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Abstract
Dimensionality reduction techniques are the tools of choice for exploring high-dimensional datasets by means of
low-dimensional projections. However, even state-of-the-art projection methods fail, up to various degrees, in per-
fectly preserving the structure of the data, expressed in terms of inter-point distances and point neighborhoods. To
support better interpretation of a projection, we propose several metrics for quantifying errors related to neighbor-
hood preservation. Next, we propose a number of visualizations that allow users to explore and explain the quality
of neighborhood preservation at different scales, captured by the aforementioned error metrics. We demonstrate our
exploratory views on three real-world datasets and two state-of-the-art multidimensional projection techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms, I.4.10 [Computer Graphics]: Image Representation—Multidimensional

1. Introduction

Dimensionality reduction (DR) techniques transform, or
project, high-dimensional datasets into low-dimensional ones
which can be more easily analyzed, interpreted, and visual-
ized. While projections cannot preserve (and show) all origi-
nal high-dimensional information, they keep much of the so-
called data structure in the low-dimensional space. This al-
lows one next to search the projection for structures such
as clusters, outliers, correlations, and trends, by using vari-
ous visualization techniques. Projections are heavily used in
many data mining and exploration tasks in many application
domains such as medical science, business intelligence, and
security.

Besides information loss in the sense of not showing all
original data dimensions, projections are also challenged by
precision loss, in the sense of errors that affect the projected
data structure. Two main types of such errors exist: Dis-
tance errors make distances between projected points inaccu-
rately reflect distances between the original high-dimensional
points. Neighborhood errors make the nearest-neighbors of
a point be different in the original and projected space. Both
types of errors in turn can significantly affect the insights ob-
tained on the data at hand when using the projection as a
proxy to reason about the high-dimensional visual space in
terms of finding and comparing clusters, outliers, and trends
[VDHM97, Aup07, SvLB10, LA11, vdMH12].

We address the task of interpreting projections by making
explicit where neighborhood-related errors appear. For this,

we propose several metrics to quantify the appearance of
such errors in projections and introduce visualizations that
allow selecting suitable scales or levels-of-detail to examine
such errors, and support users in understanding and using
the projection in their presence. Our explanatory methods
are simple to implement, computationally scalable and can
be easily integrated in classical scatterplot views of any
projection technique, including linear [Tor65, BTB13] and
non-linear ones [PNML08, vdMH08, TMN03, PSN10], in a
black box fashion. That is, we only need to access the input
high-dimensional points and the output low-dimensional
projections thereof, and need no details of, or access to, the
projection internals. This makes adding our techniques easy
to any projection-based application.

2. Related Work

For a dataset Dn = {pi ∈ Rn}1≤i≤N of N n-dimensional
points, a DR technique can be seen as a function f : Rn→Rm

which maps each pi ∈ Dn to a point qi ∈ Dm, so as to keep
the so-called data structure as similar as possible in Rn and
Rm. Here, n is typically large (tens up to thousands of dimen-
sions), and m is typically 2 or, more rarely, 3.

Projection techniques: Tens of different DR techniques ex-
ist, able to different extents to preserve various data-structure
aspects. For instance, Multidimensional Scaling (MDS) meth-
ods compute f by optimizing for a low normalized stress
σ = ∑i, j(‖pi−p j‖−‖qi−q j‖)2/∑i, j(‖pi−p j‖)2 [BG05].
This avoids having to access the full Dn coordinate data. How-
ever, computing and storing distances is O(N2) for N points.
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Landmarks MDS [dST04] and Pivot MDS [BP07] speed-up
projection by using MDS on a subset of representative points
and projecting the remaining points by local interpolation.
Fastmap [FL95] achieves O(N) linear complexity but has
a worse stress minimization. Nonlinear optimization meth-
ods iteratively search the projection parameter space to mini-
mize the stress σ [GKN04,Sam69] using, for instance, force-
based relaxation [TMN03], similar to graph layout meth-
ods [Ead84]. To speed up computations, LSP projects only
a subset of control points from Dn and fits the remaining ones
by Laplacian smoothing [PNML08]. To increase projection
quality, LAMP extends the above idea to allow users to inter-
actively place control points [JPC∗11].

Projection errors: Given the huge range of projection tech-
niques, it is hard for users to assess the nature, magnitude,
and location of projection errors they introduce, without sup-
porting tools. Understanding errors is crucial to correctly in-
terpreting high-dimensional data by means of a projection
[vdMH12, MCMT14, SvLB10, Aup07], and is done at three
levels of detail. At the coarsest level, error metrics like nor-
malized stress [BG05], correlation coefficients [GZZ05], and
silhouette coefficients [PNSK∗06] capture the overall projec-
tion quality by a single number. This allows globally compar-
ing projection methods [PPM∗15, EMdS∗15], but does not
show how errors are spread over the various points in a given
projection. On the next detail level, distance scatterplots show
the correlation of distances in Dn vs Dm for every point-pair
[JPC∗11] and neighborhood preservation plots show how a
projection preserves neighborhoods, for all possible neighbor-
hood sizes [PNML08,VDHM97,BP92,VK01]. Of these, the
trustworthiness-preservation metric [VK01] stands out as it
shows not only how many neighbors are preserved when pro-
jecting, but also if the order of neighbors changes. However,
just as distance scatterplots, these give an aggregated insight,
and do not show how projection errors are spread per pro-
jected point qi.

At the finest detail level, several methods show where in the
projection Dm distance- and/or neighborhood-preservation er-
rors occur, and how large these are. Van der Maaten et al. use
the t-SNE technique [vdMH08] to create a set of 2D projec-
tions, each showing a different distance-errors per projected
point qi [vdMH12]. Aupetit et al. show, for a given qi, dis-
tance stretching and compression metrics, telling if qi was
projected too close or too far from all other q j 6=i. However,
this requires one to select a point of interest qi to explore.
Martins et al. show false and missing neighbors, defined in
terms of points projected too close, respectively too far, from
their neighbors [MCMT14]. However, this chiefly measures
distance preservation, and not neighborhood preservation.

In contrast to distance-preservation metrics, neighborhood-
preservation metrics aim to find how k-nearest neighborhoods
are affected by the projection, and ideally must cover two
cases [VK01]: preservation of Dn neighborhoods (are neigh-
bors in Dn projected to neighbors in Dm?) and trustworthiness
of Dm neighborhoods (are neighbors in Dm also neighbors in
Dn?). For this, Schreck et al. compute, for each p ∈ Dn, a
projection precision score (pps) defined as the normalized dis-
tance between two k-dimensional vectors containing the dis-

tances between pi and its k nearest neighbors in Dn, respec-
tively qi and its k nearest neighbors in Dm [SvLB10]. Color
mapping the pps atop the projection shows areas with poorly
preserved neighborhoods. This covers the first neighborhood
question outlined above but not the second one, leaving im-
portant errors, e.g. false neighbors in terms of [MCMT14],
undetected. Motta et al. propose a neighborhood validation
metric, which combines precision (how many neighbors in
Dm are also neighbors in Dn) and recall (how many Dn

neighbors are also neighbors in Dm) into an error called the
F-measure [MMLO15]. While related to our set-difference
view (Sec. 3.2), F-measures are computed by using an ex-
tended MST graph [MLN∗13] to define neighborhoods in Dn

and Dm, while we use the simpler to compute, and more intu-
itive, k-nearest neighbors.

Neighborhood-preservation metrics have a salient advan-
tage over distance-error metrics: Many data analyses using
projections focus on finding point groups (clusters) and out-
liers. For such tasks, actual distances between points are less
important than neighbors. Indeed, we visually decide that
a point-set forms a cluster by typically using the fact that
inter-point distances over the cluster are much smaller than
distances between the cluster and other points. Hence, un-
derstanding neighborhood-preservation errors is at least as
important as understanding absolute-distance errors. In this
context, our main contributions are (1) three neighborhood-
preservation metrics that adapt [MCMT14,VK01] to find and
interpret false and missing neighbors for different neighbor-
hood sizes given by k-nearest neighbors; (2) three correspond-
ing multiscale views that allow exploring neighborhood-
preservation errors at the desired (local) level of detail, based
on the projection’s visual topology. These are presented next.

3. Visual Exploration Method

We define the k-neighborhood of a point x as the list νk(x)⊂
{1, . . . ,N} of IDs of the k-nearest neighbors of x (for a given
k), sorted increasingly on Euclidean distance. When project-
ing a high-dimensional dataset Dn into m dimensions, each
point i has two neighborhoods – one in Dn, denoted by ν

n
k(i),

and the other in D2, denoted by ν
2
k(i). All our examples next

use 2D projections (m = 2) and Euclidean distances, for illus-
tration simplicity. However, all our techniques can be equally
easily applied to 3D projections and/or other distance metrics.

To analyze neighborhood preservation for a point i, we
identify three important neighbor sets for this point:

• missing neighbors = {p j ∈ ν
n
k(i)∧q j /∈ ν

2
k(i)}

These are points that, while present in ν
n
k(i), were found

not very important, and thus pushed outside ν
2
k(i). Missing

neighbors are, thus, not found when visually examining the
projection around point i;
• false neighbors = {p j /∈ ν

n
k(i)∧q j ∈ ν

2
k(i)}

These points were originally far away from point i (outside
ν

n
k(i)), but were brought close to i in the projection. False

neighbors are, thus, points we visually see as being close
to point i in the projection, but which are in reality far from
point i in the high-dimensional space;
• true neighbors = {p j ∈ ν

n
k(i)∧q j ∈ ν

2
k(i)}

These are points which we visually find close to point i in
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the projection, and are also close to the same point in high-
dimensional space.

Recall that projections are used to reason about point neigh-
borhoods in Dn by using point neighborhoods in D2. As such,
ideally, we do not want a projection to create any false or
missing neighbors, as these would mislead users when inter-
preting the data. Ideally, a projection should only create true
neighbors, i.e. ν

n
k(i) = ν

2
k(i), for all points i and neighborhood

sizes k. However, as we will see, even state-of-the-art projec-
tion techniques are far from this ideal.

To explore how much, where, and why projections devi-
ate from ideal neighborhood-preservation, we next propose
several views to analyze different neighborhood-preservation
aspects. As a running example, we use the well-known seg-
mentation dataset (2100 points, 18 dimensions) from the UCI
Machine Learning Repository [Lic13]. Each point represents
a small pixel-block extracted from 7 hand-segmented out-
door images. Dimensions encode various image descriptors,
such as color and contrast histograms and edge detectors. This
dataset is frequently used in infovis papers to assess the qual-
ity of projection techniques in terms of being able to clus-
ter similar image structures [JPC∗11, PNML08, MCMT14].
For projection, we use the well-known high-quality nonlinear
LAMP technique [JPC∗11, MCMT14].

3.1. Centrality Preservation View

Given a set D of N points, we first introduce the centrality
preservation metric

CPk( j) = ∑
1≤i≤N, j∈νk(i)

k−ρi( j), (1)

where ρi( j) is the rank of point j in νk(i) when ordered from
nearest (ρi = 0) to farthest (ρi = k−1). Points j that are close
neighbors to many other points i of D get high CPk( j) values,
such as points which are ‘central’ with respect to the struc-
ture of the set D; points close to the ‘periphery’ of D are not
close neighbors to many other points, so they get low CPk( j)
values. We visualize CPk by color-coding its values over the
2D projection point-cloud using Shepard interpolation to fill
in gaps between close points and thereby generate a continu-
ous, easier to visually follow, color image. Full details of this
technique are given in [MCMT14].

Consider now how CP2
k , i.e. the centrality preservation

computed over the 2D projection space, evolves (Figs. 1a-c):
We see how central points have high values (red), while pe-
ripheral points have low values (blue). Visualizing CP2

k helps
finding a good scale at which we want to assess neighbor-
hood preservation next. As Fig. 1a shows, too low k values
highlight very small changes in local point density. Assessing
neighborhood preservation at such scales is, arguably, not in-
teresting for most real-world scenarios – indeed, an even tiny
shift in the points’ positions would create slightly different
CP2

k values. Conversely, setting too large k values highlights
too coarse-scale patterns that do not match the shape of the
projection (Fig. 1c). In-between values, e.g. k = 180 (Fig. 1b),
highlight centrality patterns which match well the shape of
the projection — we see how red bumps nicely match the
main point-groups visible in the projection. Hence, we use the

b)a)

c)

peripheric central

d)

CP
k
  (k=30)
2

CP
k
  (k=180)
2

CP
k
  (k=500)
2 CP

k
  (k=180)
n

Figure 1: Centrality preservation view, segmentation dataset,
LAMP projection. (a-c) Centrality CP2

k , for three neighbor-
hood sizes k. (d) Centrality CPn

k , for k = 180 neighbors.

centrality view (showing CP2
k ) to select a k, or scale, which

best matches the desired level-of-detail to explore the projec-
tion next, based on the match between the shapes we see in
the projection and the CP2

k peaks.

Once we have a good k value, we next visualize CPn
k drawn

over the projected points D2. To explain this design, con-
sider a projection that perfectly preserves neighbors: In such
a case, CPn

k (i) = CP2
k (i),∀i ∈ {1, . . . ,N},∀k ∈ {1, . . . ,N}.

Hence, the visualization of CPn
k should match the already-

understood pattern shown earlier by CP2
k . Conversely, in ar-

eas where neighborhoods are not preserved, CPn
k will show

perturbations to this pattern: If points which were peripheral
in Dn become central in D2, then we will see blue points in
central areas in D2, where we expect red points; and if points
which were central in Dn become peripheral in D2, then we
will see red points on the periphery of D2, where we expect
blue points. Fig. 1d shows this: Compared to Fig. 1b (both im-
ages are for k = 180), we see how Fig. 1d shows a somewhat
similar trend of red central points and blue peripheral points.
However, the smooth red-to-blue transition in Fig. 1b is par-
tially lost in most areas of the image. This tells that there are
many neighborhood-preservation errors and that these occur
over most of the projection. Once signalled, such errors can
be analyzed in more detail by the views presented next.

3.2. Set Difference View

The second view we propose, called the set-difference view,
compares the Dn and D2 neighbor-sets of each data point i
using the Jaccard set-distance [LW71], by computing

JDk(i) = 1− ν
2
k(i)∩ν

n
k(i)

ν2
k(i)∪νn

k(i)
. (2)
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a) k=30 b) k=180 c) k=500

A

C

E

D D

E

F F

B1

B2

0 1

set difference error JD
k

Figure 2: Set difference view, segmentation dataset, LAMP projection, using the same scales (k values) as in Fig. 1.

This value represents the neighborhood preservation error
of each point i. Its interpretation is simple: JDk(i) = 1 tells
that the Dn neighborhood of point i was completely lost by
the projection, while JDk(i) = 0 tells that the projection pre-
served the k neighbors of i perfectly. However, the neighbors’
ranks, positions, and distances relative to point i are not con-
sidered. Fig. 2 shows three set-difference views for the same
k values as in Fig. 1, for ease of comparison.

Since the Jaccard distance varies between 0 and 1, its val-
ues are easy to interpret: High JDk values (warm colors) show
poor neighborhood preservation; low values (cold colors)
show areas where neighbors are well preserved. In addition
to the centrality preservation view (Fig. 1), we get now extra
insights, as follows. First, for the fine-grained scale k = 30
(Fig. 2a), we see a relatively low neighborhood preservation
(high JDk values) for most points, except the ones in the low-
right group B1. For our reference scale k = 180 (Fig. 2b),
which is a good level-of-detail to examine this dataset, as ex-
plained in Sec. 3.1, we see that both smaller point-groups B1
and B2 have very good neighborhood preservation (JDk low
values). This confirms that the LAMP method was right to
separate them from the central group A. At this scale we also
see an ‘isthmus’ (Fig. 2b, marker C) connecting group B2 with
the large group A, with very high neighborhood-preservation
errors. Interestingly, once we look left past this isthmus, group
B2 shows a very good neighborhood preservation (dark blue
colors). This indicates that groups B2 and A may, actually, not
be close in the high-dimensional space, or, in other words, that
we are looking at a projection artifact here. We will explore
this hypothesis next with our other views (Sec. 3.3).

We also see several red islands in the central group A
(Fig. 2b, zones D). Increasing k to 500, these islands are re-
duced to a few outliers (Fig. 2c, zones D). This tells that, on a
coarse scale, group A has no neighbor-preservation issues, so
it is indeed a group in Dn space. However, the isolated red out-
liers F remain red even at a coarse scale. This tells that these
points are wrongly projected in the respective place, close to
group A’s right border. Finally, a more subtle observation can
be done. Looking at group A in the projection, without the in-
sight shown by the metric in the set-difference view, we may
think of it as a compact large cluster of quite similar points.
Yet, in the set-difference view, we see a Z-shaped ‘corridor’
of points of medium error (Fig. 2b, marker E), that winds
through the high-error red islands. This suggests us that group

A may not be that homogeneous in Dn space. We will explore
this finding next using our subsequent views.

3.3. Sequence Difference View

While the set-difference view (Sec. 3.2) shows an easy-to-
interpret picture of how many true neighbors a projected point
has, it does not account for the position of these neighbors,
or how they may have been reordered by the projection. To
capture this, we propose a new sequence difference metric to
compare the Dn and D2 neighborhoods of a point i as

SDk(i) =
1
2 ∑

j∈ν2
k(i)

(k−ρ
2
i ( j)) · |ρ2

i ( j)−ρ
n
i ( j)|

+
1
2 ∑

j∈νn
k(i)

(k−ρ
n
i ( j)) · |ρ2

i ( j)−ρ
n
i ( j)|, (3)

where ρ
d
i ( j) is the rank of point j in the distance-sorted neigh-

borhood ν
d
k (i) for d ∈ {2,n}. The metric’s second term in

each sum penalizes neighbors j which do not keep ranks af-
ter projection, i.e. ρ

2
i ( j) 6= ρ

n
i ( j). The first term in each sum

gives a higher weight to close neighbors. This captures the
fact that not preserving the rank of a close neighbor is worse,
in terms of interpretation of the resulting projection, than not
preserving the rank of a very distant neighbor. This, in turn,
models the way users typically interpret a projection, i.e. by
locally scanning and querying small point neighborhoods to
find what is most similar to a given point. Fig. 3 shows the
sequence difference view, with four k scales, for our running
example.

The four scales show much less differences as compared
to the earlier error views (Figs. 1 and 2). This is expected,
as SDk (Eqn. 3) can be seen as a rank-weighted version of
JDk (Eqn. 2). To explain this, consider a neighborhood ν

n
k(i)

and its 2D counterpart ν
2
k(i) which are identical, except that

the farthest two neighbors are swapped. The resulting value
SDk(i) will be equal to 2. If we take a slightly smaller neigh-
borhood of k− 2 elements, SDk−2(i) equals zero, since the
first k−2 elements in both ν

n
k(i) and ν

2
k(i) are identical. Now,

consider that ν
n
k(i) differs from ν

2
k(i) in terms of the first

two elements being swapped. The resulting value SDk(i) will
equal 2k, a value much larger than 2. Hence, small changes
at the border of neighborhoods, where new points are consid-
ered as k increases, have small impacts, which yields a smooth
variation of SDk as function of k.
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low high

sequence diff. SD
k

Figure 3: Sequence difference view, segmentation dataset,
LAMP projection, for four increasing scales (k values).

The sequence-difference view (Fig. 3) highlights all high-
error areas exposed by the set-difference view (Fig. 2b). How-
ever, as visible, the results are now much more stable for dif-
ferent k values. Separately, high-error outliers (small red dots
marked in Fig. 3) are now much better visible than with the
set-difference view, and at all scales.

3.4. Refining the Exploration

Using our set and sequence difference views, we discovered
a salient border that separates the highly-coherent group of
points in the left in our projection from the large central group
via an isthmus of in-between points (see Figs. 2b and 3). We
hypothesized that the left point-group was actually well sep-
arated in high-dimensional space from the central group, and
that the linking isthmus was just an artifact of the projection.
To verify this hypothesis, we will locally analyze the points
close to this separation border. For this, we first select a point
q to the right of the border, and color the true neighbors of q
(see beginning of Sec. 3) by their ρ

n
q ranks, using a colormap

which assigns red to close true neighbors and blue to far true
neighbors in Dn; points which are not true neighbors are col-
ored dark blue. We use here a brighter colormap than the one
present in the set-difference and sequence-difference views,
as we will also draw additional elements atop the color-coded
points, as explained next. Fig. 4a shows the result.

Warm colors spread only to the right of the border, telling
us that the nearest true neighbors of q are all placed to the
right of the border, i.e., points on the isthmus are far away,
in Dn, from points in the left group. Additionally, we draw
black edges between q and all its missing neighbors, map the
ranks ρ

n
q to edge opacities, and use an edge bundling tech-

nique [HET12] to group close edges together, thereby reduc-
ing clutter. A similar design was used in [MCMT14] to vi-
sualize missing neighbors for distance-based errors. We see

a) b)

left group

central group

border

q

q’

closefar

missing neighbors
of q

true neighbors

outside νk

Figure 4: Local analysis of the connection between the left
and central groups. The visual border, seen also in Figs. 2b
and 3, is marked by a dotted line.

how the edge bundle emerging from the selected point q ex-
tends only to the right of the border (Fig. 4a). This tells that
all neighbors of point q belong to the central cluster. Repeat-
ing the same operation for a point q′ located on the left of the
border shows us that all true and missing neighbors of q′ are
located in the left cluster. Together, these findings tell us that
the border we discovered by our views is, indeed, the true bor-
der between the left and central clusters, an insight that might
not be clear for the user of the projection without the investi-
gation supported by the introduced tools.

Comparison: To better understand the added-value of our
metrics, we show in Fig. 5 the projection precision score (pps)
of Schreck et al. [SvLB10] for the same k values. For the
first two k values (30,180), we hardly see any quality differ-
ence between different projection regions. For the last two k
values (500,1000), some of the insights we saw in our pro-
posed views appear a bit better, such as the isthmus between
the left and central groups, a few high-error outliers, and the
overall lower error of the bottom-right group. However, these
views are much more sensitive to the chosen scale (k value)
than ours, and the salience and separation of interesting pat-
terns from noise is harder. Also, patterns such as the Z-shaped
zone of low errors separated by high-error islands in the cen-
tral point-group (Fig. 2) are not visible. Finally, since we have
no tools to refine the exploration, we cannot check what the
global insights presented by the pps view actually mean.

To see whether the found patterns match data-related in-
sight, we show the projection colored by class – a categorical
user-assigned attribute that maps every point in the segmenta-
tion dataset (an image block) to one of the 7 images it comes
from (Fig. 6). We see how the class data, an attribute which
was not used in the projection, shows very similar patterns
to the ones found by our views: The right-bottom group has
points in the same class (orange); the isthmus (cyan) linking
the left group (dark blue) with the central group has a class
border precisely where our views indicated neighborhood-
preservation issues; and the Z-pattern is apparent if we follow
the red-and-light-blue points mixed in the central group.

4. Additional Examples

To better outline the way of working of our projection inspec-
tion tools, we show next two exploration examples for two
different datasets visualized by two different projections.

c© The Eurographics Association 2015.
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a) k=30 b) k=180

c) k=500 d) k=1000

Figure 5: Projection precision score (pps) [SvLB10], seg-
mentation dataset, LAMP projection, for four scales (k val-
ues).

connection of left

with central group

bottom-right group

with same-class

observations

central Z

pattern

Figure 6: Original class data for the segmentation dataset.

Github dataset: This dataset has 725 observations, each de-
scribing one of the 1000 highest-ranked open source software
projects from GitHub [Git15]. For each project, 30 software
quality metrics are extracted, such as size (lines of code, file
count), average coupling and cohesion of modules, complex-
ity, and number of forks and open issues [LM06]. We visu-
alize this 30-dimensional dataset using the LSP projection
[PNML08], aiming to find separated clusters of projects with
similar quality attributes. The projection shows a large central
cluster, surrounded by a few outliers (Fig. 7). Our question is:
Are projects indeed grouped into one similar set, or is the lack
of separated clusters an artifact of the LSP technique?

To answer this question, we first select a suitable neigh-
borhood size (k value), as explained in Sec. 3.1, and get
a value k = 72. Next, we inspect the set-difference view
(Fig. 7a). We see a quite poor neighborhood preservation
for most points, and also find a group of points (G1) with a
large error; and a group of points (G2) with a low error. The

a) set difference
     view

b) sequence
     difference view

d) point q2

G1

missing neighbors
of q1

in group 2
c) point q1

in group 1

true neighbors
of q1

true neighbors
of q2

G1

G2 G2

Figure 7: Github dataset, LSP projection, k = 72 neighbors.

sequence-difference view, next, shows that G1 has the largest
neighborhood-preservation error in the projection, while G2
has a very low error (Fig. 7b). We next examine these groups
in detail, as they seem to be the most important outliers which
do not fit in the central cluster. For this, we select a point qi
in each group and color the projection by qi’s true neigh-
bors and show qi’s missing neighbors with bundled edges
(see Sec. 3.4). We can now explain the two outlier groups:
In G1, not only most of the missing neighbors are far away
from the selected point, but all bundle edges are high-valued
(dark), telling that these neighbors were very close to p1 in
Dn (Fig. 7c). Also, the warm color spot around q1 is very
small, telling that many of the neighbors of q1 in the pro-
jection are not true neighbors. This tells that the true G1 has
been ‘scattered’ over a large area by the projection. In con-
trast, when selecting a point q2 in G2, we see almost no edges
reaching out; also, most points around q2 are warm-colored,
telling that most points in the projection around q2 are indeed
its true neighbors (Fig. 7d). Hence, G2 is indeed a ‘true’ group
in Dn. Since G2 is relatively well separated from the central
group, we conclude that it represents a few highly-similar and
quite different software projects from the rest of the analyzed
set.

Corel dataset: This dataset has 1000 points, each represent-
ing a photograph described by 150 SIFT features, common
in image analysis [LW03]. We construct a projection of the
data using LAMP and obtain the star shape image in Fig. 8.
This suggests that there are several quite well separated im-
age classes, one for each star branch, and a clump of ‘average’
images (star’s central region). To verify that the projection is
indeed correct (and thus our interpretation of the data is cor-
rect), we use our views. First, we use the centrality view to
select a suitable neighborhood size for the analysis, which
yields a value k = 200. Next, we inspect the set-difference
and sequence-difference views (Fig. 8a,b). The set-difference

c© The Eurographics Association 2015.



R. Martins & R. Minghim & A. C. Telea / Explaining Neighborhood Preservation for Multidimensional Projections

view shows a quite high neighborhood-preservation error,
spread uniformly over the projection (Fig. 8a). This is a first
sign that the projection may have problems. The sequence-
difference view allows us to find out high-error and low-error
projection areas (Fig. 8b). This shows us that distance units
(in 2D space) along two different star branches do not map the
same distance from Dn space. Note that, without this insight,
the star-shaped projection would be arguably interpreted dif-
ferently – in particular, it would be hard for the user to know
that some branches represent very similar images, while oth-
ers capture far less similar images.

a) set difference
     view

b) sequence
     difference view

c) point q selected inside branch d) point q selected in star center

low-error
area

high-error areas

LOW HIGH LOW HIGH

false neighbors by D2 neighbors by

q

q

Figure 8: Corel dataset, LAMP projection, k = 200 neigh-
bors.

This finding makes us ask next whether D2 neighbors be-
tween star branches represent the Dn neighborhood as well
as D2 neighbors along star branches. To check this, we se-
lect a point q on a star branch having low neighborhood-
preservation error, and color-code the false neighbors of q
(see the beginning of Sec. 3) by their rank ρ

2
q (nearest to far-

thest, as defined in Sec. 3.1). Additionally, we show the whole
Dn neighbor-set ν

n
k(q) by edge bundles (Fig. 8c). We see that

the bundle emerging from q precisely follows the branch, with
darker edges near q, and does not bifurcate to close branches
to the right or left. This tells that points along the branch are
nearer to q in Dn than points across the branch (which are
not present in the bundles). Also, nearby branches have warm
colors (low values of ρ

2
q = near neighbors in D2) while points

along the branch containing point q are not. This confirms the
message: across the branches we have a lot of false neigh-
bors, which are near q in D2 but are actually intruders to
the projection neighborhood, since they are not part of ν

n
k(q).

Hence, we conclude that points in the star branch are indeed
much more similar to each other than points located in nearby
branches. As such, the interpretation of this projection should
be done differently than the intuitive “closer is better” one:
points should be considered closer not based on their 2D dis-

tance, but based on their distance following the star branches,
as if there were ‘walls’ between the branches.

Finally, we select a point q in the star center and draw its
entire Dn neighbor-set ν

n
k(q) using edge bundles (Fig. 8d).

The drawn bundles end all over the projection, both very close
but also very far from q. This tells us that the Dn neighbors
of q are spread over large extents of the projection. To better
assess this, we then color code the projection by the ρ

2
q(q)

ranks of q’s 2D neighbors ν
2
k(q). The appearing red spot thus

shows precisely the extent of the k-neighbors of q in 2D, i.e.,
shows us the size of ν

2
k(q). As this extent is much smaller

than the reach of the bundles, we conclude that, indeed, many
of the Dn neighbors of the selected point q are placed very far
away from it in the projection.

5. Discussion

We next discuss several technical aspects of our method.

Workflow: Key to the success of a visual analytics appli-
cation is proposing a workflow that users should follow
to obtain desired insights. In our case, this workflow has
the following four steps: (1) Use the centrality view to
determine a suitable value for k at which the neighborhood
size matches well the size of the patterns of interest in the
projection; (2) Use the set-difference view to find out how
errors are spread over the projection and what is the average
error size; (3) Use the sequence-difference view to locate
outliers, i.e. zones having the largest (or smallest) errors;
(4) Select points of interest in the projection, either in areas
describing observations relevant for application-dependent
tasks, or else in high-error areas, and use edge bundles to find
where their true neighbors are located; (5) Use insights from
(2-4) to determine where the true boundaries of strongly-
related point groups in the projection are; (6) Decide,
based on (2-5), whether the projection supports the tasks at
hand in presence of all found errors, and how to interpret
the projection; or whether these errors are too large and/or
numerous, which means that a different projection is required.

Scalability: Our projection metrics require the computation
of k neighborhoods for N points in Dn and D2. We do this
efficiently by using the fast nearest-neighbor search provided
by [AMN∗98], which is O(kn logN), and can handle any
number of dimensions n and many types of distance metrics.
Practically, this means that we can compute our metrics, and
generate our views, in real time on a typical PC computer
for tens of thousands of points having tens of dimensions.
The approximation error of ANN is a limitation of its use,
but the maximum error can be specified by the user, allowing
a fine-grained control on the tradeoff between accuracy and
running time.

6. Conclusions

We have presented a visual exploration method for finding
and explaining neighborhood-preservation errors in multidi-
mensional projections. Our method supports assessing the
usefulness of a projection in terms of determining its overall
quality, local errors, and how these errors should be consid-
ered when interpreting the projection to reason about the un-
derlying high-dimensional data. Our techniques complement
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and extend the set of existing tools for projection exploration
including aggregate error metrics, neighborhood-preservation
plots, and distance-error views, thereby offering users addi-
tional ways to reason about the usefulness and usability of
multidimensional projections for data analysis tasks.

We plan to extend our work to support user-driven projec-
tion construction, by allowing users to interactively change
the projection [ABD∗12, PPM∗15] while explicitly seeing
how local neighborhood errors are created or diminished. Ad-
ditionally, we aim to validate the effectiveness of our ex-
ploratory techniques by testing them on end-to-end use-cases
involving additional datasets and projections.
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