
Visualizing Multivariate Attributes on Software Diagrams

Heorhiy Byelas and Alexandru Telea
Institute of Mathematics and Computer Science,

University of Groningen, the Netherlands
h.v.byelas@rug.nl, a.c.telea@rug.nl

Abstract

Software architecture diagrams and metrics are well-
known and heavily used in many areas in software engi-
neering. However, they are rarely combined in one (visual)
representation. Although there are some advances in this
direction, there are also some limitations. In this research,
we study how to overcome these limitations. Specifically,
we are interested in visualizing metrics on several levels of
detail (classes, methods, groups of classes) on UML-like di-
agrams in a scalable and intuitive way. We present the re-
sults obtained in the first three years of the PhD track and
outline ongoing work.

1. Introduction

Software diagrams show different types of software el-
ements, e.g. interfaces, components, objects or roles, and
structural or functional relationships in a system, i.e. the
system structure. For object-oriented systems, UML di-
agrams are a conventional choice to represent the sys-
tem structure [9]. Complementing diagrams, software at-
tributes, encoded by software metrics, convey insights in
system properties such as quality, maintainability, and per-
formance. In such activities as forward and reverse engi-
neering, reengineering, and maintenance, software archi-
tects need to easily correlate several metrics with the system
structure.

Combining metrics and diagram information in a single
representation is an effective way to help several types of
system assessments, such as spotting (cor)relations among
code attributes, relations, and diagram element types; de-
termining where, on a system’s architecture, do attributes
reach outlier values; and identifying specific patterns and
their correlation with metrics.

In our work, we explore and assess new ways to visualize
attributes, modeled as a multivariate dataset, together with a
system’s structure diagrams, extracted from the architecture
model or system’s source code.

2. Research question

First, we introduce our data model. As input informa-
tion, we consider a set of diagrams, such as class, com-
ponent, or sequence diagrams, related to one software sys-
tem. We assume the layouts of these diagrams are fixed
and given. We do not want to change a given layout to
show attributes (discussed below), as this can destroy the
user’s ’mental map’, a well known fact in information vi-
sualization. We consider two types of attributes: software
metrics and so-called areas of interest (AOI) [2], which are
groups of diagram elements. For example, all safety-related
components in a system can be grouped in the ’safety’ AOI.
Metrics can be defined on different types of diagram ele-
ments, like classes, relations between classes, methods, and
AOIs. For example, the elements in the ’safety’ AOI can
have a safety-level metric value.

Our main research question is: How to visualize the
combination of structure and attributes in a single drawing,
such that

1. several metrics on classes, methods, and AOIs are
shown in the same time,

2. several possibly overlapping AOIs are shown in the
same time,

3. we use, but not change, a given (UML) diagram layout,

4. the generated image is easy to understand,

5. the rendering is fast even on complex diagrams with
many attributes.

Our final goal is to enable users to correlate diagram struc-
ture with attributes, and attributes with other attributes.

3. Related work

Several attemps have been made to combine metrics and
diagrams. Lanza et al. [8] render object-oriented class soft-
ware metrics by mapping them to the class size and/or color.



Figure 2. Human (left) and computer (right) drawn contours of the AOIs

Figure 1. UML class diagram with mixed (in-
ner and outer skeleton) AOI rendering

In this way, two metrics can be visualized simultaneously.
A similar approach us used by the Rigi toolkit [11] and
CodeCity [12], as well as many other software visualiza-
tion tools [6]. However, the sizes of diagram elements, e.g.
classes, may be constrained (fixed) to fit a preferred lay-
out (see requirement 3 in Sec. 2), so they cannot be used
to show a metric. Similarly, the class colors may be con-
strained e.g. in the case we like to draw the class method
names on a fixed hue background. Termeer et al. [10] ren-
der class metrics by using icons scaled, colored, and drawn
atop of the classes. However, this method does not scale
well for method-level metrics and does not work for AOI
metrics (see requirement 1 in Sec. 2). Moreover, the task
of correlating several metrics on a large diagram is still an
open problem.

4. Contributions

Our contribution to solving the research question stated
in Sec. 2 is four-fold. We present two methods to draw com-
plex, overlapping AOIs on large diagrams (Sec. 4.1). Next,
we qualitatively and quantitatively compare our renderings
with those produced by human users in an experimental
study (Sec. 4.2). Third, we show how to render AOI met-
rics using a combination of shading and textures (Sec. 4.3).
Finally, we show a scalable rendering technique for method
metrics (Sec. 4.4).

4.1. Visualizing areas of interest

We propose two methods to draw AOIs: inner skele-
tons [1] and outer skeletons [2]. Both methods add the fol-
lowing requirements to those listed in Sec. 2:

• AOIs should be drawn with minimal visual clutter,
even when they overlap,

• AOIs and diagrams should not visually interfere, i.e.
should be drawn in different ways.

The inner skeleton technique constructs a star-shaped ge-
ometry connecting the AOI elements with their barycen-
ter. In contrast, the outer skeleton technique incremen-
tally deforms the AOI’s convex hull to achieve a tight
bounding shape, and also does additional processing to re-
move wrongly overlapping elements and improve the over-
all smoothness of the AOI. Figure 1 shows an example of a
UML class diagram with more than 100 classes and more
than 10 AOIs rendered with inner and outer skeletons.

We found that the outer skeleton method has less visual
clutter and makes AOI overlaps easier to understand. Next,
we qualitatively and quantitatively compared the results of
this method to hand-drawn AOIs (Sec. 4.2).



Figure 3. AOI metrics visualized with textures, shading and color interpolation

4.2. Evaluating the AOI visualization

We conducted a qualitative study that delivered insight in
how users perceive the quality of computer-drawn AOIs [5].
The study involved thirty users of higher computer science
education. The participants compared the computer-drawn
AOIs with hand-drawn AOIs and set out technique draw-
backs by completing a questionnaire. We used these re-
sults to further improve the outer skeleton rendering method
(Sec. 4.1), by modifying our rendering method to imitate
hand drawing aspects. Next, we designed a distance metric
to quantitatively compare different AOI drawings, and used
this metric to show that our improved rendering algorithm
creates drawings which are closer to human drawings than
our early version of the rendering algorithm.

Figure 2 shows a hand-drawn and a computer-drawn set
of AOIs on the same diagram. As visible in this figure, our
computer-drawn AOIs look natural and quite similar to the
human-drawn ones.

4.3. Visualizing AOI metrics

After improving the geometry of AOIs, we developed a
new rendering technique to show metrics values on them.
Our new method simplifies the task of visually correlating
the distribution and outlier metric values defined on AOIs
with a system’s structure [4]. As an additional requirement
to those listed in Sections 2 and 4.1, we want to keep the

elements’ surfaces free to draw other information, such as
method names or method metrics. Our solution combines
texturing, blending, and smooth scattered data point inter-
polation (see Fig. 3). We show metric values using a red-to-
blue colormap and use a set of pre-designed texture patterns
to render several possibly overlaping AOIs. Our patterns are
encoded in the texture transparency channel, so overlapping
AOIs appear as woven patterns. Finally, we use shading to
visually emphasize the borders of AOIs.

Our rendering technique can easily show 5 up to 10
AOIs, each with its own metric, on diagrams of tens of
classes. The main limitation is the number of distinct AOIs
that can overlap at one given place. Our technique gives
good results for n ≤ 3 AOIs overlapping in one place.

4.4. Visualizing method-level metrics

Finally, we visualize method metrics by adapting the
well-known table lens technique to software diagrams [3].
As the basis of our new technique (we call it metric lens),
we use a traditional UML class diagram, which displays all
members within each class frame (see Fig. 4). Atop of this
image, we display metrics following a table model, where
the rows are methods and columns are metrics. Each table
cell shows one metric. Metric values are rendered as scaled
and colored pixel bars. In Fig. 4, we show two metrics: lines
of code (left column) and McCabe’s complexity (right col-
umn). Missing values have no bars. All metric tables can be



Figure 4. An example of a UML diagram with several AOI and method-level metrics

sorted on various criteria, like the metric values. This lets
us easily locate outliers. There are cases when we do want
to compare several logically related metrics. We provide
interactive means to control in detail the visual mapping of
metrics (visual ranges, colors, scales), thereby supporting
several analysis scenarious.

The metric lens technique allows to display several tens
of methods per class. The strongest scalability limitation re-
gards the number of metrics that can be shown in the same
time on a class. In our experiments, we saw that displaying
more than three different metrics per method on large dia-
grams (100 classes or more) makes the result overcrowded
and hard to read.

5. Conclusions and future work

Our visualization techniques allow to combine system’s
structure diagrams with software metrics defined on differ-
ent levels, such as classes, methods and AOIs. We vali-
dated our methods by implementing them in a complete
UML visualization tool, which was used by actual architects
in the framework of a two-year industry-academic research
project [7].

We plan to investigate how to display more metrics on
the limited space offered by software diagrams, and how to
visualize relations and metrics. Additionally, we would like
to study how interaction can help understanding the metrics
correlation and how to correlate metrics across the bound-
aries of single diagrams. Moreover, we plan to use our tech-
nique for visualizing multivariate metrics defined on 2D ge-
ographical data and general graph layouts.

References

[1] H. Byelas and A. Telea. Visualization of areas of interest in
component-based architectures. In EUROMICRO06, 2006.

[2] H. Byelas and A. Telea. Visualization of areas of interest on
software architecture diagrams. In Proc. ACM SoftVis, pages
105–114, 2006.

[3] H. Byelas and A. Telea. The metric lens: Visualizing metrics
and structure on software diagrams. In Proc. WCRE, pages
339–340, 2008.

[4] H. Byelas and A. Telea. Texture-based visualization of met-
rics on software architectures. In Proc. ACM SoftVis, pages
205–206, 2008.

[5] H. Byelas and A. Telea. Towards visual realism in
drawing areas of interest on software architecture dia-
grams. J. of Visual Languages and Computing, 2008.
doi:10.1016/j.jvlc.2008.09.001.

[6] S. Diehl. Software Visualization - Visualizing the Structure,
Behaviour, and Evolution of Software. Springer, 2007.

[7] ITEA. Trust4All project. 2006. www.win.tue.nl/
trust4all.

[8] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice - Using Software Metrics to Characterize, Eval-
uate, and Improve the Design of Object-Oriented Systems.
Springer, 2006.

[9] OMG. The Unified Modeling Language. 2008. http:
//www.uml.org.

[10] M. Termeer, C. Lange, A. Telea, and M. Chaudron. Visual
exploration of combined architectural and metric informa-
tion. In Proc. VISSOFT, pages 21–26. IEEE Press, 2005.

[11] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Mller.
Programmable reverse engineering. Intl. J. of Software Eng.
and Knowledge Eng., pages 501–520, 1994.

[12] R. Wettel and M. Lanza. Visual exploration of large-scale
system evolution. In Proc. WCRE, pages 219–228, 2008.


