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A B S T R A C T   

Several brain disorders are associated with abnormal brain asymmetries (asymmetric anomalies). Several 
computer-based methods aim to detect such anomalies automatically. Recent advances in this area use automatic 
unsupervised techniques that extract pairs of symmetric supervoxels in the hemispheres, model normal brain 
asymmetries for each pair from healthy subjects, and treat outliers as anomalies. Yet, there is no deep under
standing of the impact of the supervoxel segmentation quality for abnormal asymmetry detection, especially for 
small anomalies, nor of the added value of using a specialized model for each supervoxel pair instead of a single 
global appearance model. We aim to answer these questions by a detailed evaluation of different scenarios for 
supervoxel segmentation and classification for detecting abnormal brain asymmetries. Experimental results on 
3D MR-T1 brain images of stroke patients confirm the importance of high-quality supervoxels fit anomalies and 
the use of a specific classifier for each supervoxel. Next, we present a refinement of the detection method that 
reduces the number of false-positive supervoxels, thereby making the detection method easier to use for visual 
inspection and analysis of the found anomalies.   

1. Introduction 

Magnetic resonance imaging (MRI) is usually the standard image 
modality for structural brain analysis, as it provides detailed 3D images 
with high spatial resolution and high contrast for soft tissues (Akkus 
et al., 2017). Quantitative analysis of MR brain images has been used 
extensively for the characterization of brain disorders, such as stroke, 
tumors, and multiple sclerosis. Such methods rely on delineating objects 
of interest — (sub)cortical structures or lesions — trying to solve 
detection and segmentation simultaneously for tasks such as quantita
tive lesion assessment (e.g., volume), surgical planning, treatment 
assessment, and overall anatomic understanding (Kamnitsas et al., 2017; 
Chen et al., 2018b; Soltaninejad et al., 2017). 

The simplest strategy to detect brain anomalies consists of a visual 
slice-by-slice inspection by one or multiple specialists. This process is 
very time-consuming and even impracticable when large data amounts 
need to be processed, and it is also inaccurate due to human errors. 
Continuous efforts have been made for automatic anomaly detection 
that delineates anomalies with accuracy close to that of human experts. 
However, this goal is challenging and complex due to the large 

variability in shape, size, and location among different anomalies, even 
when the same disease causes these (see, e.g., Fig. 1). 

Recently, a method called Supervoxel-based Abnormal Asymmetry 
Detection (SAAD) (Martins et al., 2019a) was proposed to detect 
abnormal asymmetries in MR brain images. Unlike many methods that 
focus on detecting lesions specific to some disease, or morphology, 
SAAD aims to detect generic lesions focusing on their asymmetry. This is 
especially interesting since many neurological diseases are associated 
with abnormal brain asymmetries (Wang et al., 2001). By using a 
supervoxel segmentation, combined with a one-class per-supervoxel 
classifier, SAAD claims to obtain higher detection accuracy even for 
small lesions compared to state-of-the-art detection methods as deep 
generative neural networks. However, two key questions are still open 
for SAAD: (i) what is the impact of supervoxel segmentation in SAAD on 
the quality of the abnormal asymmetry detection? (ii) why use a 
specialized one-class classifier for each supervoxel instead of a global 
classifier? 

In this paper, we answer these questions by a detailed evaluation of 
different scenarios for supervoxel segmentation and classification to 
detect abnormal asymmetries in MR-T1 brain images using the SAAD 
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method. Experimental results on 3D MR-T1 brain images with asym
metric stroke lesions confirm the importance of a high-quality fit of 
supervoxels to lesions and the use of a specific classifier for each 
supervoxel. Using these insights, we also show how we can improve the 
detection accuracy quantitatively compared to the original results of 
SAAD. 

The remainder of this paper is organized as follows. Section 2 dis
cusses related work on automatic brain lesion detection and segmenta
tion. Section 3 introduces SAAD with a focus on its supervoxel 
segmentation step. Section 4 describes the experimental setup we used 
to analyze how SAAD’s performance depends on the supervoxel seg
mentation and classification scheme used. Section 5 presents and dis
cusses the obtained results. Section 6 concludes the paper. 

2. Related work 

Broadly speaking, automatic brain lesion detection/segmentation 
methods can be grouped into five classes. From the least to the most 
versatile, these are as follows: 

Atlas-based methods. These methods use the a priori knowledge about 
the object’s shapes in a training atlas set registered on a standard tem
plate, where each atlas consists of a source 3D image and its corre
sponding 3D label image with the mask of each 3D object of interest 
(Martins et al., 2019b; Aljabar et al., 2009; Lötjönen et al., 2010; Manjón 
and Coupé, 2016; González-Villà et al., 2019). Shape-constraints are 
often encoded either on a probabilistic atlas (Martins et al., 2019b) (each 
voxel has a prior probability of belonging to a given object) or by 
combining all segmentation masks by label fusion techniques (Aljabar 
et al., 2009). Although atlas methods show impressive segmentation 
results for healthy tissues (Martins et al., 2019b; Manjón and Coupé, 
2016), they fail to delineate anomalies, especially given the latter’s 
arbitrary shapes and locations (see, e.g., Fig. 1). 

Supervised learning with hand-crafted features. These methods use 
different classifiers trained from various hand-crafted image features (e. 
g., edge detectors and texture features) to delineate anomalies by clas
sifying voxels or regions of the target image (Soltaninejad et al., 2017; 
Goetz et al., 2014; Geremia et al., 2011; Pinto et al., 2015). Such 
methods usually do not generalize well since the used features have 
limited representation capability considering the significant variation of 
the lesions’ appearances. Moreover, these methods work well only for 
detecting anomalies related to diseases present in the training set. 

Discriminative deep learning. These techniques have emerged as a 

powerful alternative to the previous class of methods, given their ability 
to learn highly discriminative features for a particular task. In particular, 
convolutional neural networks (LeCun et al., 2015) have become a 
mainstay of the computer vision community due to breakthrough per
formance in several applications (Pouyanfar et al., 2018) as compared to 
approaches using hand-crafted features. Deep learning has gained 
popularity in medical image analysis as well (Vasilakos et al., 2016; Kooi 
et al., 2017; Havaei et al., 2017; Aslani et al., 2018). Such methods learn 
deep feature representations (e.g., convolutional features) in a 
data-driven way without any kind of feature engineering being required. 
Yet, there are some limitations:  

(i) They require a large number of training images that must be 
previously annotated by specialists (e.g., lesion segmentation 
masks);  

(ii) Typically require weight fine-tuning (retraining) when used for a 
new set of images due to image variability across scanners and 
acquisition protocols;  

(iii) They are only designed for the anomalies found in the training 
set, just as the supervised methods outlined before; and  

(iv) The success of such methods on new images is limited by the 
absence of large, high-quality, annotated training sets for most 
medical image analysis problems (Akkus et al., 2017). 

Deep generative neural networks. Also known as Encoder-Decoder 
Neural Networks (EDNNs), or autoencoders, these methods have been 
used for unsupervised anomaly detection by modeling the distribution of 
healthy brain tissues and next detecting outliers as anomalies. The un
derlying hypothesis is that this model can reconstruct healthy brain 
anatomies while failing to reconstruct anomalies in images with some 
disorder. EDDNs learn to reconstruct training images from healthy in
dividuals only by first compressing (encoding) them into a low- 
dimensional representation (latent features) and then decompressing 
that representation to minimize the reconstruction error between the 
input data and its reconstruction. Some methods (Sato et al., 2018; Baur 
et al., 2018; Chen et al., 2018a; Chen and Konukoglu, 2018; Atlason 
et al., 2019) delineate anomalies by thresholding the resulting recon
struction errors, i.e., the residual image between the input image vs. its 
reconstruction. Other methods (Martins et al., 2019a; Tang et al., 2019) 
train a one-class classifier from latent features to classify if an image (or 
region of interest) has some anomaly (Tang et al., 2019; Martins et al., 
2019c). Although these methods can detect extensive lesions in MR-T2 

Fig. 1. The different appearance of brain anomalies. Top: axial 
slices of three stroke patients with lesions (gold-standard borders 
in pink) that significantly differ in location, shape, and size. Bot
tom: slices of a 3D heatmap show the location frequency of stroke 
lesions across the brain. Although caused by the same disease, the 
lesions are sparsely distributed in the brain resulting in low- 
concentrated regions. The 3D heatmap was built from aligned 
manual lesion segmentation of stroke patients from the ATLAS 
dataset (Liew et al., 2018) after registration to a standard template. 
(For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)   
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and CT (Sato et al., 2018; Chen et al., 2018a), they show inferior results 
in MR-T1 images and completely fail with small lesions, which are the 
most challenging cases. 

Unsupervised approaches. All the above limitations of supervised 
methods motivate research on unsupervised anomaly detection ap
proaches (Martins et al., 2019a; Sato et al., 2018; Baur et al., 2018; Chen 
et al., 2018a; Guo et al., 2015). These methods aim to learn a model from 
control images of healthy subjects only by encoding general knowledge 
or assumptions (priors) from healthy tissues. This model is next used to 
guide brain segmentation so that outliers who break such general priors 
are considered anomalies (Guo et al., 2015). However, as they do not use 
annotated samples, these methods may not accurately capture subtle 
differences between lesions and their surrounding healthy tissues. Shen 
et al. (2008) proved that the voxel-intensity-based segmentation and the 
spatial-location-based tissue distribution (based on a probabilistic atlas) 
in the lesions are inconsistent with those in healthy tissues. They use the 
conventional Fuzzy C-Mean algorithm and probabilistic maps from a 
template to quantify such inconsistencies, and then apply a threshold to 
obtain a binary lesion segmentation. Juan-Albarracín et al. (2015) 
propose a more complex method that uses four different image modal
ities of MRI for a given patient to segment the brain tumors of the BraTS 
dataset (Menze et al., 2014). All image voxels are grouped in a few 
clusters classified as normal or outlier, based on probabilistic maps from 
a template. However, this method is not practical in clinical routine 
because it requires many image modalities and only detects large le
sions, as present, e.g., in BraTS. 

Since many neurological diseases are associated with abnormal brain 
asymmetries (Wang et al., 2001), a method called Supervoxel-based 
Abnormal Asymmetry Detection (SAAD) (Martins et al., 2019a) was 
recently proposed to detect abnormal asymmetries in MR brain images. 
SAAD registers all images to the same symmetric template, then com
putes asymmetries between the two hemispheres by using their 
mid-sagittal plane (MSP) as reference. Next, a new supervoxel seg
mentation method, named SymmISF, is used to extract pairs of sym
metric supervoxels from the left and right hemispheres for each test 
image, guided by their asymmetries. Each pair generates a one-class 
classifier trained on control images to find supervoxels with abnormal 
asymmetries on the test image. SAAD was further extended to detect 
abnormal asymmetries in the own native image space of each test image 
(Martins and Telea, 2019). SAAD yields higher anomaly detection ac
curacy than deep generative neural networks (Baur et al., 2018; Chen 
et al., 2018a). However, as outlined in Section 1, the effect of the 
supervoxel segmentation quality and the use of a one-class classifier on 
the SAAD’s detection accuracy are unknown. 

3. Description of SAAD 

We next describe the SAAD method (see also Fig. 2) and the super
voxel segmentation methods that we will use in conjunction to it. The 
method consists of four steps: 3D image preprocessing, asymmetry 
computation, supervoxel segmentation, and classification, described 
next. SAAD can detect abnormal asymmetries in any stage of a brain 
disorder, but it should preferably be used in clinical trials of initial stages 
to help early diagnosis and timely treatment. 

3.1. 3D image preprocessing 

Automated analysis of MR images is very challenging due to inherent 
image acquisition problems such as noise, intensity heterogeneity, and 
variability of the intensity range and contrast. To alleviate these and 
make images more similar to each other, we use typical preprocessing 
steps known in the literature (Akkus et al., 2017; Martins et al., 2019a; 
Manjón and Coupé, 2016; Juan-Albarracín et al., 2015), as shown in 
Fig. 3. 

We preprocess the training control image set and the test image 
(Steps 1 and 4 in Fig. 2, respectively) by first performing noise reduction 

by median filtering, followed by mid-sagittal plane (MSP) alignment, 
and bias field correction by N4 (Tustison et al., 2010). Since voxels from 
irrelevant tissues/organs for the addressed problem (e.g., neck and 
bones) can negatively impact the image registration and intensity 
normalization, we use the probabilistic atlas-based method AdaPro 
(Martins et al., 2019b) for skull stripping (Fig. 3b). 

To attenuate differences in brightness and contrast among images, 
we first apply a histogram matching between the segmented images and 
the template (inside its predefined brain segmentation mask). This 
operation only considers voxels inside the brain (Fig. 3d). We then 
perform deformable registration to place all images in the coordinate 
space of the ICBM 2009c Nonlinear Symmetric template (Fonov et al., 
2009), whose hemisphere masks and MSP are well defined. This is a 
popular and widely used template in the literature constructed by 
averaging 152 brain 3D MT-T1 images from healthy subjects aged 18–43 
years. This averaging process relies on several image-preprocessing 
operators, such as intensity normalization and nonlinear registration. 
We refer to Fonov et al. (2009) for more details regarding the template 
construction. All registrations are performed by Elastix (Klein et al., 
2010).1 

Finally, we perform another histogram matching between the 
registered images and the template, and use the brain segmentation 
mask from the template and its MSP to separate the left and right brain 
hemispheres in each image for further asymmetry computation (Fig. 3e). 

3.2. Asymmetry computation 

Let X be the set of registered training 3D images (output of Step 1) 
and I the test 3D image after preprocessing (output of Step 4). We obtain 
the set of asymmetry maps AX for all X by computing the voxel-wise 
absolute differences between left and right hemispheres concerning 
the template’s MSP (Step 2). 

Next, we create a normal asymmetry map AX (Step 3) by averaging the 
absolute difference values of AX (Fig. 4a). We use this map to reduce the 
detection of false-positive asymmetries in I in commonly asymmetric 
brain regions (e.g., cortex), as detailed next in Section 5. Finally, we 
compute voxel-wise absolute differences between the hemispheres for I 
(Fig. 4b–c) and then subtract AX from them. Resulting positive values 
form a final asymmetry map AI (Fig. 4d) for the test image I (Step 5). 

3.3. Symmetric supervoxel segmentation 

Directly comparing the flipped, segmented, and registered hemi
spheres is not helpful as it will not tell us where small-scale asymmetries 
occur (Martins and Telea, 2019). At the other extreme, comparing every 
voxel pair in these hemispheres is risky, since individual voxels contain 
too little information to capture asymmetries. These difficulties moti
vate the use of supervoxels as the unit of comparison (Step 6). 

An ideal supervoxel segmentation should create precisely one 
supervoxel per anomaly. This is, of course, highly unlikely to succeed, 
given the high variability of size, shape, and position of anomalies (see 
again Fig. 1). At any rate, too small supervoxels should be avoided as 
they oversegment larger anomalies and thus cannot capture their essence, 
and also will confuse the end users when visually exploring the results. 
Too large supervoxels, in contrast, should be avoided as they cannot 
precisely delineate small-scale anomalies from the background 
(undersegmentation). 

SAAD uses a method called SymmISF (Martins et al., 2019a) to 
extract symmetrical supervoxels from left and right brain hemispheres 
simultaneously. SymmISF is based on the recent Iterative Spanning 
Forest (ISF) framework (Vargas-Muñoz et al., 2019) for superpixel 

1 We used the par0000 files available at http://elastix.bigr.nl/wiki/index. 
php/Parameter_file_database. 
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segmentation and has three steps: (i) initial seed estimation; multiple 
iterations of (ii) connected supervoxel delineation; and (iii) seed 
recomputation to improve delineation (Fig. 5), as follows. 

Initial seed estimation is a crucial step for the success of ISF. The 
adopted strategy for that, however, depends on the target problem, 
which, in turn, may have specific constraints. For the problem of this 
work, the simplest approach to find initial seeds is to select N seeds 
uniformly distributed in the right hemisphere defined by a segmentation 
mask for the template. We call this strategy Uniform SymmISF next. 
However, there are no guarantees this strategy will place at least one 
seed within each asymmetric anomaly, so this can easily lead to 
undersegmentation. 

The initial seed estimation strategy proposed by SAAD, called next 
Asymmetry-guided SymmISF, is guided by the hemispheric asymmetries 
of the image when selecting one seed per local maximum in AI (see the 
asymmetry-guided seeds in Fig. 5). It computes the local maxima of the 
foreground of a binarized AI at γ × τ, where τ is Otsu’s threshold (Otsu, 
1979). The higher the factor γ is, the lower is the number of asymmetric 
components in the binarized AI. This seed-set is next extended with a 
fixed number (e.g., 100) of seeds by uniform grid sampling the 
low-asymmetry regions of the binarized image. A detailed comparison of 

Uniform SymmISF with Asymmetry-guided SymmISF is presented next 
in Section 5.1. 

As the cortex is typically very asymmetric, we can still remove seeds 
placed very close to the hemisphere borders to reduce the number of 
false positives in such regions and also to weight the normal asymmetry 
map to attenuate other asymmetries further. Both strategies are evalu
ated and discussed in detail in Section 5.2. 

By stacking the right hemisphere with the left hemisphere — flipped 
using the MSP — as the input 2-band volume (Fig. 5), SymmISF applies 
ISF only inside the right hemisphere from the initial seeds. ISF relies on a 
cost function controlled by two parameters: α and β. This yields a label 
map in which each supervoxel is given a distinct label. Finally, SymmISF 
flips these supervoxels to obtain the symmetrical supervoxels in the left 
hemisphere, which yields the final label map L (output of Step 6). Note 
that one can proceed conversely, i.e., apply SymmISF on the left hemi
sphere, and map the result to the right hemisphere. 

3.4. Feature extraction and classification 

SAAD presents a novel approach for outlier detection — here 
instantiated for abnormal asymmetry detection — that designs a set of 

Fig. 2. Extended pipeline of SAAD with two 
possible symmetric supervoxel segmentations. 
Steps 1 to 3 (purple part) are performed offline. 
Steps 4 to 8 (yellow part) are computed for each 
test image (detection stage). The output images 
from Steps 3, 5, 6, and 8 are visualized as a 
symmetrical image. However, the method can 
consider just one hemisphere. Figure based on 
Martins et al. (2019a). (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 3. 3D image preprocessing steps. (a) Axial 
slice of a raw test 3D image. The dashed line 
shows its mid-sagittal plane (MSP), and the 
arrow indicates a lesion. (b) Test image after 
noise filtering, MSP alignment, bias field 
correction, and brain segmentation. (c) Axial 
slice of the symmetric brain template (refer
ence). (d) Histogram matching between (b) and 
the template (intensity normalization). (e) Final 
preprocessed image after deformable registra
tion and histogram matching with the template. 
Figure referenced from Martins et al. (2020).   

Fig. 4. Asymmetry computation on a standard image space. (a) Axial slice of the normal asymmetry map for healthy subjects. (b) Axial slice of a 3D test stroke image 
after preprocessing and deformable registration on a symmetric template. (c) Asymmetries of (b) by computing voxel-wise absolute differences between the 
hemispheres with respect to its MSP. (d) Final attenuated asymmetries: positive values of the subtraction between (c) and (a). 
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specialized one-class classifiers (OCCs) specific for each test 3D image, as 
shown in Fig. 6. For each 3D test image, each pair of symmetrical 
supervoxels is used to create a specialized OCC using as feature vector the 
normalized histogram of the asymmetry values inside the pair (Step 7). 
Classifiers are trained from control images only, thus locally modeling 
normal asymmetries for the entire hemispheres. Finally, SAAD uses the 
trained OCCs to find supervoxels with abnormal asymmetries in the 
corresponding testing image (Step 8). Fig. 7 illustrates the supervoxel 
classification. 

By default, SAAD yields pairs of symmetric supervoxels correspond
ing to the detected abnormal asymmetries. This output is useful for 
subsequent visual analysis as an expert can compare such regions in both 
hemispheres as well as their computed asymmetries. To output only the 
supervoxel that covers the detected asymmetric anomaly, one may 
simply compute the similarity from the test image with the template 
inside each supervoxel of the pair. The less similar supervoxel contains 
the anomaly. 

When dynamically designing specialized one-class per-supervoxel 
classifiers for each test image, SAAD implicitly considers the position of 
the supervoxels in the hemispheres when deciding upon their asym
metry. The central premise for this is that a single global classifier cannot 
separate normal and anomalous tissues by only using texture features. 
Experimental results concerning this hypothesis are presented in Section 
5.3. 

Even though the proposed classification scheme demands a higher 
processing time compared to using a single global classifier trained 
offline, this time is not too high (≈2 min) and still feasible for clinical 
purposes as SAAD relies on a simple and fast feature extraction (histo
gram) and the one-class linear Support Vector Machine (Manevitz and 
Yousef, 2001). Section 5 presents more details. 

4. Experiments 

This section describes the MR-T1 image datasets, baselines, and the 
evaluation protocol considered for the experiments. All computations 
were performed on the same Intel Core i7-7700 CPU 3.60 GHz with 
64 GB of RAM. 

4.1. Datasets 

To answer our research questions (see Section 1), we need datasets 
with volumetric MR-T1 brain images (i) from healthy subjects (for SAAD 
training), and (ii) with hemispheric asymmetric lesions of different sizes 
(especially small ones) and their segmentation masks. For this, we first 
considered the CamCan dataset (Taylor et al., 2017), which has 653 

MR-T1 images of 3T from healthy men and women between 18 and 88 
years. For each 3D MR-T1 image, CamCan also has a corresponding 3D 
MR-T2 image, which we do not use in this work. 

To our knowledge, CamCan is the largest public dataset with 3D 
images of healthy subjects acquired from different scanners. We visually 
inspected all MR-T1 images and removed images with bad acquisition or 
artifacts, yielding 524 images.2 

Public datasets with different brain lesions exist. However, some 
only provide a subset of 2D slices for each image or interpolate slices to 
build a volume (e.g., BraTS (Menze et al., 2014)); others provide 3D 
images with only very symmetric lesions (e.g., MSSEG (Commowick 
et al., 2018)). Given these limitations, we settled on using the 
Anatomical Tracings of Lesions After Stroke (ATLAS) public dataset 
release 1.2 (Liew et al., 2018) in our experiments. 

ATLAS is a challenging dataset with a large variety of manually an
notated lesions and images of individuals after stroke acquired from 
different scanners. It contains lesions ranging from very small to large, 
located in several parts of the brain (see Fig. 1 for examples). All images 
have a mask with the primary stroke region. Some images also have 
additional masks with other stroke lesions. 

ATLAS provides lesions from different phases/stages after stroke 
onset. As outlined in Section 3, although SAAD can detect abnormal 
asymmetries in any of these stages, it should preferably be used in the 
initial phase during clinical use to help early diagnosis and timely 
treatment — especially for stroke whose initial stage is aggressive. Other 
brain disorders, such as some types of cancer, can be identified in even 
earlier stages when such disorders are not still too aggressive as stroke. 
Thus, SAAD is even more helpful for these cases when providing early 
abnormal brain asymmetry detection. Given the absence of labeled 
masks for different anomalies, this evaluation only considers stroke 
lesions. 

Since SAAD is designed to detect hemispheric abnormal asymmetries 
and the considered training images have a 3T field strength, we selected 
all 3T images from ATLAS which contain only lesions in the hemispheres 
(total of 229 images). All images were registered into the coordinate 
space of ICBM 2009c Nonlinear Symmetric template (Fonov et al., 2009) 
and preprocessed as outlined in Section 3.1. 

4.2. Evaluation protocol 

Baselines: In the absence of details, available tools, and trained 

Fig. 5. The pipeline of SymmISF with two possible initial seed 
estimation strategies (red points represent seeds). The method flips 
the input test 3D image (volume) using its MSP and builds a 2-band 
volume by stacking both volumes. Then, the ISF framework (Var
gas-Muñoz et al., 2019) estimates supervoxels inside the hemi
sphere mask from the initial seeds. The resulting label map is 
flipped to form the final label map with pairs of symmetrical 
supervoxels. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this 
article.)   

2 A list with the selected images can be found on https://github.com/lidsuni 
camp/CMIG20_BrainAsymmetryDetection. 
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models for automatic anomaly detection, we compared SAAD against 
the convolutional-autoencoder-based approach (CAE) from Chen et al. 
(2018a), which is, as far as we know, the current state-of-the-art unsu
pervised method for the ATLAS dataset. 

We considered the 2D axial slices of all preprocessed training images 
to train CAE, which has the following architecture: three 2D convolu
tional layers with 16, 8, and 8 filters of patch size 3 × 3, respectively, 
followed by ReLU activation and 2D max-pooling in the encoder, and the 
corresponding operations in the decoder. The nadam gradient optimizer 
minimized the mean squared error between reconstructed and expected 
2D axial slices during training. The method detects anomalies by 
thresholding the resulting residual image of between the input image vs. 
its reconstruction to obtain a binary segmentation, similarly to Baur 
et al. (2018) and Chen et al. (2018a). We followed Baur et al. (2018) and 
selected three thresholds as the 85th, 90th, and 95th percentile from the 
histogram of reconstruction errors on the considered training set, 
resulting in the brightness of 143, 194, and 282, respectively. For 
simplicity, we call these three versions of the method as CAE-85, 
CAE-90, and CAE-95, respectively, based on the chosen percentiles. 

Quality metrics: Although SAAD detects abnormal asymmetries 
regardless of the type of anomalies, we can compute quantitative scores 
only over those lesions that are labeled in ATLAS, which are a subset of 
what SAAD can detect. For these lesions, we first computed the detection 
rate based on at least 15% overlap between lesions labeled in ATLAS 
with detected volumes of interest (VOIs) with abnormal asymmetries 
(Tables 1–3, row 1), as detected by SAAD (supervoxels) and CAE 
(segmented regions). We then computed the true positive rate (recall) that 
measures the percentage of lesion voxels correctly classified as abnormal 
(Tables 1–3, row 2). Although our focus is on detecting abnormal 
asymmetries, we measured the Dice score between lesions and the 

detected VOIs to check SAAD’s potential as a segmentation method 
(Tables 1–3, row 3). However, observe that truly abnormal asymmetries 
detected by SAAD that are not annotated as lesions in the ground-truth 
masks will be incorrectly considered as false positive and, thus, under
estimating the Dice score. We then also measured the Dice score by 
considering only supervoxels overlapped with the annotated lesions 
(Tables 1–3, row 4). 

Highly accurate detection methods are useful only if their false 
positive count is quite low. Otherwise, one needs to manually inspect the 
many positives to validate them, which is very costly. To gauge this, we 
provided false-positive (FP) scores in terms of both voxels and super
voxels with respect to the ground-truth stroke lesions of ATLAS. Hence, 
some regions with true abnormal asymmetries but with no labeled 
masks in ATLAS are considered FP (e.g., see the deformed ventricles of 
the third image of Fig. 1). This is the best we can do in the absence of 
labeled masks for all kinds of abnormalities in this dataset. 

To evaluate the detection quality, we propose a set of fine-to-coarse 
metrics, as follows. At the finest level, we first compute the mean 
number of FP voxels, i.e., incorrectly classified as abnormal (Tables 1–3, 
row 5). We normalized this count regarding all classified voxels 
(Tables 1–3, row 6), i.e., the total number of voxels inside the right 
hemisphere for SAAD, and both hemispheres for CAE. At the next level, 
we estimated FP supervoxels as those whose voxels overlap less than 
15% with ground-truth lesion voxels. We computed the mean number of 
FP supervoxels and their proportions concerning the total number of 
supervoxels (Tables 1–3, rows 7 and 8). The first metric gives us an 
estimation of the visual-inspection user effort. The second metric checks 
how imprecise is the detection regarding the total number of regions 
that the user has to visually analyze. 

When visually analyzing FP supervoxels, it is harder to check many 

Fig. 6. One-class classifier (OCC) training for abnormal asymmetry detection. For each pair of symmetric supervoxels from a given test 3D image, SAAD trains an 
OCC from the training normal asymmetry maps previously computed.) 

Fig. 7. Abnormal asymmetry detection of a test 3D image by supervoxel classification. For each pair of symmetrical supervoxels, SAAD uses the corresponding one- 
class classifier to classify the asymmetries inside the pair. 
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disconnected supervoxels spread across the brain (e.g., Fig. 8a) than a 
few connected ones (see, e.g., the ventricle area in Fig. 8b). Hence, at the 
coarsest level, we gauged visual analysis user-effort by evaluating the 
two metrics outlined above on the level of connected FP supervoxel 
components (Tables 1–3, rows 9 and 10). 

Finally, we also computed the mean processing times of each method 
(Tables 1–3, row 11) for preprocessed images, thus excluding the mean 
time of the preprocessing step (Section 3.1), which is 90 s on average. 

5. Results 

We next discuss our results from the perspective of our key questions, 
stated in Section 1. 

5.1. Impact of supervoxel segmentation quality on abnormal asymmetry 
detection 

To check if the supervoxel segmentation influences the abnormal 
asymmetry detection, we used two variants of the SymmISF method to 
extract pairs of symmetric supervoxels (one for each hemisphere), as 
follows. 

Uniform SymmISF. This method chooses N initial seeds uniformly 
distributed in a hemisphere, with N defined by the user (Section 3.3). 
While simple, this strategy does not guarantee to place at least one seed 
within each asymmetric anomaly, especially when N is small. In turn, 

this leads to undersegmentation — the missed lesions will be assimilated 
to the background. Conversely, when N is too large, this easily leads to 
the oversegmentation of larger lesions into many supervoxels that have 
too little individual information to capture asymmetries. 

Asymmetry-guided SymmISF. To better fit supervoxels with asym
metric anomalies of various morphologies, this strategy first seeds the 
highest-asymmetry-value brain regions (where anomalies are more 
likely to occur) and then seeds the remaining, more symmetric, areas 
with a fixed number of extra seeds (Section 3.3). Since asymmetries vary 
for each image, the final number of supervoxels is dynamically obtained. 
For the experiments, we fixed 100 extra seeds uniformly distributed on 
low asymmetric regions of the images. 

We quantitatively compare the above two initial seeding strategies 
using 5-fold cross-validation on ATLAS, considering one subset for 
validation (46 images) and the remaining four subsets for testing (183 
images) in each fold. For this initial experiment, we use the original 
parameters for SAAD reported in Martins et al. (2019a), i.e., α = 0.08, 
β = 3.0, asymmetry histograms of 128 bins, and ν = 0.1 for the linear 
one-class SVM. For Uniform SymmISF, we consider five different 
numbers of seeds N: {100, 250, 400, 550, 700}. For Asymmetry-guided 
SymmISF, we use N = 100 seeds in symmetric regions. 

Table 1 shows the mean results of SAAD with Uniform SymmISF for 
the primary stroke lesions of ATLAS considering all five folds, and 
selected visual results. As expected, Uniform SymmISF presents poor 
detection results for low N values since anomalies are covered by large 

Table 1 
Experimental results for SAAD with Uniform SymmISF for different numbers of seeds. Top part: higher values mean better ac
curacies. Bottom part: lower values mean better accuracies. Each result contains a box (inset) surrounding the lesion whose 
border color indicates if the lesion was detected (green) or missed (red). The abbreviation k denotes thousands.  
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supervoxels that mix lesion and background voxels (see images in 
Table 1). As N increases, the chance of placing at least one seed inside 
each lesion is higher, even for smaller lesions, which leads to better 
results: We see how the detection rates, mean recall, and Dice (with only 
overlapped supervoxels with lesions) monotonically increase with N in 
Table 1 (rows 1, 2, and 4). Yet, there is no guarantee that increasing N 
yields increasingly-better fitting supervoxels to lesions. This is visible in 
the results for image 2 (insets) in Table 1, where we see that a small 
lesion was missed for N = 700 but found for N = 550. Moreover, the 
number of FP voxels and supervoxels also increases as N increases — 
compare rows 5, 7, and 9 of Table 1. This results in considerably high FP 
rates for large N values and explains the similar global Dice scores from 
all methods (row 3). Hence, visual inspection becomes difficult, even 
when the detection rate is high (compare row 1 and rows 5–10 for 
N = {550, 700}). Also, the more supervoxels we extract, the longer is the 
processing time, as shown in Table 1, row 11. 

We next compare the Uniform and Asymmetry-guided SymmISF 
versions for SAAD against three versions of CAE, as presented in Table 2. 
For simplicity, we consider only the version of Uniform-SymmISF with 
the best detection accuracy. Also, note that only SAAD reports false- 
positive supervoxel-based metrics. 

CAE-85 and CAE-90 present considerably higher detection scores, 
0.995 and 0.943, respectively, than the two versions of SAAD: Uniform 
SymmISF (0.86) and Asymmetry-guided SymmISF (0.851). However, 
these impressive results are misleading as CAE reports drastically (about 
20x) more false-positive voxels than SAAD — compare rows 5 and 6 in 

Table 2. For instance, although CAE-85 almost detects all lesions, it 
misclassifies 40% of the hemispheres as abnormal, which is far from 
being reasonable and hinders the visual analysis (we expect just a small 
portion of the brain, e.g., 1%). These high FP rates explain the poor Dice 
scores for CAE in Table 2, which in turn are compatible with the ones 
reported in Chen et al. (2018a). Additionally, CAE yields very noisy 
detected regions, especially in regions with transitions between white 
and gray matter (e.g., the cortex), which also hinders the subsequent 
visual inspection (see the results for the considered images in Table 2). 
Even though its FP voxels decrease as higher thresholds are considered, 
its detection score can be hugely impacted; for example, the threshold at 
the 95th percentile approximately halves both the detection score and 
FP voxels rates compared with the results for the 90th percentile in 
Table 2. CAE is speedy (running time about 2s per image) and might 
present better results by using a considerable large training set and/or 
some additional post-processing, but this is not considered in Chen et al. 
(2018a), Baur et al. (2018). CAE presents better results for other medical 
imaging modalities, such as CT and T2 (Chen et al., 2018a; Baur et al., 
2018). 

Asymmetry-guided SymmISF has a slightly worse detection rate 
(0.851) compared to Uniform SymmISF (0.86). Although it is also able 
to find small abnormal asymmetries (Table 2, images 1–2), it fails to 
detect very subtle and/or tiny asymmetries (Table 2, image 3). Also, this 
seeding strategy has lowest number of FP (connected) supervoxels and 
FP voxel scores. However, the expert still has to unnecessarily analyze 
about 29 FP connected supervoxels per image, which may take a 

Table 2 
Quantitative and qualitative comparison between the two versions of SAAD and CAE (with different thresholds) for the ATLAS dataset. Top 
part: higher values mean better accuracies. Bottom part: lower values mean better accuracies. Each result contains a box (inset) sur
rounding the lesion whose border color indicates if the lesion was detected (green) or missed (red). The abbreviation k denotes thousands.  
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considerable time. The next section details our strategy to improve 
SAAD with Asymmetry-guided SymmISF to yield higher detection rates 
and still attenuate FP scores. 

5.2. Improving the end-to-end method 

SAAD with Asymmetry-guided SymmISF is more suitable for our task 

Table 3 
Quantitative and qualitative comparison between SAAD after parameter optimization, and the baselines for the ATLAS dataset. Top part: 
higher values mean better accuracies. Bottom part: lower values mean better accuracies. Each result contains a box (inset) surrounding the 
lesion whose border color indicates if the lesion was detected (green) or missed (red). The abbreviation k denotes thousands.  

Fig. 8. Correlation between some characteristics of false-positive supervoxels. Each false positive supervoxel is a line in each plot which correlates the distance from 
its centroid to the right hemisphere’s borders, its volume, and the mean asymmetry inside it. Red lines indicate supervoxels with distances (a) in [0, 5] mm and (b) in 
(5, 20] mm. An example of these corresponding supervoxels is shown below each plot. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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since each image’s hemispheric asymmetries guide its supervoxel esti
mation. Moreover, as Table 2 shows, the asymmetry-guided seeding 
scales computationally better, being roughly twice as fast as uniform 
seeding for a comparable quality. Hence, we decided to improve 
Asymmetry-guided SymmISF by (i) optimizing its parameters by grid 
search aiming to increase detection accuracy; and (ii) proposing a false- 
positive-attenuation (FPA) strategy. We describe these optimizations 
next. 

For parameter optimization, we considered the validation set of each 
fold (Section 4) and the following search space: α ∈ {0.04, 0.06, 0.08, 
0.1, 0.12}, β ∈ {1.0, 3.0, 5.0, 7.0, 9.0}, and γ ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. 
As for cost function, we considered the Intersection over Union (IoU) 
metric that computes the overlap of a supervoxel with each lesion. 
Indeed, when this overlap is maximal, each lesion is accurately covered 
by precisely one supervoxel. The best parameters found by the grid 
search were α = 0.12, β = 5, and γ = 0.5. Note that we used IoU as cost 
function, and not the metrics listed in Tables 1–2 since it generically 
looks at how supervoxels fit lesions, whereas those metrics gauge 
higher-level, more task-specific, concerns. Moreover, the IoU metric is 
continuous, making it usable for more refined parameter optimization, 
e.g., using gradient descent. The metrics in Tables 1–2 are, in contrast, 
discrete, and do not allow such refined optimization. 

We repeated the same experiment by considering the optimized 
parameters. Table 3 presents the results for this seeding strategy, called 
next Optimized-SymmISF. We replicated the results of CAE-85 and CAE- 
90, and Asymmetry-guided SymmISF in Table 3 to make the comparison 
easier. We see that Optimized-SymmISF has a higher detection rate 
(0.939) than Asymmetry-guided SymmISF (0.851), being slightly worse 
than CAE-90 (0.943). Optimized-SymmISF also presents the highest true 
positive rate (0.4889) among all compared methods. However, it still 
has high FP rates and has a considerable increase for the mean number of 
FP supervoxels and connected supervoxels (Table 3, rows 7 and 9) than 
Asymmetry-guided SymmISF. 

To attenuate FPs, we first performed an analysis of their character
istics. Fig. 8 presents two parallel coordinate plots (PCPs) correlating the 
following three metrics on each FP supervoxel s: (i) distance d of 
centroid of s to the right hemisphere border; (ii) volume of s; and (iii) the 
mean asymmetry value inside s. Both PCPs are identical except by their 
highlighted examples (in red). 

Fig. 8a highlights FP supervoxels close to the hemisphere’s border 
(d < 5 mm), i.e., in the cortex. These supervoxels are relatively small 
with high variability of mean asymmetries inside them and usually cover 
gyri and sulci (see the brain slices below the PCP), which are naturally 
asymmetric. Conversely, larger FP supervoxels are farther from the 
hemisphere border (Fig. 8b), although their mean asymmetries have 
high variability. By visually inspecting them, we can also find true 
abnormal regions deformed by the stroke lesions in the dataset (see the 
ventricles in the brain slices below the second PCP). Hence, it seems 
reasonable to reduce false- positive supervoxels in the cortex. 

To do this, we propose a false-positive-attenuation (FPA) strategy 
that accentuates the normal asymmetry map (Section 3.2) by adding the 
standard-deviation asymmetries from the training set to it. As a result, 
the asymmetry map of the test image (output of Step 5 in Fig. 2) is more 
attenuated so that only highly asymmetric supervoxels will be detected 
as abnormal. Next, we remove the initial seeds found by Asymmetry- 
guided SymmISF whose distance to the hemisphere border is less or 
equal to 5 mm, as suggested in Fig. 8a. We repeated the same parameter 
optimization for SAAD using FPA, finding the optimal values α = 0.06, 
β = 5, and γ = 0.5. Then, we repeated the full detection experiment for 
the optimal parameter method (called Optimized-SymmISF with FPA). 

Table 3 (rightmost column) shows the results. Optimized-SymmISF 
with FPA has slightly better detection rate (0.862) and TP rate (0.451) 
to Asymmetry-guided SymmISF. Also, it can detect subtle and tiny 
asymmetric lesions (Table 3, image 3), which indeed are well-defined by 
its supervoxels. Although its detection rate is lower than Optimized- 
SymmISF, it attains the lowest FP rates from all considered methods 

(compare rows 5–10 in Table 3). This method yields, on average, only 
1.40% of all voxels as FPs, and these cover only 4.9% of all connected 
supervoxels. Moreover, Optimized-SymmISF with FPA yields about from 
twice to three times less FP connected supervoxels for visual analysis 
than the other versions of SAAD, which decreases the user effort. Hence, 
Optimized-SymmISF with FPA has the best balance between high 
detection rates and low FP rates from all studied methods. 

Next, we compared Optimized-SymmISF with FPA, our best method 
so far, with other related methods in the literature. Such methods are 
usually designed for the segmentation of, e.g., organs or lesions. As we 
do not have access to implementations of these methods running on the 
same dataset as ours, except for CAE, we cannot compute all metrics 
shown in Table 3. The best we can do is to compare our method with 
these alternatives as a segmentation tool, using segmentation scores. 
However, note, again, that our method is designed primarily for detec
tion, not segmentation. 

Optimized-SymmISF with FPA yields the best Dice score (0.19) 
among all compared methods in the experiments. As outlined in Section 
4.2, however, this score is underestimated as truly abnormal asymme
tries detected by our method, which are not labeled as lesions in the 
ground-truth masks, are considered false-positive. When considering 
only symmetric supervoxels overlapped with the annotated lesions 
(Table 3, row 4)), such a Dice score leverages to 0.411. While still low, 
this score is not far from state-of-the-art results (Dice score 0.4867) on 
the ATLAS dataset from a supervised method based on U-Net (Qi et al., 
2019). Interestingly, our method is noticeably superior to CAE, which is 
an unsupervised method (like ours), reporting very low Dice scores of 
0.018 and 0.017 for thresholds at the 85th and 90th percentile, 
respectively. Our method reports drastically fewer FP voxels than CAE. 
Also, note that these compared methods yield their above-reported Dice 
scores by segmenting quite large lesions; in contrast, we focus on the 
more challenging problem of finding many small lesions (see, e.g., image 
3 in Table 3). 

5.3. Per-supervoxel vs. global classifier design 

We now investigate our second research question, i.e., whether a per- 
supervoxel classifier design is indeed preferable to a global classifier. 
Suppose (hypothetically) that supervoxel segmentation is completely 
irrelevant for the final detection accuracy. Thus, the features we use 
(normalized histogram of absolute asymmetries for each symmetrical 
supervoxel) should be able to yield robust texture features for detection 
regardless of supervoxel quality. Hence, only a single classifier — not a 
(specialized) classifier per supervoxel for each test image — trained 
from texture features of training images should be enough to obtain 
similar results to those in Tables 1–3. 

To test this hypothesis, we first chose a brain image from ATLAS 
(Fig. 9) with a large asymmetric stroke lesion, which is not as chal
lenging to detect as a small one. If our hypothesis were correct, this 
lesion should be classified easily by the global classifier. If global clas
sification failed, then the situation would be even worse for smaller, 
harder to detect, lesions. To investigate this further, we projected the 
texture feature vectors of all symmetric supervoxels extracted by 
Optimized-SymmISF with FPA using t-SNE (Maaten and Hinton, 2008) 
(Fig. 9). Here, each point represents a symmetric supervoxel, colored by 
its overlapping percentage with the ground-truth lesion. We see that 
there is no clear separation between the high-overlap supervoxels 
(warm-colored points) and healthy-tissue supervoxels (cool colors), 
even though the considered lesion is very well-defined by a single 
supervoxel (compare the brain images in Fig. 9). It has been shown that 
the visual separability of classes in a t-SNE projection is highly corre
lated with the ability of a classifier to separate classes in the original 
feature space (Rauber et al., 2017). Hence, since we do not find good 
visual separation, we conclude that a single classifier based only on 
texture features is insufficient to detect lesions, even large ones. 

S.B. Martins et al.                                                                                                                                                                                                                              



Computerized Medical Imaging and Graphics 85 (2020) 101770

11

6. Conclusion 

We presented a detailed investigation of the impact of supervoxel 
segmentation for unsupervised abnormal brain asymmetry detection. To 
this end, we chose a recent supervoxel-based approach (SAAD) that 
detects abnormal asymmetric lesions of a given target image by classi
fying extracting pairs of symmetric supervoxels by using a model (one- 
class classifier) trained for each pair, independently, from healthy brain 
anatomies only. Although SAAD presents high detection accuracies, 
there was, prior to our study, no evidence of the impact of supervoxels 
segmentation for the abnormal asymmetry detection, as well as the need 
to use a specialized one-class classifier for each pair of supervoxel 
instead of a global classifier. 

We used SAAD to detect asymmetric stroke lesions on 3D MR-T1 
brain images from a wide range of different symmetric supervoxels 
extracted by two different methods. Experimental results show that the 
quality of supervoxel segmentation truly impacts anomaly detection, 
especially for small anomalies. This analysis also helped us to find 
optimal parameter values and an improved seeding strategy that further 
improved quantitative results (e.g., detection rate and false-positive 
rates) compared to the original SAAD method and a state-of-the-art 
unsupervised approach. Next, we showed that a single global classifier 
only based on texture features is not sufficient to detect even large 
anomalies, since their textures are similar to some healthy brain tissues. 
Putting together our experimental insights, we conclude that (1) a good 
fit of symmetrical supervoxels to lesions and (2) using a per-supervoxel 
classifier are beneficial design decisions for a proper detection of 
abnormal asymmetries. 

For future work, we initially plan to improve brain asymmetry 
computation and investigate other feature extraction techniques for 
SAAD. We then intend to use additional visual analytics techniques to 
find challenging cases where the optimized SAAD method fails to detect 
complex small-scale lesions and improve seeding, asymmetry compu
tation, feature extraction, or classification to yield better detection rates. 
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