
The Close Object Buffer: A Sharp Shadow

Modelling Technique for Radiosity Methods

Alexandru Telea

Abstract

Radiosity methods have been using several techniques in order to de-
termine a subdivision of the environment that accurately captures the
variations of the radiance field. Most of these techniques use object space
approaches to predict the areas of high variation of the radiance. Such
methods can be prohibitively expensive to be applied in scenes containing
a large number of small ’detail’ objects. An adaptive refinement technique
addressing the problem of detail shadow detection has been devised and
implemented. The presented technique is able to improve the quality of a
radiosity image by rendering detail illumination like sharp shadows at an
arbitrary precision with a small time and memory consumption.

1 Introduction

Radiosity techniques have become an important part of realistic image synthesis
methods. Using a global illumination model, radiosity techniques attempt to
provide an estimation for the radiance field in all the points of the tridimen-
sional environment. Since there is an infinity of such points, the environment
has to be discretized and the radiance field sampled in the discretization points.
This is usually accomplished by a subdivision of the scene’s surfaces into small
elements. The radiance field is reconstructed by computing its values in each
discretization point and interpolating them over the elements’ surfaces. Several
forms of interpolation can be used, the most common being Gouraud shading
which corresponds to linear interpolation. The quality of the images produced
by a radiosity renderer therefore strongly depends on the discretization of the
environment into elements. Non uniform subdivision comes as a natural alter-
native: smaller elements will be used in areas of rapid variation of the radiance
field and larger ones in areas where this field exhibits a slower variation in order
to keep the element count at a minimum for efficiency reasons. The methods
that attempt to automatically discretize an environment such that the above
constraint is obeyed are generally known as adaptive subdivision or adaptive
refinement techniques. Adaptive refinement techniques producing a good non
uniform subdivision are generally quite time expensive. This paper presents a
new technique for predicting the areas of rapid radiance variation, corresponding
to sharp shadows and detail illumination.

The paper starts with an overview of the most used subdivision strategies
(Section 2), presenting their advantages and limitations. Section 3 presents an
analysis of the situations when sharp shadows are most likely to occur. Section 4
introduces the close objects buffer, a technique for detecting the presence of

1

sharp shadows and performing a mesh refinement for capturing them. Sections 5
and 6 present the algorithms for building and using the close objects buffer and
related accuracy and efficiency considerations. Section 7 presents a technique
for speeding up close objects buffer computations. Some obtained results and
additional conclusions are presented in section 8.

2 Overview of Subdivision Strategies

The quality and speed of a radiosity renderer is essentially influenced by the
subdivision strategy used. It is difficult to find a subdivision that accurately
captures the radiance field since this field is not known beforehand but is to
be computed using the discretization itself. There are essentially two types of
strategies for adaptive subdivision, based on the information used for detection
of the zones of high radiance gradients.

The first type of strategies examine the gradient of an already computed
solution over the current mesh [2]. The areas where a high gradient is found will
be refined and, in case of a progressive refinement method, radiant flux will be
reshot towards the newly created elements. The refinement process stops when
the gradient of the solution over an element is below a desired threshold or the
element is small enough for viewing purposes. This method is relatively simple
to implement, requires no object space computations. The main disadvantage
it has is that it can not guarantee that fine radiance variations will be detected
if the initial mesh was too coarse to completely miss these details (the fine
shadow of a pencil on a table may be completely missed if the initial mesh’s
elements are so large that they never intersect this shadow). This is essentially
a sampling problem and the best gradient-based subdivision can do is to use
an initial mesh fine enough for capturing the desired shadow detail level. This
can result in oversampling some areas (the meshing effort is not directed in the
areas of interest).

The most efficient strategies do not rely on the existing mesh when trying
to predict refinement areas (are said to be mesh-independent or working in
object space). Geometric information as the relative positions of light sources
and illuminated surfaces is used in order to predict the areas of rapid radiance
variation. Such a method is the discontinuity meshing: shadow boundaries
(areas where a sharp variation of the radiance field is visible) are detected and
the elements intersected by these boundaries are subdivided until they do not
contain any discontinuity in the radiance value (i.e. they are not intersected by
a shadow boundary) or they are considered small enough [Heckbert 1992], [1],
[?]. Shadow boundaries due to primary light sources can be detected using a
preprocessing step that shoots shadow rays from these light sources to determine
where shadows will be the most likely to occur [4], [Campbell and Fussell 1990].
The disadvantage of discontinuity meshing is that full-fledged shadow casting
algorithms working in object space can be very slow (especially if they are used
for casting shadows from the secondary light sources as well and if the scene
contains a large number of objects) and that keeping track of complex shadow
boundaries crossing elements can be a very delicate process. A more serious
liability is that shadow boundaries detected is a preprocessing step take into
account only the primary light sources and therefore might not represent real
shadow boundaries in the end, since reflection of light between objects usually

2

creates a complex shadow pattern. Refinement based on preprocessing shadow
computations might be therefore directed in areas where it is not really needed.

In conclusion a good environment meshing must capture the shading details
as accurately as allowed by the maximum number of elements permitted by the
user. This information can not be provided by the radiance solution computed
so far but has to be obtained by other means. Shadow casting techniques
involving the primary (and secondary) light sources may partially provide this
information at rather high costs.

3 Detection of Sharp Shadows

As it was previously described, adaptive refinement strategies can not (and
should not be used to) provide the refinement level required for capturing shad-
ing detail missed by the initial meshing resolution. This section presents a
method for detecting the existence of such shading detail and for adaptively
refining the mesh in the areas of interest.

There are two main reasons that cause visible illumination detail to appear
over an area illuminated by a light source:

• the points on that area are unequally illuminated by an unoccluded light
source. This happens if the lightsource and the illuminated area are facing
each other at sharp angles and the distance between each other has a
sufficiently large variation over their points. The variation of illumination
over the receiver will be rather smooth and continuous. These are the so
called ’smooth shadows’.

• the points of the illuminated area have different visibility terms with re-
spect to the light source. This happens if the light source is occluded for
some points of the receiver and not occluded for other ones. Since occlu-
sion is zero or one, the variation of the illumination over the receiver may
exhibit sharp, irregular transitions between neighbour points. These are
the so called ’sharp shadows’.

Smooth shadows (smooth radiance variations more exactly) are therefore
treated properly by adaptive refinement techniques using gradient criteria: areas
exhibiting too sharp radiance variations are subdivided and the radiance is
recomputed for the new elements.

Sharp shadows are mainly generated by partial occlusion of light sources.
There is a high probability for a sharp shadow to occur over an element receiving
radiance if:

• the receiver gets an important amount of the light source’s flux. This
implies that the light source directly illuminates the receiver (i.e. the
angles between a source-receiver light ray and the source’s and receiver’s
normals are small) and the light source is close to the receiver.

• the light source has a small area. The smaller the area, the sharper the
shadow is. At the limit, a pointlike light source will create a shadow with
no penumbra.

• there is an object between the source and the receiver, partially occlud-
ing the receiver. If this object is closer to the receiver, then it is very

3

probable that the shadow it will cast will be sharper. Therefore, the dis-
tance between the occluder and the receiver influences the sharpness of
the shadow.

• the receiver’s total reflectance (the sum of receiver’s reflectivities for all
used color bands ρR + ρG + ρB) is large enough such that its radiant
exitance is sufficiently high for a sharp difference in illumination between
the shadowed and the non shadowed areas to be visible (shadows are not
well visible on a receiver with low reflectivity).

4 The Close Objects Buffer

The close objects buffer (or the COB for short) is a radiosity software tool for
progressive refinement methods that attempts to solve the problem of detection
of areas where a sharp shadow can occur. As we have seen, there is a high
probability of sharp shadow appearance when a receiver (an element) is partially
occluded from a light emitter by an object which is very close to it and when
the emitter casts a strong illumination over the receiver.

For each element in the environment, a COB will be used to store references
to all the objects that are above and close to the visible surface of the element.
Practically, this will be an item buffer storing references to the polygons that
are close to the element’s visible surface: The COB of an element can be in

a polygon intersecting the
close objects buffer close objects buffer

element

Figure 1: An element and its close objects buffer

three states: uninitialized (no buffer-object intersections have been performed
yet), empty (the buffer contains no objects) and not empty (the COB contains
at least an object) Initially, all elements have an uninitialized buffer. When
a light emitting element is about to shoot radiosity to a receiving element,
the emitter is firstly checked to see if it potentially could cast a sharp shadow
over the receiver. A set of criteria including light source’s power, distance to
the receiver, mutual orientation of receiver and emitter are used to estimate
the interaction strength. If the criteria succeed, then the receiver’s COB is
checked: if it is uninitialized, then the buffer is built now. If the COB is
empty, then there aren’t any objects that might cast sharp shadows over the
element, so the emitted radiosity is received by the element. If the buffer is
not empty, then there are objects partially occluding light coming from the
source and potentially casting sharp shadows. The element is then directly
subdivided (without shooting at it anymore) and the objects held into its buffer
are distributed in the buffers of the newly created elements. The close objects
buffer proves itself efficient in two situations:

4

������

shadow shadow boundary

light

occluding polygon in the
 close objects buffer

Figure 2: Shadows created by occluding polygons in an element’s close objects
buffer

• small objects are located on or nearby the surface of large objects (like
pencils or cups on a table top). It is very likely that the initial meshing of
the large object (the table top) will be coarse enough such that it won’t
be able to capture the small but sharp shadows cast by the objects placed
on its surface (like the pencils and the cups). The close objects buffer of
the table’s elements will detect the presence of the close objects and start
the adaptive sudivision that will ultimately capture the detail shadows.

• arbitrary objects that have common edges (like two walls sharing an edge
or the inside faces of an open box). If the initial meshing of such objects
is coarse, it is very likely that the subtle shadows appearing sometimes
near an edge shared by two faces will be missed. Again the small objects
buffer will detect such situations and initiate a local mesh refinement over
the area close to such edges.

The COB is unique per element: it stores all the polygons being in the
proximity of its surface independently on the light sources. The reason for this
is that for objects very close to a surface it is assumed that they will cast a
sharp shadow if illuminated by any light source above that surface. This is true
in most cases since the distance receiver-occluding object is much smaller than
the distance source-occluding object (the buffer’s height is very small compared
to the usual inter-object distance). The cases when this assertion doesn’t hold
will be treated separately.

The COB is not built by default, in a preprocessing stage (as the one used
for some shadow-detection algorithms) but rather on demand, when there is a
high probability for an emitter to cast a sharp shadow over a receiver in the
presence of occluding objects close ot the receiver. Many elements will never
be in such a situation so their COBs will remain uninitialized (therefore the
memory usage increase is negligible for them - an empty buffer is 5 bytes per
element in the current implementation). Building the COB on demand will also
save computing time.

5 Building the Close Objects Buffer

The buffer will contain, as previously described, references to polygons being in
the proximity of an element’s visible surface. Geometrically speaking, the buffer

5

is a prism having the base a bit larger than the element and a given height δ
computed as a small fraction of the buffer’s base edge. In the simplest case, one
can use a simple rectangular box placed on the element’s surface (similar to the
hemicube used in form factor determinations)(see figure 3).

buffer height

element width

buffer width

Figure 3: Sizes of the close objects buffer

The box has been made a bit larger than the element itself in order to trap
also the polygons located in the vicinity of the element. This is especially useful
for elements near an edge shared by two polygons. These are typical cases when
a shadow strip occurs and they are directly detected using the close objects
buffer (see figure 4).

element 1

element 2

Figure 4: Two elements sharing an edge: element 1 is in element 2’s close objects
buffer and conversely

As described previously, the buffer holds all polygons that potentially cast
sharp shadows over the receiver. A simple approach would be to store in the
buffer all polygons intersecting the element’s box. However not all the polygons
intersecting this box will cast sharp shadows over the element, so a more elab-
orate strategy uses use several criteria to determine the likelihood of having a
sharp shadow.

A first important tests is concerned with the total occlusion criterion: a poly-
gon that covers the whole box (i.e. intersects all the box’s edges that are normal
to the element’s surface) will practically occlude the whole element rather than
cast a sharp shadow on it. In this special situation the element beneath can be
skipped during the shooting process: since there’s practically no chance for a
light source to reach it, there will be no shooting towards this element anymore.
This can save an important amount of time: consider, for example, the case
when a table is covered with several sheets of paper. Most of the elements of
the table are invisible from a light source placed above the table since they are
completely occluded by the paper sheets. There will be just one attempt to
shoot at them and then they will be found to be totally occluded. (see figure 5).

6

light

�������
�������

occluding polygon

Figure 5: Totally occluded element

The total occlusion criterion may be invalid in two cases:

• if the light source illuminates tangentially the element, then the element
might not be totally occluded from the light even though its close objects
buffer is totally occluded as seen from above. This situation is handled by
default since a tangential illumination that might creep under the occlud-
ing polygon will probably influence very little the element’s final radiant
exitance, so it can be safely ignored (figure 6).

light

Figure 6: Tangential illumination of a totally occluded element

• if there exists a primary light source intersecting the close objects buffer of
an element that is totally occluded, this lightsource might be placed below
the occluding polygon. Therefore this light source will not be occluded
when illuminating the element so we can’t skip shooting at this element
(figure 7).

light

occluding polygon

Figure 7: Light illuminating under a totally occluded element

• if the buffer is totally occluded and there’s no primary light source inside as
described above, then we practically don’t store anything in the element’s
buffer but just mark it as ’totally occluded’. This saves memory and time
and also is consistent with the fact that a totally occluded element will
never need to be further subdivided. Another good alternative would be to
remove this element out of the polygon’s elements list so that the renderer
will never try to shoot at it in the future, therefore saving a certain amount
of time.

The element can be marked as totally occluded only in the case there doesn’t
exist a light source in its close objects buffer or in the case such a source does

7

exist but it is oriented in such a direction that it doesn’t illuminate directly the
element. The reason for this is that a such light source illuminates indirectly
the polygon, hence it has a smaller chance of casting a sharp shadow than a
directly illuminating source.

The above tests are very simple and can be done when the close objects
buffer is built for an element with virtually no time penalty.

In the case the total occlusion criterion fails but a polygon still intersects the
small objects buffer of an element, this polygon will be regarded as a potential
shadow caster and will be added to the element’s buffer. There are a few cases
when such polygons do not really cast a sharp shadow over the element but they
are still added to the buffer. A subdivision process will start even though it will
ultimately not be necessary. Since these cases are statistically very few (the
time penalty being paid due to the unnecessary subdivision being consequently
very small) we can refrain from devising special tests to reject them.

Summarizing the above:

• the small object buffer is built only on demand, when there is a high
probability of a sharp shadow to occur on an element.

• the buffer can be modelled with a rectangular box similar to the hemicube
placed on the top of an element, with the height proportional with the
element’s edge and the width slightly larger than the element’s. A polygon
is said to be in the small objects buffer if it intersects this bounding box.

• a special function of the buffer is to detect cases of total occlusion of
elements from all light sources. Such elements are completely excluded
from the flux gathering process, resulting in a speed increase.

• at an element’s subdivision, the small object buffers of the new elements
can be easily computed out of the original buffer.

We can say that the construction of the buffer attempts to detect the possibility
of a sharp shadow from the receiver’s point of view.

6 Using the Close Objects Buffer

The close objects buffer is used within the progressive refinement process, when
an element is selected to receive radiant flux. There are several steps performed
during this process:

STEP 1: The buffer is first checked to see if it is totally occluded or not. A
positive answer prevents shooting to a totally occluded element from any light
source, thus saving several expensive form-factor and occlusion test computa-
tions. Note that this result can not be obtained with a usual preprocessing
shadow detection method which only detects shadows cast by the primary light
sources.

STEP 2: Depending on the estimated interaction between the shooter and
the element, the buffer will be used or not. Recalling the necessary conditions
for having a visible sharp shadow on the receiver, we can evaluate:

∆Mi = (ρRi
+ ρGi

+ ρBi
)
cos θi cos θj

πr2
Aj (1)

8

where i is the receiver element and j the shooter. ∆Mi will be an approximative
estimate of the increase in radiant exitance of element i due to the shooter. This
increase can be compared to the actual radiant exitance of the element Mi to
determine if it is large enough to produce a visible shadow. Alternatively the
fraction of shooter j’s flux reaching element i can be evaluated: if it exceeds a
certain percentage of shooter’s total shot flux, then there’s a high probability
that a shadow over element i will indeed be sharp. This is justified by the
fact that the shooters are picked in decreasing order of their unshot fluxes in
the progressive refinement method, hence a large fraction of a shooter’s flux is
indeed capable of creating a sharp shadow.

Together with this criterion, the element’s size is checked as well. If the
element is too small, we ignore the buffer and shoot to it as usually. It is im-
portant to remark that the stop threshold for the subdivision initiated by the
previous criterion is independent on the stop threshold used for the gradient-
based refinement: the small objects buffer subdivision attempts to capture sharp
shadows over rather small areas, so the minimum element size can be sensibly
smaller than the one allowed for the gradient-based subdivision. This allows
using a rather large element size stop threshold for the gradient criterion and
a much smaller one for sharp shading detail detected by the close objects buffer.

STEP 3: If the criterion has decided that the interaction is strong, the buffer
is checked to see if it has been built or not. If it has been built and it is not
empty, then there are close objects to this element, therefore potential sharp
shadows. The element is simply put aside to be subdivided at the end of the
current iteration. If the buffer has been built but it is empty, then there aren’t
close objects to this element so the shooting part takes place. If the buffer hasn’t
been built, then this is done at this moment and step 3 is reexecuted.

Summarizing the above:

• a criterion estimating the strength of the interaction between shooter and
receiver is used to determine if there’s a high probability of having a sharp
shadow. If not, the element will receive radiosity as usually.

• a non-empty buffer will trigger element subdivision. This subdivision is
different from the one initiated by the gradient-based refinements and
attempts to accurately capture the sharp shadow boundaries over the el-
ement.

• the close objects buffer subdivision and the gradient-based subdivision
are independent processes; although both try to refine the mesh, they are
based on different criteria, have different stop thresholds and practically
perform their best in different areas of a scene.

7 A Two-Level Close Object Buffer

The management of a close objects buffer is simple but it has to be done for each
element in the scene, each time that it has to receive radiant flux from a shooter.
If the number of elements is large this process can be slow: building a buffer
involves, in a brute-force approach, intersecting all polygons in the scene with
it. Although these intersections have been significantly speeded up by using an

9

octree built for form factor ray tracing purposes (the polygons potentially inter-
secting an element’s close objects buffer are a subset of the polygons contained
in the octree cells over which that element spans), the method presented in the
following can reduce the computational time even further.

There exists a coherence in the set of close objects for the elements of a
polygon which can be expressed by the fact that neighbouring elements tend to
have a similar set of close polygons - that is, a similar close objects buffer. In
particular there usually exist large areas over the polygons of a scene for which
all the elements have an empty close objects buffer.

We can take advantage of this coherence by introducing a COB for each
polygon in the scene. This COB will have the same semantics as an element’s
buffer: it stores all the polygons close to the visible surface of that polygon.
Polygons’ buffers are built on demand, the first time we shoot at such a poly-
gon, exactly like for the elements’ buffers. Such a two-level hierarchy of close
objects buffers can speed up the whole process significantly, especially for scenes
containing a large number of polygons.

Building an element’s buffer is now very fast: if the element’s polygon has an
empty or totally occluded buffer then all its elements will have empty or totally
occluded buffers respectively. If the element’s polygon’s COB is not empty then
its elements build their buffers by testing only the polygons in their polygon’s
COB. This is much faster than testing all polygons in the scene and can be
faster than using an octree.

Using the close buffer is now speeded up as well: if a polygon has an empty or
totally occluded buffer then we can skip testing all its elements’ buffers at once.
The buffers of a polygon’s elements will start to be used only if the polygon’s
buffer is not empty and not totally occluded.

This two-level scheme can be extended to include a larger number of levels,
similarly to the hierarchical radiosity method presented by [3].

8 Conclusions

Adaptive gradient-based mesh refinement can provide only a smoothing of the
radiosity solution over a given environment but typically fails to detect sharp
detail shadows. Discontinuity meshing based on shadow casting gives better re-
sults but at a much higher expense and is quite complicated to be implemented.
A strategy integrating directly in a progressive-refinement radiosity method has
been presented, featuring the possibility of detection of detail shadows cast by
occluding objects placed in the immediate vicinity of receivers. The presented
method is virtually independent on the initial mesh’s resolution (works entirely
in object space), requires small amounts of memory and imposes a very small
time penalty on a normal radiosity method. It doesn’t need any preprocessing
step, is applied only on demand and it can integrate and cooperate very well
with other adaptive refinement techniques. The method also detects totally oc-
cluded elements, eliminating them from the radiance computations and speeding
up the radiosity process. Furthermore, the user can easily control the maximum
subdivision level, being able to choose the one matching the available time and
memory resources. A two-level hierarchical variant of the close objects buffer
offering an important speed improvement for large scenes has been presented.

The method has been practically incorporated in a progressive refinement

10

radiosity renderer using gradient-based adaptive subdivision. The noticed time
penalties were less than 2% of the total rendering time. The first iterations of
the progressive refinement were perceivably slower since most of the elements’
close objects buffers were not yet built. After a few iterations, most buffers
get computed so the process practically reaches its normal speed. Tuning the
buffer’s height parameter can strongly affect the level of refinement: a higher
buffer will presumably contain more polygons so the chance its element gets
subdivided due to a non empty buffer will increase accordingly.

The improvements in the rendered images are quite visible. Detail shadows
and illumination are now detected and captured appropriately around small
objects placed on large surfaces and around edges shared by two large surfaces.

References

[1] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image Synthesis.
Academic Press Professional, Cambridge MA, 1993.

[2] M. F. Cohen, J. R. Wallace, Chen S. E., and D. P. Greenberg. A Progressive
Refinement Approach to Fast Radiosity Image Generation. SIGGRAPH,
1988.

[3] P. M. Hanrahan, D. Salzman, and L. Auperle. A Rapid Hierarchical Radios-
ity Algorithm. Computer Graphics (SIGGRAPH ’91 Proceedings vol 25 no
4), 1991.

[4] T. Nishita and E. Nakamae. Continuous-Tone Representation of Three-
Dimensional Objects Taking Account of Shadows and Interreflection. SIG-
GRAPH, 1985.

11

