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Abstract

We present a framework for processing point-based
surfaces via partial differential equations (PDEs). Our
framework allows an efficient and effective way to bring
well-established PDE-based surface processing tech-
niques to the field of point-based representations. We
demonstrate the method by a PDE-based surface fair-
ing application.

1. Introduction

Surface processing tools and techniques are
widespread in computer graphics, animation, medi-
cal imaging, computer aided modelling, and computer
vision. An important class of surface processing op-
erations can be described via partial differential
equations (PDEs). Traditionally, for the discretiza-
tion of PDEs, the triangle strip surface representation
is used. Recently, a number of point based representa-
tions have been proposed as an alternative to triangles
for 3D surfaces. Point based surfaces have a num-
ber of important advantages when compared to their
triangular counterparts. First, no 'mesh’, or connec-
tivity information has to be stored explicitly. This al-
lows a simple and compact representation, ideal for
fast rendering and editing. When combined with ad-
vanced rendering techniques such as splatting [17, 14],
point based surfaces outperform triangle meshes in
terms of rendering quality and data storage flexibil-
ity.

Processing point-based surfaces via PDEs should
add the modelling power of PDE representation to the
flexibility of the point based model. However, defin-
ing and solving PDEs using finite elements on point
based surfaces is not straightforward. The main prob-
lem in defining and solving PDEs is that point-based

surfaces are mesh-less, so there is no direct way to de-
fine classical finite elements on those “surfaces”. One
way to obtain a Lipschitz surface is the application of
triangulation algorithms [11, 10, 4, 13]. However, we
shall not consider this option here, as it basically un-
dermines the fundamental philosophy and advantages
of a point based model. Furthermore such techniques
may produce surfaces lacking the desired amount of
smoothness, as described in [2, 1]. Smoothness can
be gained by applying smoothing operations to the
obtained triangle mesh, such as iterative Laplacian
smoothing [15], curvature flow fairing [9, 6], or dis-
crete variational fairing [12]. Alternatively, increased
smoothness can be obtained by using higher local ap-
proximations, such as piecewise polynomials [16] or ra-
dial basis functions [14, 17].

The main contribution of this paper is an approach
to finite element based PDEs on point surfaces. We pro-
ceed by constructing a number of local finite element
matrices that represent the point set surface proper-
ties over small point neighborhoods. These matrices
are next assembled in a single matrix which allows the
PDE discretization and solving on the complete sur-
face. We illustrate our approach by a well-known sur-
face fairing algorithm based on mean curvature flow.

2. PDEs on point clouds

The problem of applying PDE-techniques onto point
clouds consists in the lack of a sensible function space
as e.g. C° or H'. Therefore it is not straightforward to
generalize classical concepts of finite elements to point
clouds.

In our approach, we proceed by constructing a lo-
cal tangent space and consider the local projection of
the point set onto this tangent space. We are then able
to define stable coupling quantities between neighbor
points, using a strictly local Delaunay meshing. The



Figure 1. Top row: initial surfaces. Bottom row: surfaces faired via diffusion

mentioned coupling quantities are suitable discretiza-
tions of the off-diagonal entries in the global stiffness
matrix we aim to recover. The local tangent spaces of
different points usually do not coincide, which induces
a loss of symmetry in our matrix. To remove this prob-
lem, we finalize the matrix construction by applying
a suitable symmetrization. The diagonal entries of the
stiffness matrix are next defined based on a requested
invariance property with respect to constant functions.
We proceed similarly for simpler cases of the mass ma-
trix and the right hand side of the considered PDE.
The complete approach is detailed in [7].

3. Point cloud classification

We proceed by defining, for every point z in the con-
sidered point cloud classification measures which espe-
cially define tangent spaces and local smoothness. To
this aim we take into account the points n; in a small
neighborhood N of z. The size of N should be chosen
such that a) it contains a minimal number of points for
stable computation of a tangent space and b) the ra-
dius of N is not larger than the size of the features we
want to be visible in the approximation. For the first re-
quirement, N can be efficiently computed using the k
nearest neighbors of z, for given k. For the second re-
quirement, N can be defined as the ball B¢(z) of given
radius e centered at . In practice, combinations of the
two criteria give the best results. We prescribe a mini-
mum number of neighbors ki, to enforce the first re-

quirement. If the k&%~ closest neighbor of z is closer

than the prescribed minimal feature size €, we consider
all additional nearest neighbors in B(z).

For the classification, we use the zero and first or-
der moments of N. Moments have several proven prop-
erties that allow us to robustly compute the tangent
spaces as well as to distinguish between smooth and
non-smooth surface parts, both as a function of the ball
size €, see [8]. Robustness is clearly needed in the tan-
gent plane computation. Distinguishing smooth from
non-smooth surface areas is needed for our surface fair-
ing application, detailed in Sec. 4.

For a continuous surface M, the zero moment is
given by the local barycenter of M with respect to a
Euclidian ball B.(z) centered at z:

M2 (x) ::][ zxdx.
B.NM

The first order moment is then defined as as:
M@ = @M@ - M) b
B.NM

where YR z:= (yizj)'i,jzl,...,3-
Finally, we define the zero moment shift as

N.(z) = M%(z) —x.

We can use these moment information to distinguish
between smooth surface domains and non-smooth ar-
eas such as close to edges and corners by a scaling anal-



ysis. For the scaling properties of the moments we refer
to [8].

Figure 2. Classifier for different k-closest point
values

Consequently, we can use moments to construct a
surface classifier that quantitatively indicates the pres-
ence of such features. We define the classifier C, as
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where G(s) = ;3> with suitably chosen a, 8 > 0.
Amin and Apq; are the smallest, respectively largest
eigenvalue of the first order moment. The reason for
the above definition is twofold. First, the quantity M
is of order € on smooth areas and 1 close to singu-

larities. Secondly, close to edges, the quantity )’\\’“—" is

mawz

proportional to cos? ¢ where ¢ is the edge apex an-
gle. Combining the above two, we obtain a quantity C,
that robustly detects the presence of edges. In our ap-
plications, we have fixed @ = 0.01 and 8 = 100. The
function G ensures that C. is much larger in smooth ar-
eas than close to edges, making the classification easier.
Figure 2 shows the classifier C, for the bunny model for
four different values of e. Specifically, ¢ was implicitly
determined by choosing the first k& closest points to a
given point. Blue indicates low values (edges), whereas
red shows high values (smooth areas). Different ’fea-
tures’ are obviously detected at different scales.

Our classifier is roughly similar with the so-called
surface variation introduced by Pauly [14], which is de-
fined as the ratio of the smallest eigenvalue to the sum
of eigenvalues of a covariance matrix similar, up to scal-
ing, to our first order moment. However, we combine in
our classification information from both zero and first
order moments.

Let us briefly explain, how we use the eigenvectors of
the first moment M} to define a local tangent plane. If
Ao > A1 > Ao are the eigenvalues of the 3 by 3 symmet-
ric matrix M, then the corresponding eigenvector ez is
the plane normal, whereas e; and ey form a 2D coordi-
nate system in the plane itself. Our tangent plane com-
putation is similar to the principal component analy-
sis used in [2, 14, 16]. However, as explained already,
we prefer our moment-based approach as it comes with
proven scaling properties with respect to the ball size
€. Concisely, € plays the role of a filter size: the tangent
plane corresponds to a surface containing only features
larger than e.

For details on the neighborhood computation on the
tangent plane see also [5, 10, 3].

4. Fairing of Point Based Surfaces

As an application of our framework for PDEs on
point based surfaces, we consider surface fairing us-
ing anisotropic geometric diffusion. In this type of ap-
plication, surface geometrical noise is smoothed out,
whereas features such as edges are preserved or possi-
bly even enhanced [6, 9]. This is especially useful for
point surfaces acquired via a possibly noisy laser scan-
ning process. More precisely, given an initial compact
embedded manifold Mg in R?, we compute a family of
faired manifolds {M(t)}tERg, with corresponding co-
ordinate mappings z(t). The time ¢ describes the fair-
ing process and z(t) are given by solving the system of
anisotropic geometric evolution equations:

6,5.’1] - diVM(A VMJI) =0 (1)

We start with the initial condition M(0) = Mgy. We
define the tensor A such that we have strong diffusion
along the surface features and weak diffusion across
them. As before, we use our moment-based classifier
C. to detect features. When computing C., we also ob-
tain a basis w!,w? in the tangent plane 7, M, defined
by the major and medium eigenvectors of the first or-
der moment. In this basis, the tensor A is defined as
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Given the above, the application of A to a vector z is:
Ax:= ((3: ~wh)w' + Ce(z - w2)w2) .

Since C. is high in smooth regions and low close to
edges and corners, Equation (1) smooths the surface by
keeping the features. Due to the anisotropy A, we en-
force a signal enhancement in the direction of the eigen-
vector w'. In the direction of w?, the diffusion is pro-
portional with the classifier C, i.e., strong in smooth
areas and weak close to edges, which is exactly what
we desire.

A problem occurs due to the diffusion in the tangen-
tial direction. Namely, points tend to drift on the sur-
face, which may cause nonuniform point densities ulti-
mately leading to holes in the surface. To prevent this,
we project the velocity div oq (A V oqx) onto normal di-
rection.

Since the point set changes, we recompute the point
normals after every few (1..3) smoothing steps. This
implies recomputing the points’ neighborhoods, since
these may change due to the point displacements. As
we already do the relatively expensive neighborhood
computations, we also recompute the classifier and as-
semble the global stiffness matrix at this time.

Figure 1 shows several results, all obtained with a
few tens of diffusion iterations. The important surface
edges, such as the bunny’s ear edges, body-hip contact
line, the transversal cut of the femur, and the carved
letters on the stone, are preserved. Small 'noise’ de-
tails, such as the bunny’s skin ripples, bone irregulari-
ties, and stone graininess, are removed.

One deformation step takes about one second on a
point cloud of 65000 points on a Pentium IV PC at 1.8
GHz. In comparison, applying the same technique on
triangle meshes, which uses a very similar implementa-
tion, we could process approximately the double num-
ber of points per second [8]. The reason for this differ-
ence in speed is that no neighborhood recomputing is
needed in the mesh case, as the topology stays fixed.
However, we noticed the point based fairing to be vis-
ibly more robust to large diffusion steps than its mesh
based counterpart.
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