
TOLERANCE-BASED FEATURE TRANSFORMS

Dennie Reniers, Alexandru Telea
Department of Mathematics and Computer Science, Eindhoven University of Technology

Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
D.Reniers@tue.nl, alext@win.tue.nl

Keywords: feature transform, tolerance-based, distance transform, algorithms, image processing.

Abstract: Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels
on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this
paper, we compare four simple-to-implement methods for computing TFTs on binary images. Of these meth-
ods, the Fast Marching TFT and Euclidean TFT are new. The other two extend existing distance transform
algorithms. We quantitatively and qualitatively compare all algorithms on speed and accuracy of both distance
and origin results. Our analysis is aimed at helping practitioners in the field to choose the right method for
given accuracy and performance constraints.

1 INTRODUCTION

A distance transform (DT) computes, for pixel p of an
image, the distance D(p) = minq∈δΩ ‖q − p‖ to the
nearest feature pixel, or origin, q on the boundary δΩ
of some object Ω located in the image (Fig. 1). Non-
object pixels will be denoted by Ω̄. There can be sev-
eral equidistant origins q for a pixel p, i.e., the origin
set S(p) = arg minq∈δΩ ‖q − p‖ of p can have more
than one element. The feature transform (FT) assigns
to each pixel p the origin set S(p). A simple FT com-
putes only one origin per pixel, which is sufficient for
some applications. We define a tolerance-based FT
(TFT) as a map that assigns to each pixel the origin set
Sε(p) = {q ∈ δΩ

∣∣ ‖q−p‖ ≤ D(p)+ ε}, where ε is a
user-defined tolerance. One use of the TFT is to com-
pute exact Euclidean DTs, as first observed in (Mul-
likin, 1992) (see also Sec. 5). A second use of the TFT
is to compute robust, connected skeletons or medial
axes, as follows. Medial axis (MA) points can be de-
tected as the FT points having at least two origins, one
on each side of the axis (Foskey et al., 2003). How-
ever, this definition may yield disconnected skeletons
in a discrete space. For example, for a rectangle of
even height, no pixels lie exactly in the middle. Using
a TFT with tolerance 1, origins from both axis sides
are found, yielding a connected skeleton. Figure 2
shows the TFT for an object using four different tol-
erances ε. The pixel intensity denotes the origin set

Figure 1: The distance transform of an object. The pixel
intensity denotes distance to the object boundary.

size |Sε|. The origin sets of four selected pixels are
shown using white line segments. For ε = 0, it can be
seen that pixel p has only one origin because the hor-
izontal rectangle is of even height. Using a tolerance
ε ≥ 1, the origin set Sε(p) contains origins from both
sides of the rectangle.

Overall, both DTs and FTs have numerous applica-
tions in many domains (Cuisenaire, 1999; Ye, 1988)
ranging from image processing, pattern recognition,
and shape representation and modeling, to path plan-
ning, computer animation, skeletonization, and opti-
mization algorithms.

DT and FT algorithms can be classified by the order
in which they process the image pixels. Raster scan-
ning algorithms (Danielsson, 1980) sequentially pro-
cess pixels in scan-line order, needing multiple passes

Figure 2: The TFT of an object using four different tolerances ε = 0, 1
2

√
2, 1,
√

2.

in which pixels are assigned new minimum distances.
Ordered propagation methods (Ragnemalm, 1992) re-
duce the number of distance computations needed by
updating only pixels in a contour set, which propa-
gates from the object boundary δΩ inwards. Ordered
propagation methods accommodate (distance-based)
stopping criteria easier than raster scanning ones,
thus being more efficient for some applications. A
well-known class of ordered propagation methods are
level-set and fast marching methods (FMM) (Sethian,
1999), which evolve the contour δΩ under normal
speed (see Section 2). Although the FMM does not
compute an exact Euclidean DT, the speed function
it uses can be locally varied to compute more com-
plex DTs, e.g., anisotropic, weighted, Manhattan, or
position-dependent ones (Sethian, 1999; Strzodka and
Telea, 2004). Recent FMM extensions compute an
FT (Telea and van Wijk, 2002; Telea and Vilanova,
2003). However, this is only a simple FT, and can
be quite inaccurate in many cases. Applications us-
ing this origin set, such as skeletonization, can deliver
wrong results, as pointed out in (Strzodka and Telea,
2004).

As the above outlines, DT and FT methods have
many, often subtle, trade-offs, which are not obvious
to many practitioners in the field. In this paper, we
discuss several competitive DT, FT, and TFT meth-
ods. Some of these methods extend existing ones,
while others are new. We quantitatively and quali-
tatively compare the results of all methods with the
exact TFT computed by brute force, and discuss the
computational advantages and limitations of every
method. The goal of our analysis is to provide a quan-
titative, practical guideline for choosing the “right”
DT or (T)FT method to best match real-world appli-
cation requirements, such as precision, performance,
completeness, and implementation complexity.

This paper is structured as follows. In Section 2
we discuss the FMM and we detail on its inaccura-
cies. In Section 3, we modify the existing Augmented
Fast Marching Method (AFMM) to yield exact simple
FTs, and illustrate its use by skeletonization applica-
tions. In Section 4, we extend this idea to compute
TFTs by adding a distance-to-origin tolerance. In

Section 5, we analyze Mullikin’s raster scanning DT,
and get insight into how to set our TFT tolerance to
compute exact DTs. In Section 6, we present a novel
method, called ETFT, based on a different propaga-
tion order than the FMM. In Section 7, we compare
our new ETFT with the related graph-search method
of (Lotufo et al., 2000), and also extend the latter to
compute TFTs. Finally, we quantitatively compare all
of the above methods (Sec. 8) and come to a conclu-
sion (Sec. 9).

2 FAST MARCHING METHOD
(FMM)

Level set methods are an Eulerian approach for track-
ing contours evolving in time. The fast marching
method (FMM) (Sethian, 1999) treats the special case
of contours with constant sign speed functions F . The
contour position p, given by its arrival time T (p), is
the solution of ‖∇T‖F = 1 with T = 0 for the ini-
tial contour δΩ. If F = 1, we obtain the Eikonal
equation ‖∇T‖ = 1 whose solution is the Euclidean
DT of δΩ. The FMM efficiently computes T using
the fact that T (p) depends only on the T values of
p’s neighbors N(p) for which T (N(p)) < T (p). The
FMM builds T from the smallest computed T values
by maintaining the pixels in the evolving contour, or
narrow band, sorted on T . Pixels are split into three
types: known pixels pK have an already computed T ;
temporary pixels (pT) have a T subject to update; and
unknown pixels (pU) have not yet been assigned a T
value. Invariant is T (pK) ≤ T (pT) ≤ T (pU). Ini-
tially, all pixels on δΩ are known to have T = 0 and
their neighbors become temporary. Next, the tempo-
rary pixel p with smallest T becomes known (as its
T cannot be influenced by other pixels), its unknown
neighbors NU(p) become temporary, and their T val-
ues are updated based on their own known neighbors,
until all pixels become known. For a contour of length
B = |δΩ| and area N = |Ω| pixels, the FMM needs
O(N log B) steps, because it visits each object pixel
once, and keeping the narrow band sorted on T in

Table 1: Differences between (approximate) FMM and ex-
act Euclidean distances D (%e: ratio of erroneous pixels to
object pixels; max e: maximum error; ē: average error).

image img.size max D %e max e ē
bird 238×370 49.82 89% 0.679 0.142
leaf 410×444 70.63 84% 1.013 0.290
dent 464×397 134.06 15% 1.210 0.082

each iteration needs O(log B) steps.
The DT computed by the FMM is not exact. Errors

occur due to the approximation of the gradient ∇T ,
usually of first or second order, the former being the
most common. The errors are accumulated during the
propagation. In (Sethian, 1999, Sec. 12.3), the FMM
accuracy is briefly treated, but no comments are made
on the implications for real-world applications. Fig-
ure 3 and Table 1 show the difference between the
FMM and the exact DT for some typical shapes. High
errors (bright areas in Fig. 3) seem to “diffuse” away
from boundary concavities. Indeed, a temporary point
at a narrow band concavity has just one known neigh-
bor NK, so its distance is updated from a single known
T (NK) value. A point at a narrow band convexity has
several known neighbors, so its distance T is updated
using more information. The maximal DT error can
easily exceed 1 pixel (cf. Table 1), and can grow arbi-
trarily with the image size.

3 AFMM STAR

In (Telea and van Wijk, 2002), the Augmented FMM
(AFMM) is presented, which computes one origin per
pixel by propagating an arc-length parameterization
U of the initial boundary δΩ together with FMM’s T
value. U(p) basically identifies an origin S(p). When
a narrow band pixel p is made known and its unknown
direct 4-neighbors a ∈ NU

4 (p) are added to the nar-
row band, U(a) is set to U(p). After propagation
has completed, for all points q where U varies with
at least τ over N4(q), a segment of at least length
τ from the original boundary collapses. Hence, the
above point set {q} represents a (pruned) skeleton,
or medial axis, of δΩ, with τ as the pruning parame-
ter. AFMM’s complexity remains the same as for the
FMM, namely O(N log B), where N is the number
of object pixels and B the boundary size, because it
adds just the propagation of one extra value U . Sim-
ilar methods are (Costa and Cesar, 2001) for digital
images and (Ogniewicz and Kübler, 1995) for polyg-
onal contours, respectively.

However efficient and effective for computing sim-
ple FTs and skeletons, the AFMM has several ac-
curacy problems when computing U , as can be eas-

Figure 4: AFMM skeletonization errors (left). AFMM Star
skeletonization (right).

ily seen from the resulting skeletons. Errors show
up as skeleton branches having the wrong angle, are
too thick, or are disconnected (e.g., Fig. 4 left). The
reason is that the value U(a) is determined by only
one pixel p ∈ N4(a), namely the p that is first made
known. We propose to solve this problem as follows.
For a point a that is made temporary, we set S(a)
(or equivalently U(a)) to the closest origin among the
neighbor’s origin sets, i.e.:

S(a) = arg min
q∈S(NK,T

8 (a))

‖q − a‖. (1)

This method, which we call AFMM Star, solves
AFMM’s inaccuracy problems, i.e., yields a reliable
simple FT method. AFMM Star robustly computes
pixel-exact, pixel-thin, connected skeletons for ar-
bitrarily complex noisy 2D boundaries (e.g., Fig. 4
right). One remaining problem is that we use the nu-
merically inexact FMM DT (cf. Sec. 2). For practical
applications, e.g. skeletonization, incorrect skeleton
points will occur only where the FMM DT error ex-
ceeds 1 pixel. From Table 1, we see that this happens
only at a very few pixels of relatively large objects.
This gives a quantitative estimate of the AFMM Star
limitations.

4 FAST MARCHING TFT

The AFMM Star is a simple FT, i.e., it computes
just one origin per point. However, some applica-
tions, such as angle-based skeletonization (Foskey
et al., 2003) require all origins to be found. More-
over, multiple-origin FTs are desired for the reasons
outlined in Section 1.

We now propose the novel Fast Marching TFT
(FMTFT) which computes for each pixel p an origin
set Sε whose size depends on a user-defined distance
tolerance ε, i.e.:

Sε(p) =
{

q ∈ δΩ
∣∣∣ ‖q − p‖ ≤ D(p) + ε

}
. (2)

The pseudo code is shown in Figure 5. The dis-
tances Df are computed by the FMM (line 15), see

Figure 3: Differences between the (approximate) FMM distance and the exact Euclidean distance for the ‘bird’, ‘leaf’, and
‘dent’ images. Black indicates no error, white indicates the maximum error. See Table 1 for the exact values.

e.g. (Sethian, 1999). We initialize the origin set
S(p) = {q ∈ δΩ

∣∣ ‖q−p‖ ≤ ε} for p ∈ δΩ. When the
distance of a point a is updated during the FMM evo-
lution, we simultaneously construct a candidate set C
(line 16):

C(a) =
⋃

q∈NK,T
s (a)∪{a}

S(q), (3)

where s is the neighborhood size. Next, let the dis-
tance D(a) = minq∈C(a) ‖q − a‖. D(a) is more
accurate than the FMM distance Df(a), because it is
computed directly as the distance from a to its nearest
origin, while Df is computed incrementally by a first-
order approximation of the gradient. Df is used only
to determine the propagation order (line 11), as for the
AFMM Star (Sec. 3). The tolerance-based origin set
S(a) is constructed by pruning C in line 18:

Sε(a)←
{

q ∈ C
∣∣∣ ‖q − p‖ ≤ D(p) + ε

}
. (4)

Thus, this algorithm assumes that the origin set of a
pixel a can be determined from the origin sets of a’s
neighbors. Statement (4) also occurs in all other to-
be-discussed methods (line 30 in Fig. 7, line 17 in
Fig. 8, and line 16 in Fig. 9).

The accuracy of D is influenced by the neighbor-
hood size s and the tolerance ε. D can be made more
accurate by increasing s. In general however, D can-
not be made exact no matter the choice of s. This is
because the Voronoi regions of origin pixels are not
always connected sets on a discrete grid (Cuisenaire,
1999). In contrast, ε can be set so that all distance er-
rors are eliminated. This was also observed by Mul-
likin, in a related context, as detailed in the next sec-
tion.

1: for each p ∈ Ω ∪ Ω̄ do
2: if p ∈ Ω̄ then
3: f(p)← K, Df(p)← −1
4: else if p ∈ δΩ then
5: f(p) ← T, Df(p) ← 0, S(p) ← {q ∈ δΩ

∣∣‖q −
p‖ ≤ ε}

6: else if p ∈ Ω ∧ p /∈ δΩ then
7: f(p)← U, Df(p)←∞
8: end if
9: end for

10: while ∃qf(q) = T do
11: p← arg min

q:f(q)=T
Df(q)

12: f(p)← K
13: for each a ∈ NU,T

4 (p) do
14: f(a)← T
15: Df(a)← min(Df(a),compdist(NK

4 (a)))
16: C ←

⋃
q∈N

K,T
s (a)∪{a}(S(q))

17: D(a)← minq∈C ‖q − a‖
18: S(a)← {q ∈ C

∣∣ ‖q − a‖ ≤ D(a) + ε}
19: end for
20: end while

Figure 5: Fast Marching TFT (FMTFT).

5 ε-VECTOR DISTANCE
TRANSFORM

Mullikin presents in (Mullikin, 1992) a scan-based al-
gorithm for computing exact Euclidean DTs. He first
identifies pixel arrangements for which Danielsson’s
scan-based vector distance transform (VDT) with 4-
neighborhoods (Danielsson, 1980) yields inexact dis-
tances. The problem of the VDT is that it stores
only one origin. In Figure 6, the VDT computes that
S(q) = {a} and S(r) = {b}. For p, one of the near-
est origins from its 4-neighbors is taken. Thus S(p) ∈
S(q) ∪ S(r) = {a, b}, while the actual nearest ori-
gin is S(p) = {c}. This situation occurs when there
are three object pixels a, b, c so that ‖ ~aq‖ < ‖~cq‖,
‖~br‖ < ‖~cr‖, ‖~cp‖ < ‖ ~ap‖, and ‖~cp‖ < ‖~bp‖, i.e.,
when the hatched area contains a grid point. Mullikin

Figure 6: Pixels a, b and c are object pixels. Pixel p is
the pixel under consideration, q and r are its relevant 4-
neighbors.

proposes, in his εVDT, to store all nearest origins, and
additionally all origins at a distance within a certain
tolerance ε. Essentially, εVDT computes origin sets
as defined in Equation (2). Mullikin shows that an ex-
act distance transform is obtained when ε ≥

√
D/D,

where D is the number of spatial dimensions. This re-
sult can also be used for the other methods discussed
in this paper.

The εVDT computes tolerance-based origin sets
only as a means to compute exact DTs. Mullikin does
not detail on the accuracy of the origin sets them-
selves in (Mullikin, 1992). Moreover, he uses only
4-neighborhoods as these are sufficient for exact Eu-
clidean distances. We extended εVDT to also use 8-
neighborhoods (see pseudo code in Fig. 7). These are
useful for improving the origin set accuracy, as shown
in Table 2. The pseudo code can be found in Figure 7.
The εVDT is compared to the other methods in Sec-
tion 8.

Besides the fact that the εVDT uses a scan-based
approach, another conceptual difference with the
FMTFT is that it uses a write formalism instead of
a read formalism (Verwer et al., 1989). Whereas in
the FMTFT the candidate origin set C of a pixel a
is constructed by reading from all neighboring pixels
(line 16 in Fig. 5), the εVDT writes information from
a single neighbor to a (line 28 in Fig. 7).

6 EUCLIDEAN TFT

The FMTFT visits points in the order of the in-
accurate FMM distances (Sec. 4). Although this
keeps the original FMM advantage of using differ-
ent speed functions, an erroneous propagation order
potentially influences the distance and origin set ac-
curacy (Sec. 1). The idea comes thus naturally to
design an ordered propagation FT which visits the
points in order of the accurately computed distances.
We present the pseudo code of this new method,

1: for each p ∈ δΩ do
2: S(p)← {q ∈ δΩ

∣∣‖q − p‖ ≤ ε}
3: end for
4: for y from 0 to N − 1 do
5: for x from 0 to M − 1 do
6: update((x,y), (x-1,y-1)) if s = 8
7: update((x,y), (x,y-1))
8: update((x,y), (x+1, y-1)) if s = 8
9: update((x,y), (x-1, y))

10: end for
11: for x from M − 1 downto 0 do
12: update((x,y), (x+1,y))
13: end for
14: end for
15: for y from N − 1 downto 0 do
16: for x from 0 to M − 1 do
17: update((x,y), (x-1, y+1)) if s = 8
18: update((x,y), (x, y-1))
19: update((x,y), (x+1, y+1)) if s = 8
20: update((x,y), (x-1, y))
21: end for
22: for x from M − 1 downto 0 do
23: update((x,y), (x+1,y))
24: end for
25: end for
26: procedure update(a,b)
27: if a, b ∈ Ω then
28: C ← S(a) ∪ S(b)
29: D(a)← minq∈C ‖q − a‖
30: S(a)← {q ∈ C

∣∣ ‖q − a‖ ≤ D(a) + ε}
31: end if
32: end procedure

Figure 7: ε-Vector Distance Transform (εVDT). The image
has dimensions M ×N .

called Euclidean TFT, in Figure 8. The neighbor-
hood size s (line 15) and tolerance ε (line 17) have
the same meaning as for the FMTFT and εVDT dis-
cussed above. The initialization is the same as for
the FMTFT, it also uses a read formalism, and the
propagation is still in the order of increasing dis-
tances. However, where the FMTFT propagates on
Df (Fig. 5, line 11), the ETFT propagates on the more
accurate distances D (Fig. 8, line 11).

We found out that the above exact-distance prop-
agation order yielded a comparable speed and accu-
racy, posing no advantage over the FMM order. Thus,
we made the following change. Whereas the FMTFT
updates all pixels a ∈ NU,T (p) (Fig. 5, line 13), the
ETFT was made to update only pixels a ∈ NU (p)
(Fig. 8, line 13). Now the ETFT updates pixels only
once, trading accuracy for speed (see Table 2).

7 GRAPH-SEARCH TFT

The FMTFT and ETFT resemble the graph-search ap-
proach of (Lotufo et al., 2000). However, the graph-

1: for each p ∈ Ω ∪ Ω̄ do
2: if p ∈ Ω̄ then
3: f(p)← K, D(p)← −1
4: else if p ∈ δΩ then
5: f(p) ← T, D(p) ← 0, S(p) ← {q ∈ δΩ

∣∣‖q −
p‖ ≤ ε}

6: else if p ∈ Ω ∧ p /∈ δΩ then
7: f(p)← U, D(p)←∞
8: end if
9: end for

10: while ∃qf(q) = T do
11: p← arg min

q:f(q)=T
D(q)

12: f(p)← K
13: for each a ∈ NU

4 (p) do
14: f(a)← T
15: C ←

⋃
q∈N

K,T
s (a)∪{a}(S(q))

16: D(a)← minq∈C ‖q − a‖
17: S(a)← {q ∈ C

∣∣ ‖q − a‖ ≤ D(a) + ε}
18: end for
19: end while

Figure 8: The Euclidean TFT algorithm (ETFT).

search method uses a write formalism, and propagates
only one origin per pixel, i.e., it is a simple FT. We ex-
tended Lotufo’s algorithm to a TFT, so that it can be
readily compared to the FMTFT, εVDT, and ETFT
methods. Figure 9 gives the pseudo code for this ex-
tension, called the Graph-search TFT (GTFT). Now
the differences between the ETFT and GTFT meth-
ods become visible. While GTFT uses only the flags
T and K and updates all neighboring pixels a of p
flagged as T (Fig. 9, line 13), ETFT also uses the flag
U and only updates these pixels (Fig. 8, line 13). Since
there are in general less pixels flagged U in ETFT than
T in GTFT, ETFT updates less pixels per iteration.
However, the update of a pixel in ETFT involves more
work as all neighbors of a are used (Fig. 8, line 15),
whereas in GTFT only p is used (Fig. 9, line 14). The
running time differences are detailed in the next sec-
tion.

8 COMPARISON

Unlike DT methods, the computational complexity of
(T)FT methods depends on the origin set sizes and
is therefore strongly input dependent. For example,
the center of a circle is a worst case, as its origin set
contains all boundary points. The origin set size, for
points inside convex object-regions, increases with
distance to boundary. When updating a pixel p, the
whole candidate origin set for p must be inspected.
For N image pixels, and B boundary pixels, this
poses a worst case of O(N(B + log B)) for the three
propagation-based methods and O(NB) for εVDT.
Luckily, average real-world images are far from this

1: for each p ∈ Ω ∪ Ω̄ do
2: if p ∈ Ω̄ then
3: f(p)← K, D(p)← −1
4: else if p ∈ δΩ then
5: f(p) ← T, D(p) ← 0, S(p) ← {q ∈ δΩ

∣∣‖q −
p‖ ≤ ε}

6: else if p ∈ Ω ∧ p /∈ δΩ then
7: f(p)← T, D(p)←∞
8: end if
9: end for

10: while ∃qf(q) = T do
11: p← arg min

q:f(q)=T
D(q)

12: f(p)← K
13: for each a ∈ NT

s (p) do
14: C ← S(a) ∪ S(p)
15: D(a)← minq∈C ‖q − a‖
16: S(a)← {q ∈ C

∣∣ ‖q − a‖ ≤ D(a) + ε}
17: end for
18: end while

Figure 9: The Graph-search TFT algorithm (GTFT).

worst case. However, it is difficult to mathematically
characterize the average input image. Nevertheless, to
give more insight into real-world running times, we
empirically compare all discussed TFT methods on
speed and accuracy of both distances and origin sets.
We use images that are often used as typical input for
image processing algorithms.

We implemented all methods and ran them on a
Pentium IV 3GHz with 1 GB RAM. Some design de-
cisions had to be made here. For the propagation-
based methods (FMTFT, ETFT, GTFT) we used a pri-
ority queue to efficiently find the temporary pixel at
minimum distance to the boundary. Origin sets are
stored as STL multimaps (Musser and Saini, 1996)
containing (distance,origin) pairs, so that merging
two origin sets takes O(n log n) time (as we must
avoid duplicates), while pruning the conservative set
takes O(log n). To prevent floating point precision
problems when performing Statement (4), it is needed
to evaluate ‖q−p‖ ≤ D(p)+ε+τ instead, where τ is
larger than the minimum representable difference be-
tween two floating point numbers. However, τ must
be chosen smaller than

∣∣∣ 1
2 minp,q,r∈Ω ‖ ~pq‖ − ‖ ~pr‖

∣∣∣:
half of the minimum difference between two dis-
tances that can occur on the grid. Alternatively, in-
teger arithmetic can be used when the equations were
rewritten. In our experiments, the use of τ improved
the accuracy by two orders of magnitude.

Table 2 compares the distances Dm and origin sets
Sm produced by the methods m to the exact distances
De and origins Se, calculated using a brute-force ap-
proach. The table shows measurements on the ‘leaf’
image, and cumulative measurements on 10 differ-
ent images. The considered methods are the FMM,
FMTFT, GTFT, εVDT, and ETFT. We do not con-

Figure 11: Timings and relative error (er) of the 8-
neighborhood variants for the ‘leaf’ image.

sider the AFMM Star, as it is a simple FT. For all
methods, except the FMM, we ran the 4 and 8 neigh-
borhood variants, and used 4 different tolerances: 0,
1
2

√
2, 1, and

√
2. For the FMM, we used only the first-

order distance gradient approximation (as mentioned
in Sec. 2), which needs just the 4-neighborhood. The
variants are denoted as, e.g., FMTFT4 ε0 for the Fast
Marching TFT using a 4-neighborhood and zero tol-
erance.

Table 2 shows that the distance errors decrease by
increasing either the neighborhood size s or the toler-
ance ε. As previously noted, increasing the neighbor-
hood size does not always eliminate all errors. Indeed,
all methods produce one error for the leaf image with
s = 8 and ε = 0. As predicted, using ε = 1

2

√
2 elimi-

nates all errors for all methods; higher tolerances are
not useful for computing exact distances. Finally, our
novel method ETFT4 ε 1

2

√
2 is the fastest of all con-

sidered methods.
We next examine the accuracy of the computed ori-

gin sets. We compare origin sets by comparing the av-
erage relative differences between a method’s origins
and the exact (brute-force method) origins, denoted
in column ‘ēr’. Let the relative error er of a pixel
p be er(p) =

∣∣∣ |Sm(p)|−|Se(p)|
|Se(p)|

∣∣∣, then, ēr is the aver-
age of er over all pixels p ∈ Ω. The tolerance ε is
not only a means to compute exact distances, but is
also a user parameter for computing origin sets. Un-
like for distances, relaxing the tolerance ε increases
the errors for origin sets. Indeed, it is more difficult
to identify all origins that are within D(p) + ε for
higher ε. For ε > 0, none of the considered methods
deliver the complete origin set, although some have
only a few erroneous pixels. From Table 2, we see

that the 8-neighborhood variants have the best accu-
racy (< 0.1%). Of these, ETFT8 is the fastest (see
also Fig. 11). For applications needing maximum ac-
curacy, εVDT8 is the method of choice. Although
εVDT8 has a better complexity, it is probably slower
because of the hidden time constant: the image is
scanned twice. Finally, we illustrate the locations of
the pixels with erroneous origin sets for the leaf image
in Figure 10.

9 CONCLUSION

In this paper, we both analyzed and extended sev-
eral distance and feature transform methods for bi-
nary images. Our goal was to provide a guide for
practitioners in the field for choosing the best method
that meets application-specific accuracy, speed, and
output completeness criteria. First, we perfected the
existing simple FT method AFMM to deliver more
accurate results (AFMM Star, Sec. 3). We next ex-
tended this method to a new tolerance-based feature
transform, FMTFT, that allows e.g. overcoming un-
desired sampling effects when computing skeletons
(Sec. 4). Next, we discussed three other easy-to-
implement TFT methods: the existing εVDT (Sec. 5),
the new ETFT (Sec. 6), and the GTFT extension of
Lotufo’s graph-searching method (Sec. 7).

For computing exact distances, ETFT4 ε 1
2

√
2 is the

fastest of the considered methods. Although there
are other, faster, exact DT methods, e.g. (Meijster
et al., 2000), the ETFT4 ε 1

2

√
2 can accommodate

early distance-based termination and has a simple im-
plementation (cf. Fig. 8). For computing origin sets,
all methods produce fairly accurate results (< 0.1%
errors) for tolerances even up to

√
2. εVDT8 is the

most accurate, while ETFT8 is the fastest. Finally,
FMTFT8 is still useful, as it is the only considered
method that can handle different speed functions.

We next intend to extend our TFT methods to 3D
and investigate their relative performance and accu-
racy. This should be rather straightforward, as all
considered methods either do not depend on dimen-
sion (FMTFT, GTFT, ETFT) or have equivalents in
higher dimensions (FMM, εVDT). Next, we plan to
apply the TFT methods to compute robust skeletons
of 3D and higher dimensional objects.

ACKNOWLEDGEMENTS

This work was supported by the Netherlands Organ-
isation for Scientific Research (NWO) under grant
number 612.065.414.

Table 2: In each row: distances Dm and origin sets Sm of method m are compared to the exact distances De and origins
Se. Left table: method comparison for the ‘leaf’ image. Right table: cumulative comparison of 10 different images. For
distances (D), we show: the number of erroneous pixels (#e), maximum distance error (max e = maxp |Dm(p)−De(p)|),
and average distance error ē. For origins (S) we show: the number of pixels for which origin counts are different (#e), and
the average relative error ēr (see text). Timings are denoted in seconds in column t.

Dm Sm Dm Sm

method m #e max e ē #e ēr t Σ#e Σ#e Σēr Σt
FMM 29381 1.01 0.25 170 0.182% 0.31 147938 1202 0.306% 1.47

FMTFT4 ε0 18 0.19 0.00 320 0.309% 0.31 674 2792 0.576% 1.58
εVDT4 ε0 22 0.19 0.00 218 0.147% 0.13 685 1889 0.304% 0.64
GTFT4 ε0 22 0.19 0.00 218 0.147% 0.28 685 1891 0.304% 1.28
ETFT4 ε0 18 0.19 0.00 317 0.304% 0.13 674 2779 0.573% 0.61

FMTFT8 ε0 1 0.04 0.00 1 0.001% 0.44 144 267 0.072% 2.09
εVDT8 ε0 1 0.04 0.00 1 0.001% 0.16 145 217 0.054% 0.89
GTFT8 ε0 1 0.04 0.00 1 0.001% 0.44 145 217 0.054% 2.11
ETFT8 ε0 1 0.04 0.00 1 0.001% 0.16 144 267 0.072% 0.83

FMTFT4 ε 1
2

√
2 0 0.00 0.00 12428 8.452% 0.50 0 35828 3.888% 3.31

εVDT4 ε 1
2

√
2 0 0.00 0.00 540 0.125% 0.31 0 2285 0.093% 2.60

GTFT4 ε 1
2

√
2 0 0.00 0.00 31835 23.120% 0.31 0 128672 21.655% 1.89

ETFT4 ε 1
2

√
2 0 0.00 0.00 26914 16.744% 0.19 0 146949 17.137% 1.19

FMTFT8 ε 1
2

√
2 0 0.00 0.00 34 0.006% 0.73 0 412 0.010% 5.16

εVDT8 ε 1
2

√
2 0 0.00 0.00 34 0.006% 0.45 0 392 0.009% 3.86

GTFT8 ε 1
2

√
2 0 0.00 0.00 34 0.006% 0.61 0 392 0.009% 3.59

ETFT8 ε 1
2

√
2 0 0.00 0.00 34 0.006% 0.31 0 410 0.010% 2.20

FMTFT4 ε1 0 0.00 0.00 7674 3.879% 0.66 0 23854 1.835% 4.39
εVDT4 ε1 0 0.00 0.00 162 0.025% 0.42 0 415 0.023% 3.42
GTFT4 ε1 0 0.00 0.00 22306 11.805% 0.41 0 107543 13.522% 2.53
ETFT4 ε1 0 0.00 0.00 15916 7.763% 0.25 0 89708 8.963% 1.76

FMTFT8 ε1 0 0.00 0.00 44 0.007% 0.94 0 151 0.004% 6.63
εVDT8 ε1 0 0.00 0.00 32 0.004% 0.63 0 89 0.002% 5.24
GTFT8 ε1 0 0.00 0.00 250 0.084% 0.69 0 1611 0.164% 4.36
ETFT8 ε1 0 0.00 0.00 284 0.089% 0.39 0 1404 0.129% 2.81

FMTFT4 ε
√

2 0 0.00 0.00 17654 8.083% 0.75 0 59747 4.562% 5.27
εVDT4 ε

√
2 0 0.00 0.00 142 0.018% 0.55 0 286 0.015% 4.77

GTFT4 ε
√

2 0 0.00 0.00 36718 19.525% 0.42 0 169396 20.611% 2.64
ETFT4 ε

√
2 0 0.00 0.00 29446 14.286% 0.30 0 152655 14.830% 1.98

FMTFT8 ε
√

2 0 0.00 0.00 43 0.010% 1.13 0 165 0.005% 8.39
εVDT8 ε

√
2 0 0.00 0.00 16 0.002% 0.81 0 27 0.000% 6.81

GTFT8 ε
√

2 0 0.00 0.00 273 0.077% 0.78 0 1105 0.124% 5.25
ETFT8 ε

√
2 0 0.00 0.00 279 0.080% 0.47 0 1130 0.157% 3.58

Figure 10: Locations of origin errors for the leaf image, ε =
√

2. From left to right: FMTFT8, εVDT8, GTFT8, and ETFT8.
The boundary and erroneous pixels are thickened for better display.

REFERENCES
Costa, L. and Cesar, Jr, R. (2001). Shape analysis and clas-

sification. CRC Press.
Cuisenaire, O. (1999). Distance transformations: fast al-

gorithms and applications to medical image process-
ing. PhD thesis, Université catholique de Louvain,
Belgium.

Danielsson, P.-E. (1980). Euclidean distance map-
ping. Computer Graphics and Image Processing,
14(3):227–248.

Foskey, M., Lin, M., and Manocha, D. (2003). Efficient
computation of a simplified medial axis. In Proc. of
the 8th ACM symposium on Solid modeling and appli-
cations, pages 96–107. ACM Press.

Lotufo, T., Falcao, A., and Zampirolli, F. (2000). Fast eu-
clidean distance transform using a graph-search algo-
rithm. In Proc. of the 13th Brazilian Symp. on Comp.
Graph. and Image Proc., pages 269–275.

Meijster, A., Roerdink, J., and Hesselink, W. (2000). A
general algorithm for computing distance transforms
in linear time. In Goutsias, J., Vincent, L., and
Bloomberg, D., editors, Mathematical Morphology
and its Applications to Image and Signal Processing,
pages 331–340. Kluwer.

Mullikin, J. (1992). The vector distance transform in two
and three dimensions. CVGIP: Graphical Models and
Image Processing, 54(6):526–535.

Musser, D. and Saini, S. (1996). STL tutorial and reference
guide: C++ programming with the standard template
library. Addison-Wesley Professional Computing Se-
ries.

Ogniewicz, R. and Kübler, O. (1995). Hierarchic voronoi
skeletons. Pattern Recognition, 28(3):343–359.

Ragnemalm, I. (1992). Neighborhoods for distance trans-
formations using ordered propagation. CVGIP: Image
Understanding, 56(3):399–409.

Sethian, J. (1999). Level set methods and fast marching
methods. Cambridge University Press, 2nd edition.

Strzodka, R. and Telea, A. (2004). Generalized distance
transforms and skeletons in graphics hardware. In
Proc. of EG/IEEE TCVG Symposium on Visualization
(VisSym ’04), pages 221–230.

Telea, A. and van Wijk, J. (2002). An augmented fast
marching method for computing skeletons and center-
lines. In Proc. of the symposium on Data Visualisa-
tion, pages 251–259.

Telea, A. and Vilanova, A. (2003). A robust level-set algo-
rithm for centerline extraction. In Proc. of the sympo-
sium on Data Visualisation, pages 185–194.

Verwer, B., Verbeek, P., and Dekker, S. (1989). An efficient
uniform cost algorithm applied to distance transforms.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(4):425–429.

Ye, Q. (1988). The signed euclidean distance transform and
its applications. In Proc. of the 9th International Con-
ference on Pattern Recognition, volume 1, pages 495–
499.

