in this projection. Seeing such large bars,
users can (a) either continue the analysis, but refrain from mak-
ing judgments about these attributes; or (b) select one of the x
or y dimensions in the current view to use the factor that has
the largest variance for the attribute of interest. This can be
done by shift-clicking on the respective attribute bar.

4.6. Observation plot

As explained in Sec. 4.2, both observations and attribute values
are projected in our 2D plot space. So far, we showed how
attribute values are visualized.

Fig. 9 shows the projections view used to explore observa-
tions, a view we call the observation plot. Typically, one has
many more observations than attribute values. To remove clut-
ter, and show observation density, we draw observations using
additive alpha blending. Attribute cells are shown in the back-
ground, but grayed out, so we can use colors to show the obser-
vations’ attribute values. The relation between attribute cells
and observations is as follows: If an observation xi is closer to
an attribute value j than to other attribute values k 6= j, then xi
will more likely select value j than select values k relative to
the other observations. Showing the attribute cells helps assess-
ing such relations without having to visually locate attribute
value projections, which is hard given the dense observation
plot. To find more information about a cell close to observa-
tions of interest, we can switch the view to the attribute plot.
The cell layout stays the same, so users keep their mental map.

Observations tend to form clusters (groups of closely packed
points) in the observation plot, based on similarity. A stan-
dard analysis task is to explain such clusters. We assist this by
adding functionality to the barchart legends (Sec. 4.5): When
clicking a bar in the x, y or error barcharts, observations are
colored using a categorical colormap on the values of the bar’s
attribute. This colormap is different from the hue mapping used
in the dimensions and projections views (Secs. 4.1, 4.2), and
has a different purpose: The hue map shows the identity of an
attribute, i.e., links the projections view with the first tree-level
in the dimensions view. The value colormap shows the differ-
ent values of an attribute, i.e., links the observations plot with
the second tree-level of the dimensions view.

Fig. 9 a shows an example. Two separate clusters are ap-
parent. Both spread along both x and y axes, i.e., along the
two factors used to create this projection. Hence, if these clus-
ters are determined by some attribute, this attribute contributes
to both the x and y factors, otherwise the clusters would be
one-dimensional (lines). We use this hint and the barcharts to
explain the clusters, as follows. First, the clusters cannot be ex-
plained by the two long bars in the x barchart, antilock brakes
and daytime running lights, since these attributes contribute
almost fully to the x axis, as shown by their long bars which
reach almost 1. The next two longest bars in the x barchart,
A and B, are about half height, so they contribute only 50%
to the x factor. However, they have no contributions to the y
factor (very short bars A′ and B′ in the y barchart), so they
cannot explain the spread along y. In the y barchart, we see
three attributes that contribute almost equally to this axis. The
longest one, gender, does not explain the clusters, since it is
short in the x barchart. We have now two remaining possibili-
ties. Clicking the second-longest bar in the y barchart (fulltime
student) colors observations based on this attribute, i.e., stu-
dents=blue and non-students=red (Fig.9 b). The colors match
the perceived clusters, so we conclude that the clusters reflect
the student status.

In Fig. 9 b, we see that students are mostly present in the
lower left area of the plot. If we read the attribute labels for the
cells in this area (Fig. 8), we find that students have a

• lower probability of being married;
• higher probability of being under 35;
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quotation

a) b)

Figure 9: Observation plot: (a) without selection; (b) with ‘full-time student’ attribute selected (blue = student, red = non-
student). Legends help confirming that the clusters reflect the student status attribute.

• higher probability of being caught driving under influence;
• higher probability of having there license suspended;
• higher probability of causing accidents.

Such findings are evidence of an increased risk for accidents
under students. Analysts could use this to adjust insurance quo-
tations. Let us see if this was the case in our data. Looking at
the error barchart in Fig. 9, we see that the insurance quotation
is high, i.e., it contributes very little to the x and y factors, and
a lot to the other factors not used in this projection. If quota-
tion and student status were correlated, the quotation attribute
should have contributed visibly to the y axis which, as we saw,
explains the student status attribute. As this does not happen, it
means the quotation is not correlated with student status, even
though student status is correlated with accident risk.

5. Evaluation

For further evaluation, we analyzed a second example: the
adult dataset from [FA10]. The data have 15 attributes re-
lated to education in the US, including education level, edu-
cations, work hours/week, and classification (earning below or
over 50K USD). After applying cell merging (Sec. 4.3) to find
coarse patterns, the attribute plot shows a shape running from
left to right and then curving upwards (Fig. 10 a). The x bar-
chart shows that classification explains the x axis best: The
>50K attribute cell is on the left and the <50K cell is at the
right. Another left-to-right trend relates to hours/week, which
is high on the left and low on the right, i.e., correlates with
earnings. A third trend, which also causes the upward curve,
follows the number of educations and education level. To the
left, we find the most educated people (many educations, ed-
ucation level=BSc/MSc). Going right and then up, education
decreases, with the least educated (1− 4th grade) in the pur-
ple cell top-right. To confirm this, we use the observation plot
(Fig. 10 b), with observations colored by number of educa-
tions. We see here too the left-right-upwards trend starting with
highly educated people, going through mid-educated people,
and ending with a sparse cluster of low-education people.

To better understand our visualization’s strengths and weak-
nesses, we also conducted an exploratory user evaluation. The
users were 14 computer science students (3 BSc, 7 MSc, and 4
PhD), with 1..2 years of experience with general Infovis tech-
niques, but no knowledge of MDS or MCA. They were given
a detailed demo of our tool (45 minutes), and next each had to
answer three types of questions:

Q1: Find a meaning for cell groups to the top, bottom, right,
left, and center of the projection view;

Q2: Explain the x and y projection axes in terms of attributes;
Q3: Find and explain salient clusters in the observation plot

in terms of attributes.

The questions followed our own experiments (Sec. 4), so
we could use our findings (unknown to the users) to validate
results. For each question, users had to rank the usefulness
and ease-of-use of the techniques (selection, brushing, color
linking, dimensions view, observation plot, projections view,
merging/filtering, and barcharts) on a five-point scale: very
high (VH), high (H), low (L), very low (VL), and not used
(NU). The assignment took under 2 hours. After that, the users
could give additional oral feedback on their experience.

Fig. 11 summarizes the study’s findings for 13 users (one
user dropped out of the study). Overall, most users found the
same cell groups, axis explanations, and clusters as ourselves.
Color linking and brushing were found useful and easy to
use. Barchart legends scored very well for Q2 and Q3 and
were not used for Q1, in line with our design intention for
this tool. Merging/filtering scored lowest, which can be ex-
plained by the relatively short training time put into this feature
(5..10 minutes) and the fact that they require more involved
choices (which values to merge or filter and merge distance,
see Sec. 4.3). Finally, the usefulness and ease-of-use scores for
the dimensions view, projections view, and observation plot in-
dicate that most users perceived these (very) positively.

Although this exploratory study is far from a formal user
evaluation, the results suggest that our techniques are relatively
easy to learn for novice users, and can support the tasks and
questions sketched in Sec. 4 up to a good extent.
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Classification

Education: 1st-4th

Education: 5th-6th
Education#: <4

Education: 
preschool

Classification: <50K
Education: 11th,12th,college
Hours/week: <20

Classification: >50K
Education: BSc, MSc
Hours/week: >77

Hours/week: 58-76

Plot colored by education#

≥13
10..12

7..9

4..6

<4

a) b)

low education

high education mid education

Figure 10: Adult education dataset. MCA arranges data along a curve pattern following education (low..mid..high)

Question Tools usefulness and ease-of-use Results

color

linking

brushing &

selection

barchart

legends

merging &

filtering

VH
H
L

VL
NU

Q1

VH
H
L

VL
NU

Q2

VH
H
L

VL
NU

Q3

7
4
2

10

3

10

2
1

2
6
3
2

6
5
2

9
2
1

1
4
5
1
2

3
6
3
1

11
2

4
3
3
2

1

5
5
3

10

3

Found right group: 
Found left group: 
Found top group: 
Found bottom group: 
Found center group: 

8
7
8
5
7

Explained x axis:
Explained y axis:
Explanation confidence:

Found salient clusters:
Found other clusters:

9
8

8 (sure); 2 (maybe); 3 (none)

10
3

Figure 11: Evaluation results.

6. Discussion

Our visualization, in contrast to MDS techniques, can tech-
nically handle both categorical and numerical (binned) data.
The main value of MCA is that it enables us to have attributes,
attribute values, and observations all in the same projection.
In turn, this allows linking attributes with observations, which
helps explaining the meaning of projected observations. This
addresses one problem of MDS-like plots.

The barchart plots allow seeing which attributes contribute
to the x and y projection axes; which are weakly reflected in
the projection; and how values of a selected attribute map to
projected observations. Understanding the meaning of a scat-
terplot and/or its clusters requires much less user interaction
(clicking a few value bars in the barcharts) than in classical
MDS plots where one usually has to cycle through all attributes
and color projections based on the selected attribute.

Scalability is covered at several levels: Space-filling Voronoi
cells show relative locations and distances of attributes and
also which observations most likely sample these. Cell merg-
ing, done distance-based or by attribute values, removes un-
derstood or uninteresting observations to give more space to
project the remaining ones. Computational scalability is good:
MCA is O(J2I) for J distinct attribute values and I observa-
tions (Sec. 3.1), under the assumption that J < I.

Several limitations exist, though, as follows.

Colors: The categorical colormap scheme used for the pro-
jections and dimensions views (Sec. 4.1) cannot show more
than roughly 10 distinct attributes. Even though the problem is
alleviated by using colors to emphasize the most relevant at-
tributes, i.e. the ones which are most likely to discriminate be-
tween observations, and also by merging cells (Sec. 4.3), the
issue still exists. A general solution that can handle datasets
having hundreds of attributes, out of which a large subset could
be equally relevant, is still required.

Voronoi cell size: Voronoi cells partition the 2D plot space
to place multivariate information atop projections in a non-
overlapping manner. As a by-product, outliers (e.g. at the plot
periphery) get large cells. Cell area is, thus, a by-product of
inter-projection distance, and does not encode data values. Al-
though large cells help locating outlier attribute values, the
strong visual salience of area can have undesired effects, e.g.
users comparing the areas of two cells to draw wrong conclu-
sions about their attribute values. A related issue is the Voronoi
cell adjacency: The fact that two cells are adjacent does not
carry any additional information besides the fact that they are
spatially close, i.e. that observations tend to select their respec-
tive attribute values together, as explained in Sec. 3.2.

Observations vs cells: A separate challenge relates to inter-
preting observations vs Voronoi cells in the observation plot.
As mentioned in Sec. 4.6, if an observation x is closer to an
attribute value j than to other attribute values k 6= j, then x will
more likely have value j than values k relative to the other ob-
servations. Thus, if x falls within the Voronoi cell of some at-
tribute value j, it only means that x will more likely have value
j than other attribute values. Cell borders are thus only indica-
tors of a change in attribute-value likelihood for observations,
and not a precise indication of actual attribute values for ob-
servations. Hence, observations that fall within a large cell and
are far from the cell borders are very likely to actually have the
attribute value of that cell. In contrast, for observations that fall
close to cell borders, or are located in small, densely packed,
cells, we can only say that they more likely take one of the
attribute values of the respective cells than values of far-away
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cells. This interpretation challenge is clearly not trivial, and a
recognized limitation of our visual encoding.

Usability: Although linking our views to concepts and ques-
tions from the application domain is arguably easier than for
existing MDS plots, there is still some effort and learning curve
required. Making the mapping between questions and views
even simpler and more explicit is a main point for future work.
Also, investigating the use of MDS techniques, e.g. [PNML08]
instead of our current MCA technique, would extend the scope
of our explanatory visualizations to a larger area.

7. Conclusions

We have presented a set of visual analysis techniques for mul-
tivariate categorical data. In contrast to classical numerical
MDS, we use MCA to create 2D projections which display at-
tributes, attribute values, and observations. We introduce sev-
eral visual encodings which help correlating values, observa-
tions, and observations with values. We showed how our tech-
niques can be used to find non-trivial insights with limited ef-
fort in a dataset from the insurance industry.

A standard tool in sociology, MCA is rarely used for infor-
mation visualization of multivariate data. Yet, categorical data
is very common in datasets concerning business processes.
To our knowledge, our work is the first application of MCA
in visual analytics, and demonstrates the usefulness of this
technique in understanding categorical data. We wish that our
work, leveraging modern interactive visualization practices on
this particular technique, can contribute to making MCA more
widespread, bringing its power of explanation to analysts and
casual users outside the domain of social sciences. A further
direction of work is to leverage the presented visualizations
to facilitate the explanation of other dimensionality reduction
techniques, such as 2D and 3D MDS scatterplots.
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