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Robust Segmentation of Multiple Intersecting Manifolds from
Unoriented Noisy Point Clouds

Abstract
We present a method for extracting complex manifolds with an arbitrary number of (self) intersections from unoriented
point clouds containing large amounts of noise. Manifolds are formed in a three step process. First, small flat neighbor-
hoods of all possible orientations are created around all points. Next, neighborhoods are assembled into larger quasi-flat
patches, whose overlaps give the global connectivity structure of the point cloud. Finally, curved manifolds are extracted
from the patch connectivity graph via a multiple-source flood fill. The manifolds can be reconstructed into meshed sur-
faces using standard existing surface reconstruction methods. We demonstrate the speed and robustness of our method
on several point clouds, with applications in point cloud segmentation, denoising, and medial surface reconstruction.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Point cloud models of 3D shapes are created by many appli-
cations such as surface scanning [PNF∗08], stereo reconstruc-
tion [RH07], shape processing [RT08b,JR07], and medical imag-
ing [SHG06]. Extracting 3D surfaces from such point clouds is
an important task. Many methods exist for reconstructing an ap-
proximation of a continuous 2D surface S ⊂ R3 from a point
cloud S. However, most such methods pose constraints on the
manifold structure of S and/or structure of the point cloud S,
such as the sampling density of S, availability of normals, and
presence of watertight manifolds. A more restrictive constraint is
that S is a single non-self-intersecting manifold M ⊂ R3. Point
clouds created by 3D laser scans typically meet this constraint.
Other applications however can create clouds which sample in-
tersecting manifolds. Examples hereof are medial shape process-
ing [MBC12], where 3D skeleton manifolds naturally intersect;
CAD reverse-engineering, where one aims to separate several in-
tersecting shapes from a single point cloud, e.g. when topology
information was lost; and dimensionality reduction [SP05].

Extracting multiple (self) intersecting manifold surfaces from
unoriented noisy point clouds is very challenging, since this pro-
cess is ill-posed without prior assumptions on the manifold struc-
ture [CLK09]. To address this, we propose to first segment the
cloud into subsets which have manifold properties. Our contribu-
tion focuses on point cloud segmentation (as opposed to surface
reconstruction): Given an unoriented point cloud, we first ex-
tract locally quasi-flat point groups. Next, we merge these groups
into larger point sets using a global smoothness criterion. No as-
sumption is made on the manifolds’ shapes, sizes, or (self) in-
tersections. Finally, we reconstruct meshed manifolds from each
such point set using existing standard surface reconstruction tech-
niques. Manifold smoothness is controlled by two parameters.
Our method is robust against geometric or topological noise, i.e.
extracts smooth, clean, manifolds embedded into noisy clouds.

The structure of this paper is as follows. Section 2 reviews re-
lated work. Section 3 details the three steps of our method: local
point classification (Sec. 3.1), global classification (Sec. 3.2), and
manifold reconstruction (Sec. 3.3). Section 4 presents applica-
tions in manifold cloud clustering, denoising, and medial surface
reconstruction. Section 5 discusses our method. Section 6 con-
cludes the paper and outlines future work directions.

2. Related Work

Extracting manifold surfaces from noisy point clouds has been
researched in several fields, as follows.

Data clustering: If the cloud is a mix of smooth (intersecting)
manifolds with noise, extraction can be seen as a data clustering
task. Clustering methods use assumptions on the underlying data,
e.g. linear manifolds [VMS05, HH05], minimal manifold sepa-
ration [CH06], knowing the manifold count [SP05], or normal
data [RVV06]. Spectral clustering handles curved manifolds, but
is slow for intersecting manifolds [Gol09]. K-manifolds [SP05]
estimates inter-point geodesic distances via dimensionality re-
duction [TdSL00] and uses this distance to cluster points via
expectation-maximization. K-manifolds extracts curved mani-
folds, but needs to know the cluster count, and each point can be-
long to just one cluster. Since a geodesic distance is used to sep-
arate clusters, this fails for non-intersecting clusters (see further
Sec. 4.1). Kushnir et al. [KGB06] cluster manifolds by finding a
minimal normalized-cut in a weighted graph. This method is not
suitable for manifolds with varying sampling density. Difference-
of-normals (DoN) [ITHG12] estimates point normals at two spa-
tial scales r1 and r2 by fitting a plane on point neighborhoods
with radii r1 and r2 respectively. Large values of the difference of
the two normals indicate shapes in the cloud at a scale between r1
and r2, which can next be segmented from the surrounding cloud.

Outlier removal: Points with statistical properties diverging
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from the desired smooth manifolds are removed [KNT00,JKN98,
Haw80, RMB∗08, BKNS00]. Such methods do not address point
clouds specifically. However, data statistics (distribution, dis-
tances, and density) can have a too wide variance for non-
uniformly sampled clouds with many noisy outliers, e.g. tens of
percents of the cloud size. Sotoodech et al. [Sot07] remove out-
liers recursively, in decreasing distance from the cluster center.
However, this approach does not work well for datasets where
noise and data overlap or which contain non-intersecting mani-
folds far away from the largest data density (see also Sec. 4.2).
For such datasets, tensor voting provides an alternative solu-
tion [MM07]. Local geometric structure, or features, are repre-
sented using e.g. second-order symmetric tensors of the covari-
ance matrix created from the neighbors of each point. Each point
lying on a (potentially-noisy) manifold propagates its local fea-
ture in a neighborhood of user-specified radius σ, by casting a
vote to all nearby points. The neighborhood is determined by a
dense ‘voting field’, aligned with the local point. The vote is a
tensor generated according to the local tensor and position in the
voting field. Accumulating all votes generates the new local ten-
sor or feature. 3D surfaces are finally extracted by isosurfacing
the extremal directions of the tensor field [MM07, MT00].

Surface reconstruction: Point-cloud surface reconstruction of-
ten uses global priors, e.g. surface smoothness, water-tightness,
viewpoint-invariance, and topology [BMR∗99, AC01, Flö09,
DG03,CSD04,JR07,DLRW09,TOZ∗11,SSZCO10,KBH06]. For
noisy clouds, we distinguish between denoising [UH07] and sur-
face extraction methods [DG04, SW09, MDD∗10]. Chang et al.
present a comprehensive comparison of the strengths and limita-
tions of 16 surface reconstruction methods [CLK09]. They show
that, apart of their own method, all other reviewed methods can-
not handle non-manifold surfaces and/or intersecting manifolds.
However, the method of Chang et al. is much slower, and more
complicated, than our proposal (see Sec. 5).

Our contribution: Our goal is to separate manifold points from
an input noisy cloud. Our priors are a set of (self-) intersecting
manifolds with or without boundaries. This is more general than
typical priors in data clustering, outlier removal, and surface re-
construction: Unlike manifold clustering, we allow points to be-
long to several, one, or no manifold (i.e., noise). Unlike outlier
removal, we allow a much higher amount and spread of noise.
Unlike surface reconstruction, we segment the input cloud into
separate manifolds, so we can directly use standard surface re-
construction tools for each such manifold.

3. Method

Our input is an unoriented point cloud S = {xi} ⊂R3 which sam-
ples a surface S ⊂R3 consisting of one or several possibly (self-)
intersecting manifolds Mi embedded into noise. We first classify,
or label, S into a set of point clouds Mi ⊂ S, such that each Mi
is the sampled representation of Mi. The classification handles
intersecting manifolds, i.e. Mi∩M j can be non-void for i 6= j. To
handle noisy clouds, we allow certain points from S which cannot
be classified as belonging to any smooth manifold, to be labeled
as noise, and further ignored, i.e.

⋃
i Mi ⊆ S.

Classification has two phases (Fig. 1). First, for each small spa-
tial neighborhood ν(xi) ⊂ S of a point xi ∈ S, we compute all
point sets ci ⊂ ν(xi) which describe quasi-flat manifolds embed-
ded in ν. We call this local classification (Sec. 3.1). Next, we
group the point sets ci into sets Mk which describe large, com-

pact, manifolds Mk. We call this global classification (Sec. 3.2).
Finally, we reconstruct piecewise-linear (meshed) representations
of the manifolds Mk from the sets Mk (Sec. 3.3).

3.1. Local classification

A key property of a 2D manifold is its local flatness. To reason
about local flatness, we consider each neighborhood ν(xi), xi ∈
S. Such neighborhoods can be defined e.g. using the k nearest
neighbors of xi (Fig. 1 a), as detailed further in Sec. 5.

3.1.1. Local Surface Estimation

To find all manifolds which a neighborhood ν(xi) admits, we
first construct all possible flat surfaces which pass through xi
and two other points xm,xn ∈ ν(xi), i 6= m 6= n, i.e. all triangles
Tν = {(xi,xm,xn)}. We exclude degenerate triangles which have
near-collinear or near-identical vertices. The maximum triangle
count is the number of possible 2-permutations without repeti-
tion i.e. k!

(k−2)! where k = |ν(xi)| is the neighborhood size. For
each neighborhood ν, we gather the unoriented normals ni of all
triangles ti ∈ Tν into a normal-set Nν (Fig. 1 b).

Consider now the map γ : Nν→ S2 where S2 is the unit sphere,
which maps from each normal n ∈ Nν to the sphere point indi-
cated by n, seen as a vector starting at the sphere center. γ is the
Gauss map of a surface formed by all triangles in Tν [GP05]. The
peaks of γ coincide with the normal directions of the most salient
manifolds, since these are the directions along which many trian-
gles, packed in the small spatial area ν, are oriented. Hence, we
can use γ to extract our desired quasi-flat manifolds within ν. We
distinguish three cases:

a. If ν samples a quasi-flat surface, all triangles ti ∈ Tν have sim-
ilar normals n, so γ has two clear peaks (at n and −n);

b. If ν samples the intersection of two or more manifolds, γ has
two or more such peak-pairs;

c. If γ does not have clearly separated peaks, but is a rather flat
signal, ν samples a volumetric point distribution rather than a
few intersecting quasi-flat surfaces, so we cannot reliably ex-
tract clear quasi-flat manifolds from ν.

All points whose normals fall under a peak-pair in γ are thus
points in ν which belong to the same quasi-flat surface. Hence, if
we can reliably find well-separated peaks in γ (which we discuss
next in Sec. 3.1.2), we find the desired separate quasi-flat surfaces
in ν. If such peaks are far apart in γ, their corresponding quasi-flat
surfaces should self-intersect within ν, since ν is small and these
surfaces are not parallel. For example, the Gauss map for seven
triangles in Fig. 1 c captures the intersection of two quasi-flat sur-
faces within the considered neighborhood, one with 3 triangles,
the other one with 4 triangles.

3.1.2. Segmenting the Gauss Map

To separate the different quasi-flat surfaces in a neighborhood ν,
we cluster the neighborhood’s Gauss map γ using the geodesic
distance on the sphere S2 between the map’s normals, defined as

d(ni ∈ Nν,n j ∈ Nν) = arccos |ni ·n j| ∈ R+ (1)

where · denotes vector dot product. As we do not know a priori
the number of peaks in γ, we use a hierarchical bottom-up, full-
linkage, agglomerative clustering on the distance matrix induced
by d on Nν [dHINM04]. This yields a dendrogram D whose
nodes ni = {t j ∈ Tν} are sets of triangles having similar normals.
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Figure 1: (a-e) Algorithm steps (see Secs. 3.1-3.3 for details). (f) Three manifolds are extracted from a noisy point cloud.

We next cut D at a user-given normal dissimilarity level dmax.
For each node ni in the cut, we collect all vertices of triangles in
ni to create a quasi-flat surface or patch ci ⊂ ν. We also store in
each patch ci all normals of its triangles. We denote this normal
set n(ci). The threshold dmax gives the amount of curvature we
allow for our quasi-flat surfaces over ν. Small dmax values yield
more, and flatter, patches ci. Larger values yield fewer, and more
curved, patches. Setting dmax is discussed further in Sec. 5.

From the above, we obtain, for each input point xi, a set πi =

{c j} ⊂ ν(xi) of quasi-flat patches c j which pass through xi. The
size of the set πi tells what type of point xi is: If |πi|= 1, one patch
passes through xi, so we say that xi is a flat point. If |πi|> 1, more
patches pass through xi, so we consider that xi is an intersection
point of several manifolds or a flat patch surrounded by noise.
For example, a point on the intersection line of the two planes
in Fig. 1 d has two patches π = {c1,c2}. Of course, the notions
of flatness and intersection used here are subject to the flatness
threshold dmax (see also Sec. 5). We do not further distinguish
between several intersecting manifolds and noise (both occurring
when |πi| > 1) explicitly by counting the size of the set πi, but
implicitly, by the global process which joins overlapping similar-
orientation patches, as described further in Sec. 3.2.

Our approach is similar to [WHH10] where, for each point, all
local triangulations containing the current point are projected on a
Gauss map, which is next clustered. However, [WHH10] use this
only to find sharp edges. We use our local patches to reconstruct
manifolds past such implicit edges, as described next in Sec. 3.2.

Conceptually, our patches c j resemble the splats used in point-
based rendering (PBR) [WK04,BSK04]: We also want to approx-
imate the surface (or intersecting surfaces) around each point xi
by a local quasi-flat structure, using the k nearest neighbors of
xi. Like splats, our patches overlap their neighbors, to produce a
coverage of the approximated surface. However, splats are typi-
cally circular or elliptic in shape. Our patches do not have shape
constraints apart from their quasi-planarity. Secondly, a patch ex-
plicitly stores all normals of its points (used next to merge patches
into manifolds, see Sec. 3.2). Splats typically use normals from
an analytic surface fit to their sample points. During our merging
process, we only enforce local quasi-flatness constraints on the
resulting manifolds. A splat has typically a global smoothness
constraint, due to the above-mentioned surface fit. As such, we
use here the term patches to distinguish these from PBR splats.

3.2. Global classification

To find the desired manifolds Mk from the local patch-sets πi =

{c j}, we assume that each c j is part of exactly one Mk. We justify
this as follows. First, patches are quasi-flat or lightly curved, by

construction, so it makes little sense to assign the same patch to
two different manifolds. Secondly, any two such patches from the
same small neighborhood ν are oriented at strongly different an-
gles, since our clustering threshold dmax finds strong, separated,
peaks in the Gauss map (see also Sec. 5). Thus, when such sit-
uations occur, we have two manifolds intersecting in ν, each of
the two patches belonging to a different manifold. Thirdly, we as-
sume that all points in any Mk belong to some patch, i.e. that our
manifolds are a union of patches

⋃
k Mk =

⋃
i πi.

Assembling patch sets πi into manifolds Mk is described next.

3.2.1. Patch connectivity graph

First, we determine how patches in the patch-sets πi around each
point xi relate to each other. For this, we construct a patch con-
nectivity graph G=(V,E =V×V ), as follows (Fig. 1 e). For each
patch ci, we add a graph vertex u(ci) to V . Given two patches cα

and cβ, we define their surface dissimilarity δ as

δ(cα,cβ) = min
nA∈n(cα), nB∈n(cβ)

d(nA,nB) (2)

with d given by Eqn. 1. If two points xi ∈ S,x j ∈ S, which be-
long to the same patch-set, have patches cα ∈ πi,cβ ∈ π j whose
dissimilarity δ is below a given value δmax, we add an edge to
E between u(cα) and u(cβ). Since we compare only points xi,x j
from the same patch-set, δ is evaluated only for close, overlap-
ping patches. Although Eqn. 2 is equivalent to a full-linkage be-
tween all normals in n(cα), n(cβ), we speed up its computation
by adding an edge between two graph nodes as soon as we find
two normals nA,nB which are closer than δmax. We store G as a
binary adjacency matrix where each entry defines if two patches
are connected or not. Setting δmax is discussed further in Sec. 5.

G could be directly used to find points of the different mani-
folds Mk e.g. by finding its connected components via flood fill-
ing. However, this only works if manifolds intersect at non-acute
angles, which is not always the case (see examples in Sec. 4.2). If
manifolds intersect at acute angles, a connected component of G
can cover more than a single manifold. Indeed, patches close to
manifold intersections and which belong to different manifolds
differ too little in terms of normals, and thus get connected when
building G. We solve this issue and robustly detect intersecting
manifolds from the patch graph G in two steps: seed point detec-
tion (Sec. 3.2.2) and manifold point labeling (Sec. 3.2.3).

3.2.2. Seed Point Detection

Seed points Ω ⊂ S are cloud points located in quasi-flat areas
and far from potential manifold intersections. They are starting
points for a flood fill process over G which ultimately delivers
our manifold points Mi (Sec. 3.2.3). We compute Ω as follows.
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1. Mark all cloud points xi ∈ S as unvisited, and set Ω to ∅.
2. Find an unvisited flat point xi, i.e. with |πi|= 1 (Sec. 3.1.2).
3. Add xi to Ω.
4. Mark all unvisited flat neighbors {x j ∈ ν(xi)

∣∣|π j| = 1} of xi
as visited, using a flood fill.

5. Repeat from step 2 until all points in S are visited.

Ω contains seed points far away from manifold intersections. The
point flatness condition prevents the fill to leak from one mani-
fold to another; intersections act as flood barriers, since they have
non-flat points. So, we get as many seeds as manifold segments
delimited by manifold intersection curves and manifold bound-
aries, e.g. four seeds for the cross in Fig. 1 a, one for each arm.

3.2.3. Manifold labeling

The seed set Ω (Sec. 3.2.2) could be directly used to find mani-
fold connected-components separated by intersection curves. Al-
though such results are useful [UH03], we aim to find entire
manifolds past intersection curves. For instance, for the shape
in Fig. 1 f, we want to find three intersecting surfaces (red, green
and blue in Fig. 1 f) rather than twelve quarter-surfaces. Since
seed points si ∈ Ω are flat, their patch-sets have a single patch,
i.e. π(si) = {c(si)}. We use this observation as follows (see also
Fig. 2 for a 2D sketch): For each si ∈Ω, we assign a unique ID to
c(si) (step A). Next, we do a flood-fill over patches (step B). For
this flood fill, we use the patch connectivity (stored in G) instead
of the point neighbors (given by ν) used to find seeds (Sec. 3.2.2).
Hence, the patch-level flood fill can cross manifold intersections
but stays confined to the surface of a single manifold.
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Figure 2: Manifold labeling: (A) assignment of IDs 0..3 to seed
points x1..x4; (B) patch-level flood fill yielding matrix B, (C) con-
struction of manifolds, and (D) final manifolds (Sec. 3.2.3). From
the four seed points (marked red), we extract two manifolds with
labels 02 and 13, and one intersection point with label 0123.

The patch-level flood fill adds to every patch the IDs of the
seeds which flooded through that patch. However, we need this
information at point level, i.e., know which seeds flooded through
each cloud point. We store this in a compact and fast way by using
a binary matrix B = {bi j}, where each row 1 ≤ i ≤ |S| is a bit-
vector whose non-zero values encode the seeds 1≤ j≤ |Ω|which
flooded through point xi. We finally find the manifolds Mi as all
points which share the same row bit-patterns in B. Hence, we find
as many manifolds as different row bit-patterns we have in B.

Points on manifold intersections contain seed-point informa-
tion from all manifolds intersecting at that location. To add such

points to their intersecting manifolds, we visit the k-neighbors of
a given non-intersection point xi, and add to the manifolds of xi
those which contain the same seed vertices as xi. The result is a
manifold binary matrix B̃ = {b̃i j}, where rows 1 ≤ i ≤ |S| cor-
respond to the input points xi ∈ S and columns to manifolds M j,
and b̃i j = 1 indicates that xi ∈ M j (Fig. 2, step C). A point can
belong to none, one or more manifolds. Points which were not
reached from any seed point, and are not seed points themselves,
belong to no manifold, and are labeled as noise. Points which be-
long to more manifolds directly give us the manifold intersection
curves, see e.g. the light-blue point at the intersection in Fig. 2
(step D), or the three yellow intersection curves in Fig. 1 f.
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Figure 3: Labeling of manifolds intersecting at acute angles.

Figure 3 sketches two sampled manifolds that intersect at a
small acute angle α. If the terminal ‘branches’ of the two man-
ifolds are far enough from each other, phase A finds four seeds
(x1..x4, labeled with IDs 1..4, Fig. 3 top). Next, the patch-level
flood fill propagates these seeds. If α is very small around the in-
tersection point, each ID will ‘leak’ from its manifold-segment to
two other segments past the intersection point, e.g. the top-left ID
1 will flood the top-right and bottom-right branches. In phase C,
we thus find four different manifold segments, having the unique
labels 123, 124, 134, and 234, and one intersection point with la-
bel 1234. If α is larger, we have the situation in Fig. 2, where we
find only two manifolds. When α tends to zero, then a single seed
point is found, thus a single manifold is extracted.

3.3. Manifold reconstruction

We have now classified the input cloud S into a set of (inter-
secting) point-sets Mk, each one sampling a separate manifold.
We can now use several existing methods to reconstruct the de-
sired manifold surfaces Mk. A good candidate is the ball pivoting
method [BMR∗99], which can reconstruct approximating trian-
gle mesh surfaces from manifold point clouds. Figure 1 f shows
the final result on our running example. The three surfaces are
correctly extracted from the input cloud. Manifold intersections
are marked in yellow. Non-manifold noise points, found by our
extraction, are black.

Point classification into separate manifolds is essential to re-
construction quality: Feeding an entire, unclassified, cloud to
most existing point cloud reconstruction methods [DG04, DG03,
KBH06, AC01], create various artifacts, as shown further in
Sec. 4.4, since such methods are not designed to handle noisy
(self) intersecting clouds.
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Figure 4: Manifold clustering: Our algorithm (right) vs K-manifolds (left). Top row: clustering results. Bottom row: One selected
manifold from the clustering, displayed separately for illustration purposes. Input clouds are similar to examples in [SP05].

4. Applications
4.1. Manifold clustering

Manifold clustering of point clouds aims at labeling each point
as belonging to a manifold. The labeled cloud can be further ap-
plied in manifold learning algorithms [SP05], shape segmenta-
tion, or as an input for surface reconstruction. We compare next
our method with the well-known K-manifolds algorithm [SP05].
As input, we use non-uniformly sampled manifolds embedded
in 3D, see Fig. 4: Two intersecting curved surfaces (a,b), a
four-branch spiral (c,d), and a densely-sampled spiral cut by a
sparsely-sampled plane (e,f). Since K-manifolds is very slow
(several minutes for a few thousand points), we limited our tests
to small clouds only. As Fig. 4 shows, our method finds the sev-
eral manifolds present in the input robustly and eliminates the
surrounding noise. In contrast, K-manifolds does handle well in-
tersecting manifolds (Fig. 4 a vs 4 b, 4 c vs 4 d), but separates
manifolds from noise less well (Fig. 4 k vs 4 l).

4.2. Noise removal from (intersecting) manifold clouds

Noise in point clouds can occlude the underlying surfaces and
limit the success of surface reconstruction, clustering, and regis-
tration [CLK09]. We evaluated the noise-removal ability of our
method for clouds sampling various surfaces. For a fraction φ of
the points in each cloud, we add an outlier close to each cloud
point x in a random direction and at a random distance from x
ranging from 0 to 40% of the cloud’s size. We next use our clas-
sification method (Sec. 3) to find noisy points, i.e., which do not
belong to any manifold. When removing these points, we should
recover the initial noiseless cloud (ground truth).

We compared our method with the statistical outlier removal
(SOR) [RMB∗08] and tensor voting (TV) [MM07, MT00]. Fig-
ure 5 shows the results. We remove considerably more outliers
(noise points) than SOR, and produce surfaces very close to the
original. Our method works well even in spatially complex areas,
see e.g. the gun handle. TV also effectively removes most noise
points. However, TV tends to create spurious surfaces that con-
nect the original surface with nearby noise points (Fig. 5, green
markers: bunny years, mouse tail connected to body, and thicken-
ing of shuttle wings), or it removes details altogether (Fig. 5, red
markers: shuttle tailwing and gun handle). The ratio of incorrectly
kept noise vs incorrectly removed details is strongly influenced
by TV’s volume sampling resolution [MM07,MT00]: Higher res-
olutions remove less non-noise points, but also keep too many

noise points. Lower resolutions sub-sample the TV tensor field.
As such, fewer manifold structures can be traced through noisy
areas (so more noise is removed), but also more original detail
points are classified as noise and thus removed.

Figure 6 shows the difference between added and removed
points, as percentage of the original input point-count, for val-
ues of φ ranging from 0 (no noise added) to 40% extra noise
points added. Values are averaged for all models in Fig. 5. We
did not include TV in this comparison, since its behavior with re-
spect to keeping incorrect noise points vs removing correct orig-
inal points strongly varies with parameter settings (as explained
earlier) and also with the actual input cloud. For φ = 0, both our
method and SOR remove some non-noise points (5% and 15%
respectively). Although, ideally, this value should be zero for a
cloud consisting only of manifolds, we remove less non-noise
points than SOR, which is desirable. As more noise is added, the
ratio of added vs removed points stays stable with our method,
i.e., we remove only the added noise. In contrast, SOR removes
increasingly more points than the added noise – up to almost 20%
of the original non-noise points.
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Figure 6: Percentage of removed points in excess of added noise
points for different noise amounts, averaged for the models in
Fig. 5 Blue line: our method; red line: SOR method [RMB∗08])

4.3. Medial surface segmentation and reconstruction

Medial surfaces, or skeletons, contain the loci of maximally in-
scribed balls within a given shape [PSS∗03,SP99]. Such surfaces
consist of tens of manifolds of various sizes which meet along a
set of Y-intersection curves [Dam06,LK07,CLK09]. Each mani-
fold corresponds to a separate edge-set on the initial surface S .
Separating medial surfaces into their corresponding manifolds
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Figure 5: Noise removal from manifold clouds. Noisy shapes (top) are denoised with SOR [RMB∗08], TV [MM07], and our method.
Zoom-ins show details marked in blue. TV: red markers show incorrectly removed points; green markers show not removed noise.

is useful for applications such as shape classification [CLK09],
shape matching [CC00], and segmentation [RT08a, RT08c].

Recently, Ma et al. proposed a very efficient GPU method
to extract highly accurate medial point clouds of complex 3D
shapes [MBC12], thereby making medial surfaces practical for
applications on very large models. However, they stress that me-
dial point clouds are of limited use since, for typical applications,
one needs mesh-based skeletons. Creating such representations
from medial clouds is highly challenging, since typical medial
surfaces contain numerous (self-) intersections of very closely
spaced, non-watertight, manifolds. Also, small-scale noise on the
input shape creates spurious medial sheets, which show up as out-
lier points in the medial point cloud [SP99, MBC12, MGP10].

Using our method on the medial clouds computed
by [MBC12], we can thus simultaneously

A: eliminate outlier (noise) medial points;
B: obtain a separate mesh for each medial manifold.

Figure 7 shows this on two medial clouds. Images (e-l) show the
medial manifolds extracted by our method, colored differently
for display purposes. As visible, our method captures well the
complex medial topology and also robustly finds and eliminates
the quite many noise points – compare images (i-l) where noise is
drawn in black with images (e-h) where we eliminated the noise.
Since such noise is unavoidable when extracting medial axes of
discrete objects, our method has the added value of acting as a
filter that generates clean medial surfaces.

For comparison ground-truth, we next used the high-accuracy
medial surface reconstruction method in [TJ12] which works as

follows: Given an input mesh shape, the medial cloud is com-
puted following Ma et al.. Next, the medial cloud is simplified,
or regularized, by eliminating noise points that correspond to
small-scale surface details, using the medial importance metric
in [RvWT08]. Finally, the input mesh is collapsed onto the sim-
plified (clean) medial cloud to yield the medial mesh, using the
so-called feature transform [RvWT08].

Our method produces nearly identical medial surfaces
with [TJ12] (Fig. 7 a-d vs Fig. 7 e-h). Differences consist in
small-scale holes in our manifolds, which do not exist in the re-
construction of [TJ12]. Upon closer inspection, we see that these
holes are due to limitations of the ball pivoting method used fol-
lowing our point classification, and not due to the fact that our
method incorrectly classifies manifold points as noise. Hence, we
argue that our main goals A and B are reached. [TJ12] does not
produce such small holes in the medial surface reconstruction.
This is expected, since this method requires the input to be pro-
vided as an oriented mesh rather than an unoriented cloud. More-
over, [TJ12] needs the feature transform linking this mesh with
its medial cloud, the relatively expensive and complicated im-
portance computation for denoising [RvWT08] (which adversely
affects goal A), and delivers a single unstructured medial surface
(thus does not satisfy goal B). Although we require far less infor-
mation (meshless unoriented medial clouds), i.e. use no knowl-
edge that these points encode a medial surface, we can still ex-
tract separate and clean medial manifolds.

4.4. Surface segmentation and reconstruction

Segmentation: Given a point cloud S which samples a 3D sur-
face S , our method can segment S into smooth regions separated
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Figure 7: Medial surface reconstruction: (a-d) High-accuracy ground truth [TJ12]. (e-h) Our method (noise points removed). (i-l)
Our method, (detected noise rendered in black). (m-p) Isotopic reconstruction [DLRW09]. (q-t) Tensor voting reconstruction [MM07].

by sharp edges. In contrast to many surface segmentation tech-
niques, we do not require S to be closed, non-intersecting, be a
single manifold, have normals, or be provided as a mesh. Fig-
ures 10 (d-l) illustrate our segmentation. Zoom-ins show details
to provide insight into the point samples’ distribution in various
areas. To better visualize the segmented point-sets, we show their
reconstructions by ball pivoting. Image (d) shows the segmenta-
tion of a cloud from a 3D structured-light scan of a room by a
Kinect device. The point sampling is quite uniform, but noisy.

The objects in the room are segmented correctly from each other
and from the floor. The back wall (red) is only partially seg-
mented since points in that range, far from the camera, are highly
noisy, so they do not create a smooth manifold. In images (e-f),
the various parts of the rabbit statue (body, plinth faces, inner ear
surfaces, and heart detail) are correctly found. Since the cloud
describes a hollow shape, we also get manifolds for the inner sur-
faces – see the head, body and plinth cavities in the half-opaque
rendering in Fig. 10 f. Very thin, highly-curved, details like the
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screw connecting the head to the heart shape are labeled as noise,
as they have a higher local curvature than the imposed flatness
dmax (Sec. 3.1.2). Images (i-j) show the segmentation of a cloud
having several tens of intersecting shapes (sails, mast parts, and
hull parts). In image (i), we used a low-resolution cloud (38K
points). As seen in the zoom-in, fine details such as the masts
have extremely few points. Like for the screw in the rabbit model,
few or no patches are found along the mast, so no manifolds are
found there (case c of local surface estimation, Sec. 3.1.1). Using
a higher-resolution cloud (image (j), 74K points) finds the de-
tail manifolds along the masts. Image (k) shows a cloud (125K
points) of a CAD model of a car engine with over 100 self-
intersecting surfaces and highly non-uniform sampling. Image (l)
shows the extracted manifolds. As for the ship, too thin and/or
sparsely sampled details are classified as outliers and no mani-
folds are extracted there.

a) Kinect room b) kitten

Figure 8: Difference-of-normals (DoN) segmentation [ITHG12]
applied to two point clouds (compare with results in Fig. 10 b,d).

Figure 8 shows the results of the DoN method [ITHG12], as
implemented in the PCL library [Ioa13], on to two of our clouds.
As the DoN method requires, we first specified the scale range
[r1,r2] within which features are sought. We did this, by trial
and error, so as to obtain the desired manifolds: For the room
scene, we want to segment the various objects placed on the floor;
for the kitten model, we want to find its medial manifolds. The
DoN threshold ∆n was set to various values in the range [0.1,0.5],
similar to [ITHG12]. The resulting point clusters from DoN are
shown as colored balls. Input points not segmented by DoN are
shown light gray. We see that DoN can separate the small-scale
objects from the room floor. Also, a large part of the kitten’s me-
dial manifolds are found and separated from each other. How-
ever, several issues are visible. First and foremost, the large man-
ifolds present in the room (floor, walls) are not found – since
these are not within the user-selected scale range [r1,r2]. If we
carefully tune both r1 and r2, we can find parts of these mani-
folds. However, in the same time, we loose the smaller-scale ob-
ject segments. For the kitten medial cloud, segmenting is even
more challenging, since its manifolds are less well separated from
each other. In contrast, our method better separates both large and
small manifolds, for point clouds (Fig. 10 b,d). This is explained
by the fact that our method does not search for manifolds at a
given scale range, but tries to construct the largest possible man-
ifolds allowed by the dmin and δmin constraints.

Reconstruction and denoising: We next use our method to re-
construct surfaces formed by several intersecting manifolds em-
bedded into noise, and compare our results (Figure 9) with sev-
eral surface reconstruction methods, which are well known in
the literature, easy to use, and their authors provided their im-
plementations: isotopic reconstruction [DLRW09], ball pivot-

ing [BMR∗99], Poisson reconstruction [KBH06], and tensor vot-
ing [MM07, MT00]. Our method recovers best the various man-
ifolds embedded into the noisy clouds. Isotopic reconstruction
yields the next best results, as it can handle surfaces with bound-
aries, but still creates many small-scale spurious, non-manifold,
surface fragments. Ball pivoting, as expected, cannot handle well
dense noise and has problems for highly non-uniform clouds, like
the rhino model whose rump has a much lower sampling den-
sity than the rest of the model (see zoom-ins in Fig. 9). How-
ever, if ball pivoting is executed after our clustering method,
most noise points are discarded, given the built-in denoising of
our method. This drastically improves the effectiveness of ball
pivoting (compare Fig. 9, first and third rows). Also, since each
segmented manifold is smooth, ball-pivoting can be used with
a larger rolling-ball radius. This increases the ball pivoting ro-
bustness with respect to non-uniform sampling. Comparing the
results of ball pivoting with isotopic reconstruction, we see that
the latter suffers far less from noise and also does not produce
undesired holes. Hence, isotopic reconstruction is a very good
candidate to replace ball pivoting in our per-manifold reconstruc-
tion following the proposed denoising and classification. Poisson
reconstruction, using an octree depth and solver divide value of
10, produces smooth surfaces, but cannot handle well (intersect-
ing) manifolds with boundaries. Finally, tensor voting, used with
a volume sampling resolution of 5003 and point-neighborhood
size σ = 15 (for details, see [MM07, MT00]) yields smooth sur-
faces, but fails in thin areas where parallel surfaces are close to
each other, like the thin muzzle and horns of the elk model.

We also used the isotopic and tensor voting methods to extract
manifolds from medial clouds (see Fig. 7, two bottom rows). We
notice here similar issues as in Fig. 9. The isotopic method tends
to create small-scale non-manifold noisy details. In contrast, ten-
sor voting creates very smooth surfaces and handles manifold in-
tersection regions very well. However, tensor voting has the ten-
dency to extend the reconstructed manifolds far into the noisy re-
gions in an anisotropic way, i.e. retains noise points which allow
a smooth continuation of the medial manifolds but in the same
time eliminates noise points from the same areas if these are not
aligned with the reconstructed manifolds.

5. Discussion

Generality: We use a local feature detection for each point-
cloud spatial neighborhood, followed by a global flood fill to
find individual manifolds. Our approach has two main contri-
butions. First, we extract manifold clouds from large amounts
of embedding noise. Next, we segment manifold clouds from a
single input cloud. This allows a direct reuse of existing surface
reconstruction or shape analysis methods for point clouds on
complex, multi-manifold, noisy clouds, even when such methods
were designed to work only on smooth manifold clouds.

Robustness: Our method is robust to outlier noise (Figs. 5, 7).
This feature is due to the hierarchical clustering of the local
normal maps (Sec. 3.1.2) and the global clustering of local
quasi-flat patches (Sec. 3.2). The first clustering separates locally
relevant patches from noisy outliers, i.e. acts as a fine-grained
noise filter. The second clustering ensures that only similar-
orientation patches get grouped into smooth manifolds, i.e. acts
as a coarse-grained noise filter. We pose no constraints on the
cloud sampling density, as we detect local flatness using k nearest
neighbors, rather than range-search with a user-prescribed radius,
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Figure 9: Shape reconstruction comparison for noisy point clouds with intersecting manifolds. From top to bottom, rows: our method,
isotopic reconstruction [DLRW09], ball pivoting [BMR∗99], Poisson reconstruction [KBH06], and tensor voting [MM07]. Zoom-ins
show point cloud details of selected model areas, for getting insight into the sampling distribution.

such as e.g. [ITHG12]. The examples shown here indicate that
we can handle clouds with a large amount of sampling-density
variation (see Figs. 9 and 10). However, we acknowledge our
limits: Highly non-uniformly sampled clouds (e.g. Figs. 10 i,k)
will yield many points classified as noise.

Parameters: Our method has three parameters, as follows. The
neighborhood size (k nearest neighbours) should be large enough

to create triangles around a given point x to represent all pos-
sible surfaces crossing x, but not too large so that meaningless
surfaces are created. On all our models, regardless of sampling
density, k ∈ [7..10] provided good results. Setting k too large cre-
ates, along with the desired patches (that is, oriented along the
sampled manifolds), several spurious patches at various random
orientations. However, these are typically much fewer than the
desired patches, so their effect gets filtered out by the Gauss map
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a) b) c) d)

g) h)

i) j)

e) f)

k) l)

Figure 10: Shape segmentation examples. (a-c) Medial surfaces. (d) Structured light acquisition. (e,f) Shape with inner surfaces. (g,h)
Mechanical shapes. (i,j,k,l) Mix of different structures with varying sampling density.

dmax = 0.2    δmax = 0.05 dmax = 0.3    δmax = 0.05 dmax = 0.4    δmax = 0.05

dmax = 1.5    δmax = 0.05 dmax = 1.5    δmax = 0.1 dmax = 1.5    δmax = 0.2 dmax = 1.5    δmax = 0.25

Figure 11: Effect of parameters dmax and δmax on manifold extraction results.

segmentation and subsequent patch-level flood fill steps. The lo-
cal flatness dmax ∈ [0,π/2] (Sec. 3.1.2), set in this paper to 0.15,
models the compromise between the extracted manifold smooth-
ness, robustness to point-displacement noise, and manifold sepa-
ration accuracy. Figure 11 (top row) illustrates this. Lower dmax
yield more manifolds, since we allow normals to locally vary less
within a manifold. This, for example, separates the toes and eyes
detail of the rhino. Larger dmax values yield fewer, but poten-
tially more curved, manifolds – the toes and eye get merged with
the surrounding points. Increasing dmax even further merges the
lower and upper leg fragments. For noisy datasets, larger dmax
values also have the effect of classifying more points as noise,
since less curvature is allowed within a manifold.Classifying
points as noise prevents them from being treated by the ball piv-
oting reconstruction which, in turn, creates the small-scale holes
mentioned in Sec. 4.3. However, we argue that such holes are
not a classification problem, but a limitation of the postprocess-
ing surface reconstruction method being used: If the aim is to

remove such holes and still extract smooth manifolds, as con-
trolled by dmax, then one should use a surface reconstruction tool
that can handle non-uniformly sampled manifold clouds. If, how-
ever, the aim is to extract less smooth manifolds, then dmax should
be increased. Another approach would be to set dmax adaptively
as a function of the neighborhood’s point distribution. However,
how to do this and still guarantee the desired noise removal and
manifold intersection detection is a topic of future research.

The patch similarity δmax ∈ [0,π/2] (Sec. 3.2.1) acts similarly to
dmax, but at a coarser scale (Fig. 11, bottom row). Small δmax val-
ues yield relatively flat manifolds, i.e. split large manifolds along
their crease lines. Large δmax values yield less, and more curved,
manifolds. For the rhino model, increasing δmax progressively
merges all toe details with the legs, and further merges legs with
the rump. For the figures in this paper, we used δmax ∈ [0.05,0.1].

Performance: We implemented our method in C++ using kd-
trees for nearest-neighbor searches [MA12]. We easily added
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CPU parallelization for local classification (Sec. 3.1) and patch
graph building (Sec. 3.2.1), since points and patches are treated
independently. Table 1 shows timings for a single-threaded vs a
4-core 2.8 GHz MacBook 4 GB RAM laptop. Our method scales
well with the number of available cores. If desired, a GPU (e.g.
CUDA) port could be easily done for further speed-ups. Our CPU
method takes roughly half the time of the GPU surface recon-
struction from noisy clouds in [SW09]. For the same inputs, the
tensor voting surface extraction in [MLT13] takes tens of minutes
(at a volume resolution 5003 and σ = 15). This is not surprising,
since tensor voting uses several convolution passes of a large 3D
tensor volume with a filter of kernel size σ. Decreasing the vol-
ume resolution speeds up tensor voting, but makes it loose small-
scale manifold details. The DoN method [ITHG12] has similar
costs to our method – 4.9 and 15.96 seconds for the kitten and
room clouds in Fig. 8 respectively (for our timings, see Tab. 1).

Model Points Manifolds Unclustered Time (sec.) Time (sec.)
points (1-core CPU) (4-core CPU)

Mouse (N) 54829 61 21288 27.33 7.52
Space Shuttle (N) 106580 36 35902 34.68 12.58
Glue gun (N) 128887 124 46379 26.32 7.31
Stanford bunny (N) 42322 4 5976 20.97 4.86
Intersecting planes 30486 3 0 4.89 1.38
Rabbit 124998 40 4012 7.89 2.15
Engine 124481 426 34235 52.33 14.29
Ship 38240 67 9420 13.56 3.72
Ship 2 74573 117 18232 28.02 7.63
Screwdriver 27152 5 673 7.43 1.96
Rockerarm 43213 4 1322 12.12 3.59
Kinect room 135402 19 23733 36.87 9.75
Elephant (MS) 173012 28 16232 56.32 15.51
Cow (MS) 252180 51 22309 89.74 24.04
Scapula (MS) 116930 4 5022 37.28 10.25
Pig (MS) 225281 76 15471 73.38 20.23
Horse (MS) 120442 42 10503 39.65 11.10
Kitten (MS) 43510 23 9503 12.38 3.53

Table 1: Timings for models shown in this paper (N=model with
added noise (see Fig. 5); MS=medial surface (see Fig. 7))

Computing the patch dissimilarity δ with full-linkage (Eqn. 2)
is O(N2) worst-case for a patch with N normals on average.
N is a few tens for all tested models. The early termination
criterion (δ < δmax, Sec. 3.2.1) makes this cost much lower
in practice, roughly O(N) (see also below). We also tested
an average-linkage patch dissimilarity, i.e., using the distance
between patch average normals, which is O(N). For the models
in this paper, this gave a speed-up of about 20%, with a slight
quality decrease – a few small-sized manifolds appear, since
averages of two patch normal sets usually differ more than
the closest normals of such sets. Given this, we chose to pay
the small extra cost of full-linkage for increased manifold quality.

Limitations: If a neighborhood ν has no apparent 2D manifold
structure, but a volumetric or one-dimensional point density, the
local Gauss map has no clearly separated peaks. In that case,
the neighborhood is labeled as noise (see e.g. ship’s thinnest
masts and its ropes, and the rabbit screw in Fig. 10). If this
happens for most neighborhoods, e.g. in the case of a surface
sampled overall by a thick point cloud, our manifold extraction
will fail. This is expected, as our method is designed to find 2D
manifolds only. In this respect, tensor voting is more general, as
it can extract 2D surfaces, 1D curves, and junction points where
several surfaces or curves intersect. However, for the manifold
extraction case, both our method and tensor voting share the
same limitation: Given a neighborhood where n manifolds
intersect, if the sampling rate of these manifolds is too low with
respect to n, neither method will be able to reliably separate these
manifolds, and both methods will classify the neighborhood as

noise. Examples of such configurations are visible for the car
engine cloud segmentation (Fig. 10 k. When the sampling rate
is high enough, our method can reliably extract several inter-
secting manifolds, as illustrated by the medial examples in Fig. 7.

Comparison: Many surface reconstruction methods exist, so
the comparisons in Sec. 4 are clearly not exhaustive. Also,
our method does aim to replace all general-purpose surface re-
construction methods from point clouds for all input clouds.
Specifically, our method should be used when one needs to ex-
tract (self) intersecting manifolds with boundaries from noisy
clouds. For this context, the only two comparable methods we are
aware of are [CLK09] and [MM07]. For instance, [BMR∗99] and
[DLRW09] can handle boundaries, but are challenged by noise
and intersections; [KBH06] can handle noise well, but not man-
ifold boundaries and intersections. [DG04, SW09, MDD∗10] can
handle noise well, but cannot handle intersections. In the class
of methods that explicitly handle intersections, we are around 5
times faster than [CLK09] (Tab. 1 vs Fig. 27 in [CLK09]). Note
that [CLK09] does not appear to include the medial surface com-
putation cost. If one added that cost, our method is over 15 times
faster. Also, [CLK09] is considerably more complex to imple-
ment, as it requires a separate robust extraction of 3D medial sur-
faces from point clouds [LK07]. Compared to [MM07], we are
over two orders of magnitude faster, and handle better manifolds
which are close to each other.

6. Conclusions

We have presented a method to robustly segment unoriented point
clouds into smooth manifolds. We handle clouds with complex
combinations of an unknown number of potentially (self) inter-
secting, open or closed, manifolds embedded into noise. Using
a clustering approach, we find the most probable local quasi-
flat surface patches passing through each point, and merge these
patches to classify the input points into manifolds or noise. Clas-
sified per-manifold points are reconstructed into a mesh using
out-of-the-box cloud reconstruction methods. Compared to other
methods, we allow input points to be classified as belonging to no
manifold (e.g. noise), one manifold, or being on the intersection
of several manifolds. This allows handling highly noisy clouds
or point clouds having complex structures. The method allows
for an easy parallelization, is simple to use, and has robust de-
fault parameter values. We demonstrate our method on several
point clouds with use-cases in manifold extraction from embed-
ding noise, regularized medial-surface reconstruction, and point-
cloud surface segmentation, and point-cloud reconstruction.

One application area for further study is CAD reverse engi-
neering, i.e., the recovery of separate 3D parts, or components,
from a point cloud where topology information has been lost. A
different direction is to consider other data than point clouds. By
replacing the definitions of spatial neighborhood and orientation
similarity, we could extract smooth manifold-like structures em-
bedded in other spaces, e.g. find bundles or sheets of fibers in
tractography datasets or segment multivariate spatial data.
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