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Abstract. Few-shot colorization aims to learn a model to colorize
images with little training data. Yet, existing models often fail to keep
color consistency due to ignored patch correlations of the images. In
this paper, we propose PCCNet, a novel Patch-wise Contrastive Col-
orization Network to learn color synthesis by measuring the similari-
ties and variations of image patches in two different aspects: inter-image
and intra-image. Specifically, for inter-image, we investigate a patch-
wise contrastive learning mechanism with positive and negative samples
constraint to distinguish color features between patches across images.
For intra-image, we explore a new intra-image correlation loss function
to measure the similarity distribution which reveals structural relations
between patches within an image. Furthermore, we propose a novel color
memory loss that improves the accuracy of the memory module to store
and retrieve data. Experiments show that our method allows the cor-
rectly saturated color to spread naturally over objects and also achieves
higher scores in quantitative comparisons with related methods.
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1 Introduction

Image colorization aims to create color images from grayscale ones in the most
natural manner possible. Existing methods [12,30] typically build models that
allow coloring any kind of grayscale images by training them on large, generic,
image datasets such as ImageNet [1] or COCO [14]. However, such models tend to
output an average, desaturated result, where the specific hues one would ideally
get can be lost. Other artifacts include the inability to consider rare exemplars.
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Fig. 1. Compared with existing colorization methods (ChromaGAN [24], BigColor [11],
Pix2Pix [6], Cut [19] and MemoPainter [28]), PCCNet has distinctive superiority in
ensuring color saturation, color correctness and color consistence.

For instance, flowers are often colorized red, while in reality they can have a
wide spectrum of hues. Few-shot colorization aims to address this by enabling
the model to remember what color an object should be with limited training
data (few images of a few specific classes). In this category, Yoo et al . [28]
proposed the MemoPainter colorization model, which can generate compelling
results. However, the color propagation within an image can appear unnatural
due to the lack of attention to the image patches.

Three main challenges exist when performing few-shot colorization: Colors
should be (1) consistent, i.e., they should appear visually natural and the image
should avoid mottled (mixed) hues and color bleeding artifacts. Also, colors
should be (2) correct, meaning that the generated colors should match the
ground-truth ones, even if the model was trained with only a few examples
exhibiting some specific type of imagery and colors. Finally, colors should be (3)
saturated, which means the colors should be bright rather than slightly gray.

In this work, we propose a novel patch-wise contrastive colorization network,
dubbed PCCNet, to address the above three challenges; see Fig. 1. Specifically,
to make sure the produced colors are consistent and also visually natural, our
method investigates a patch-wise contrastive learning mechanism to learn the
patch correlations across images. Further, our method explores a correlation
loss function in order to learn the patch correlations within an image. More
concretely, we measure intra-image patches correlations from the perspective of
patch data distribution similarity. Additionally, the color information stored in
the memory module guides the coloring process to remember the correct colors
and ensure the generation of saturated colors.
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To summarize, our main contributions are:
– We first apply patch-wise contrastive learning to image colorization with
stronger supervision achieved by using a self-supervised approach.

– We investigate a patch-wise contrastive loss and an intra-image correlation
loss to learn patch correlations in two aspects: inter-image and intra-image.

– We use a memory module with a new training strategy to remember the
colors of rare objects, allowing for few-shot or one-shot learning.

2 Related Work

Many works have been proposed on learning automatic colorization models using
large numbers of image pairs (grayscale or color). Zhang et al . [30] treated
the regression colorization problem as a classification one to generate saturated
results. Subsequent improvements included using two-branch dual-task struc-
tures [24,29] and three-branch triple-task structures [8,9] to add classification,
fine-grained semantic parsing, or both, to the colorization process. Su et al .
[21] applied object-level colorization to clearly separate objects and background.
MemoPainter [28] used a memory network to help remember the color of objects.
Hong et al . [4] proposed an iterative generative model to attain diversity and
possible colorization. Recent methods [11,26] used the rich color prior encap-
sulated in a GAN to guide the colorization network to generate diverse color
images. Transformer-based architectures [7,12] improved colorization by focus-
ing on global information. In addition, the exemplar-based image colorization [13]
and the line drawing with colorization [22] had also attracted the attention of
scholars. In this context, our proposed PCCNet is an automatic colorization
model which makes better use of the patch correlations focusing on solving a
few-shot learning problem.

3 Proposed Method

Image colorization aims to recover the channels (a, b) ∈ RH×W×2 from the chan-
nel L ∈ RH×W×1, where (L, a, b) is specified in the CIE Lab color space. Our
PCCNet consists of three main modules: patch sampling (P ), color memory (M),
and colorization (C), see Fig. 2.

3.1 Patch Sampling Module

The patch sampling module P consists of an encoder and an F sub-net (see
Fig. 2). The encoder is identical to the one used by the colorization module (see
Sect. 3.3) and also shares the latter’s weights. Multi-scale features are obtained
from the encoder and then fed to the F sub-net. We pass the (a, b) channels
through P to obtain the embedding vectors wk and zk which represent image
patches. The index k, 1 ≤ k ≤ 256, indicates the location of the patches in
the image. For each patch of the output image, there is a corresponding patch
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Fig. 2. Overview of the PCCNet framework. C (colorization) synthesizes a colorized
image ŷ form the grayscale input x in collaboration with P (patch sampling) and M
(color memory). During training, our model continuously updates the memory while
modulating C with the color feature of the ground truth, and also extracts patches from
P to calculate two patch-wise losses. During testing, our model retrieves the nearest
color feature from M as a condition to guide C.

of the ground-truth image as its positive example, labeled as the positive pair
(w, z+) ∼ pwz+ . For negative examples, the remaining zk except for z+ are all
negatives z− ∼ pZ .

We improve the performance in terms of optimizing the negative sampling
strategy and removing negative-positive coupling (NPC) effects [27] of InfoNCE.
There are some easy negatives, such as z4 in Fig. 3a, that do not contribute
significantly to the comparison mechanism. To avoid being overly influenced by
those easy-negatives, we use the method of hard-negative sampling modeled by
the von Mises-Fisher distribution [20]. The distribution qZ− is defined as

qZ−(z−) ∝ eβz+·z−
pZ(z−), (1)

where · denotes dot product and the concentration parameter β [16] controls the
hardness of negative sampling.
Patch-wise Contrastive Loss LPC. The NPC effect refers to the diminishing
gradient of InfoNCE by easy negative and positive samples, which in turn makes
training harder. To prevent the NPC effect, we formulate this loss, called LPC,
by using a decoupled InfoNCE loss, measuring the correlation between image
patches, as

LPC = E(w,z+)∼pwz+

⎡

⎣− log
ew·z+/τ

NEz−∼qz−

[
ew·z−

i /τ
]

⎤

⎦ , (2)

where N denotes the number of negative examples and the temperature parameter
τ is set to 0.07. In terms of implementation, we use
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Fig. 3. Patch correlation through similarity distribution.

Ez−∼qZ−

[
ew·z−/τ

]
= Ez−∼pZ

[
ew·z−/τ qZ−(z−)

pZ(z−)

]

= Ez−∼pZ

[
ew·z−/τeβz+·z−

]
.

(3)

Intra-image Correlation Loss LIC. Patches at different positions have different
representations. For example, in Fig. 3a, the central patch represents the stamen;
other patches represent the petals or the background. Different patches have
different similarity distributions. The (a, b) channels of this image (Fig. 3b) show
a similar story. For the real-image (a, b) channels, any patch Zk has a different
similarity with the others, as captured by the similarity distribution Pk

Pk(i) =
ezk·zi

∑K
j=1 e

zk·zj

. (4)

A patch wk in the (a, b) channels of the generated image has the similarity
distribution Qk with the other patches wi given by

Qk(i) =
ewk·wi

∑K
j=1 e

wk·wj

, (5)

which should match Pk as much as possible. Given the above, we define the intra-
image correlation loss LIC which measures intra-image patches correlations in
terms of the Jensen-Shannon divergence

LIC =
K∑

k=1

JSD(Pk∥Qk). (6)

3.2 Color Memory Module

The color memory module M consists of a feature extractor and a memory (see
Fig. 2). Inspired by the memory module of [10], we design the memory of M as
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follows
Memory = (K1, V1, A1), (K2, V2, A2), · · · , (Km, Vm, Am), (7)

where K and V represent the spatial and color features extracted from the
training data, A tracks the ages of the infrequent (K,V ) pairs, and m denotes
the adjustable memory size. The model can retrieve the nearest color feature
to guide the coloring process during testing, and the feature extractor extracts
spatial features s ∈ R512 from grayscale images. The color features c ∈ R313 are
obtained from color images by using a quantized (a, b) value method [30].

The ability to extract spatial features determines whether the corresponding
color can be found. We redefine the color memory module loss for unsuper-
vised training to better extract spatial features. The triplet loss used in Mem-
oPainter [28] optimizes the within-class similarity and between-class similarity
by means of average force. We use the circle loss [23], which adds the weights
to control the gradient contribution of the positive and negative keys, so as to
obtain a more discriminative model than using the triplet loss. We describe the
specific definition of the color memory module loss in Sect. 3.4.

3.3 Colorization Module

The colorization module C is built upon the baseline of CGAN [17] which consists
of a generator and a discriminator.

Generator G. The input x is a grayscale image, i.e. , the L channel, and the
output ŷ predicts the real image y. Our generator (Fig. 2) contains an encoder
consisting of downsample blocks and residual blocks, and a decoder consisting of
residual blocks and upsample blocks. We concatenate the L channel and a dupli-
cate L channel before feeding it to the encoder. This ensures that the encoder
can be used directly by P to extract multi-scale features. We use AdaIN [5] to
treat color features c retrieved from the color memory module M as a guide for
the colorization module. Specifically, we compute the affine scaling y1 and shift
y2 of AdaIN by MLP from c and let it act on the AdaIN layer as

AdaIN(xnow, c) = y1

(
xnow − µ(xnow)

σ(xnow)

)
+ y2, (8)

where µ and σ denote average and standard deviation of the output of the
previous convolutional layer xnow.

Discriminator D. The discriminator uses color features as a condition to distin-
guish between real images and output images. We use the Markovian discrim-
inator [6] to pay attention to image details, avoiding extreme outputs of the
discriminator. Given that our input images are 256 × 256 pixels, we use a recep-
tive field of size 70 × 70. The discriminator D outputs a matrix of size 32 × 32
in which each element represents the classification (true/fake) of each patch.
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3.4 Objective Functions

Color Memory Loss LM . For the unsupervised learning of the feature extractor,
we use the circle loss defined as

LM (Sn, Sp) = log

⎛

⎝1 +
K∑

i=1

L∑

j=1

eγ(αj
nS

j
n−αi

pS
i
p)

⎞

⎠ , (9)

where Sn is the between-class similarity, and Sp is the within-class similarity.
Negative and positive keys K[nb] and K[np] are given by KL(V [nb] ∥ v) > δ1
and KL(V [np] ∥ v) < δ1 respectively, where δ1 is the user preset color threshold.
K and L are the number of positive, respectively negative, keys; γ = 256 is a
scale factor; and αi

p and αj
n are the weights of positive and negative samples,

respectively, defined as

αi
p = [Op − Si

p]+ and αj
n = [Sj

n − On]+, (10)

where [·]+ denotes ‘cut off at zero’ to ensure positive values, Op = 1 + m,
On = −m, and m is a hyperparameter set to 0.25. Minimizing LM allows the
feature extractor to extract a query q with the smallest possible between-class
similarity and the largest possible within-class similarity.

Colorization and Patch Sampling Loss. We combine four losses to jointly train
C and P : (1) patch-wise contrastive loss LPC (see Sect. 3.1); (2) intra-image
correlation loss LIC (see Sect. 3.1); (3) content loss Lsmooth; and (4) adversarial
loss LLSGAN, as follows.

Content Loss Lsmooth. We use the smooth L1 metric between the generated ŷ
and the ground truth image y, i.e. ,

Lsmooth(y, ŷ) =

{
1
2 (y − ŷ)2 if |y − ŷ| " δ2
δ2|y − ŷ| − 1

2δ22 otherwise,
(11)

to make training more robust to outlier images.
Adversarial Loss LLSGAN. LSGAN [15] uses a least squares loss to mitigate the
vanishing gradient problem. We follow a LSGAN design with the discriminator
and generator losses given by

LD
LSGAN =

1
2
Ey∼Pdata [(D(y, c) − 1)2] +

1
2
Ex∼Pdata [D(G(x, c), c)2],

LG
LSGAN =

1
2
Ex∼Pdata [(D(G(x, c), c) − 1)2],

(12)

respectively. Putting it all together, the final loss functions of C and P amount
to a generator loss LG and a discriminator loss LD which are defined as

LG = λ1LPC + λ2LIC + λ3Lsmooth + λ4L
G
LSGAN,

LD = LD
LSGAN.

(13)
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4 Experiments

We now present datasets and metrics used to evaluate our method (Sect. 4.1),
several implementation details (Sect. 4.2), and the results of our evaluation and
comparisons (Sect. 4.3), and ablation studies (Sect. 4.4).

4.1 Datasets and Evaluation Metrics

We measure the performance of our model on four datasets, namely Oxford102
Flowers [18], Bird100 [25], Hero [28], and Pokemon1, where Hero performs
few-shot colorization, and Pokemon performs one-shot or zero-shot colorization.
The FID score [3] is used to evaluate the colorization image quality. LPIPS [31]
evaluates the perceptual similarity which is more consistent with human per-
ception. We provide the evaluation measured by PSNR as a reference, although
experiments show that PSNR prefers grayish images. The colorfulness score [2]
reflects the degree of color brightness.

4.2 Implementation Details

We implemented PCCNet with PyTorch and trained our models on an NVIDIA
RTX 2060 GPU using the Adam optimizer with the learning rate decaying from
10−3 to 10−6. We optimize the color memory module M first, then optimize
the colorization and patch sampling modules C and P jointly. Please see the
Supplementary Material for parameter settings.

Input ChromaGAN BigColor Pix2Pix Cut MemoPainter Ours GT

Fig. 4. Qualitative comparison of colorization results on four different datasets.

1 https://www.kaggle.com/kvpratama/pokemon-images-dataset.

https://www.kaggle.com/kvpratama/pokemon-images-dataset
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4.3 Evaluation

Qualitative Comparisons. We compare PCCNet with ChromaGAN [24], Big-
Color [11], Pix2Pix [6], Cut [19], and MemoPainter [28]. Figure 4 shows that
ChromaGAN and Cut generate images that are grayish, akin to old photos that
are not restored well. BigColor and Pix2Pix produce more vibrant results, but
the lack of supervision of image patches makes color transitions unnatural. Espe-
cially in the few-shot cases, i.e. , on the Hero datasets, severe unreasonable color
fusion phenomena occur. In this case, MemoPainter yields better results due
to color memory. However, the results still show color inconsistency and color
deviations. Compared with the above methods, our method obtains better visual
results. In line with the requirements listed in Sect. 1, our method improves the
model’s ability to maintain color consistency, color correctness, and color satu-
ration. See the Supplementary Material for more qualitative results.

Table 1. Quantitative evaluation of colorization experiments

Dataset Oxford102 Flowers Bird100

Metric FID↓ LPIPS↓ PSNR↑ Colorful↑ FID↓ LPIPS↓ PSNR↑ Colorful↑
ChromaGAN 74.306 0.231 18.768 44.756 41.613 0.188 22.302 25.256

BigColor 59.464 0.217 19.031 65.287 38.866 0.229 18.633 48.883

Pix2Pix 46.899 0.217 19.182 52.319 44.495 0.205 21.546 23.413

Cut 44.174 0.213 18.956 59.674 45.266 0.218 20.193 27.146

MemoPainter 59.338 0.272 17.693 66.286 40.011 0.216 21.080 29.012

Ours 41.206 0.211 20.142 66.868 29.836 0.181 22.321 36.278

Dataset Hero Pokemon

Metric FID↓ LPIPS↓ PSNR↑ Colorful↑ FID↓ LPIPS↓ PSNR↑ Colorful↑
ChromaGAN 104.171 0.098 23.467 26.155 92.050 0.125 21.811 24.101

BigColor 143.791 0.147 21.238 21.841 111.534 0.168 18.233 34.626

Pix2Pix 133.237 0.109 21.981 36.931 94.265 0.140 21.217 10.897

Cut 130.329 0.116 22.052 24.709 90.807 0.136 20.762 28.180

MemoPainter 139.494 0.105 22.311 23.747 89.816 0.138 20.646 26.520

Ours 90.252 0.081 24.372 33.528 64.023 0.124 21.703 32.416

Quantitative Evaluation. Table 1 shows the results of our quantitative evalua-
tion. For all datasets, our method achieves lower FID and LPIPS scores. This
indicates that our method is able to generate more natural and realistic color
images that are closer to the ground truth. The two exceptions to the above are
Pix2Pix and ChromaGAN, where Pix2Pix achieves a higher Colorfulness score
than our method on the Hero dataset and ChromaGAN achieves a higher PSNR
score than our method on the Pokemon dataset. However, as mentioned earlier,
Pix2Pix exhibits a ‘color fusion’ phenomenon for this dataset, and ChromaGAN
exhibits a ‘desaturation’ phenomenon for the Pokemon dataset (see again Fig. 4
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Fig. 5. Qualitative comparisons of ablation studies on PCCNet.

Table 2. Quantitative comparisons for ablation studies.

Setting Oxford102 Flowers

Memory
Module

PC
Loss

IC
Loss

FID↓ LPIPS↓ PSNR↑ Colorful↑

× # # 42.101 0.213 19.888 58.450

# × # 48.849 0.217 19.696 65.108

# # × 42.789 0.214 20.126 66.209

# # # 41.206 0.211 20.142 66.868

or more visual results in the Supplementary Material). While this leads to higher
scores, we argue that the results of Pix2Pix and ChromaGAN are less similar to
the ground truth than ours.

4.4 Ablation Study

As described in Sect. 3, our method has three main components which can be seen
as the key heuristics we use to drive our colorization: the color memory module,
the patch-wise contrastive loss LPC, and the intra-image correlation loss LIC.
To further understand the effect of these components, we performed a series of
ablation studies. Figure 5 visually shows the effect of each of our modules. M
helps to memorize the colors, and the network without M generates images with
biased colors. Further adding LPC and LIC leads to better handling of the details
of the images. Hence, we argue that each individual module is of added value to
the final colorization. In Table 2, the results show the meaningful improvements
by our three components. Adding each component to our network results in
varying degrees of improvement on the Oxford102 Flowers dataset. The best
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results are seen when all components are added. See supplementary material for
more ablation experiments.

5 Conclusion

We have presented PCCNet, a new deep learning model for colorization with
improved color consistency, color correctness, and color saturation. Our frame-
work relies on a patch-wise contrastive learning mechanism and an intra-image
correlation loss for distilling the learning process of the correlation between image
patches in two aspects: inter-image and intra-image. We further drive our col-
orization by a memory module which favors the learning of outlier color pat-
terns present in the training images. Qualitative and quantitative comparisons
as well as ablation experiments illustrate its effectiveness on various benchmark
datasets.

Acknowledgements. This work was partially supported by the Zhejiang Provincial
Natural Science Foundation of China (LGF21F20012).
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