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Abstract. A large range of software environments addresses
numerical simulation, interactive visualisation and computa-
tional steering. Most such environments are designed to cover
a limited application domain, such as finite element or finite
difference packages, symbolic or linear algebra computations
or image processing. Their software structure rarely provides
a simple and extensible mathematical model for the under-
lying mathematics. Thus, assembling numerical simulations
from computational and visualisation blocks, as well as build-
ing such blocks is a difficult task for the researcher in numer-
ical simulation.

This paper presents the NUMLAB environment, a sin-
gle numerical laboratory for computational and visualisa-
tion applications. Its software architecture one-to-one models
fundamental numerical mathematical concepts and presents
a generic framework for a large class of computational appli-
cations. Partial and ordinary differential equations, transient
boundary value problems, linear and non-linear systems, ma-
trix computations, image and signal processing, and other ap-
plications all use the same software architecture and are built
in a simple and interactive visual manner. NUMLAB’s one-
to-one modelled mathematical concepts are illustrated with
various applications.

1 Introduction

The NUMLAB (Numerical Laboratory) environment has been
constructed after a thorough search through a wide range of
software environments for numerical computation, interac-
tion, and data visualisation. NUMLAB’s goals include seam-
less integration of computation and visualisation, convenient
application construction, communication with other software
environments, and a high level of extensibility and customis-
ability for research purposes. In order to assess the merits
of the NUMLAB environment, we first consider the numer-
ical simulation and visualisation software environments in
general.

From a structural point of view, such software envi-
ronments can be classified into three categories (see for

instance [39]): Libraries, turnkey systems, and application
frameworks.

Libraries for numerics such as LAPACK [2], NAG-
LIB [37], or IMSL [26], or for visualisation such as
OpenGL [27], Open Inventor [50], or VTK [44], provide ser-
vices in the form of data structures and functions. Libraries
are usually easy to extend with new data types and functions.
However, using libraries to build a complete computational or
visualisation application requires involved programming.

Turnkey systems, such as Matlab [33], Mathematica [32],
or the many existing dedicated numerical simulators on the
market, are simpler to use than libraries to build a complete
application. However, extending the functionality of such sys-
tems is usually limited to a given application domain, as in
the case of the dedicated simulators, or to a fixed set of sup-
ported data types, as in the case of the Matlab programming
environment.

Application (computational) frameworks, such as the
Diffpack and ScilLab systems for solving differential equa-
tions [11,43] or the Oorange system for experimental mathe-
matics [23] combine the advantages of the libraries and
turnkey systems. On one hand, frameworks have an open
structure, similarly to libraries, so they can be extended with
new components, such as solvers, matrix storage schemes,
or mesh generators. On the other hand, some (notably vi-
sualisation) frameworks offer an easy manner to construct
a complete application that combines visualisation, numer-
ics, and user interaction. This is usually provided by means
of visual programming tools such as Matlab’s Simulink [33]
or the dataflow network editing tools of the AVS [49], IRIS
Explorer [1], or Oorange [23] frameworks. In these frame-
works, applications are constructed by assembling visual
representations (icons) of the computational or visualisation
components in a network. Program execution is implemented
in terms of computational operations on the network nodes
and data flows between these nodes respectively.

With the above in mind, let us consider how the NUM-
LAB environment integrates the advantages of the above ar-
chitectures. On the level of libraries, NUMLAB’s C++ rou-
tines call Fortran, Pascal, C, and C++. Next, similar to
a turnkey system, NUMLAB offers full integration of visu-



alisation and numerical computation, and implements com-
munication with other environments such as Simulink [33]
and MathLink [32]. On the application framework level,
NUMLAB provides interactive application construction with
its visual programming dataflow system VISSION [46,47].
Furthermore, NUMLAB provides an object-level (subroutine-
level) make-concept which allows for interactive program
validification.

In order to better address NUMLAB’s merits on all levels,
we need a closer look at computational frameworks. Though
efficient and effective, most existing computational frame-
works are limited in several respects. First, limitations exist
from the perspectives of the end user, application designer,
and component developer [4, 19,39, 46].

First, few computational frameworks facilitate convenient
interaction between visualisation (data exploration) and com-
putations (numerical exploration), both essential to the end
user.

Secondly, from the application designer perspective, the
visual programming facility, often provided in visualisation
frameworks such as AVS or Explorer [1,49], usually is not
available for numerical frameworks. Conversely, it is quite
difficult to integrate large scale computational libraries in vi-
sualisation frameworks.

Finally, from the numerical component developer per-
spective, understanding and extending a framework’s ar-
chitecture is still (usually) a very complex task, albeit no-
ticeably simplified in object-oriented environments such
as [11,44].

Next to limitation with respect to the three types of users,
many computational frameworks are constrained in a more
structural manner: Similar mathematical concepts are not
factored out into similar software components. As a conse-
quence, most existing numerical software is heterogeneous,
thus hard to deploy and understand. For instance, in order to
speed up the iterative solution of a system of linear equations,
a preconditioner is often used. Though iterative solvers and
preconditioners fit into the same mathematical concept — that
of an approximation x which is mapped into a subsequent
approximation z ~ F(x) — most computational software im-
plements them incompatibly, so preconditioners can not be
used as iterative solvers and vice versa [11].

Another example emerges from finite element libraries.
Such libraries frequently restrict reference element geometry
and bases to a (sub)set of possibilities found in the literature.
Because this set is hard coded, extensions to different ge-
ometries and bases for research purposes is difficult, or even
impossible.

The design of NUMLAB addresses all the above prob-
lems. NUMLAB is a numerical framework which provides
C—++ software components (objects) for the development of
a large range of interdisciplinary applications (PDEs, ODE:s,
non-linear systems, signal processing, and all combinations).
Further, it provides interactive application design/use with its
visual programming dataflow system VISSION [46,47], data
interchange (e.g. via Simulink and MathLink), and can be
used both in a compiled and interpreted fashion. Its compu-
tational libraries factor out fundamental notions with respect
to numerical computations (such as evaluation of operators
z = F(x) and their derivatives), which keeps the amount of
basic components small. All components of these libraries are
aware of dataflow, even in the absence of the VISSION data-
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flow system, and can for instance call back to see whether
provided data is valid.

The remainder of this paper addresses some fundamental
NUMLAB design aspects, as follows. In Sect. 2, the mathe-
matics that we desire to model in software is reduced to a set
of simple but generic concepts. Section 3 shows how these
concepts are mapped to software entities. Section 4 illustrates
the above for the concrete case of solving the Navier—Stokes
partial differential equation. Section 5 presents how concrete
simulations combining computations and visualisation are
constructed and used in NUMLAB. Finally, Sect. 6 concludes
the paper presenting further directions. In order to bound the
list of references, quotations have been kept at a minimum.

2 The mathematical framework

In order to reduce the complexity of the entire software solu-
tion, we show how NUMLAB formulates different mathemat-
ical concepts with a few basic mathematical notions. It turns
out that in general NUMLAB’s components are either oper-
ators F, or their vector space arguments x, y. The most fre-
quent NUMLAB operations are therefore operator evaluations
F(x) and vector space operations such as x +y. Important
is the manner in which NUMLAB facilitates the construction
of complex problem-specific operators (for instance transient
Navier—Stokes equation with heat transfer), and related com-
plex solvers. NUMLAB offers:

1. Problem-specific operators: Transient Finite Element,
Volume, Difference operators F for transient boundary
value problems (BVPs); Operators which formulate sys-
tems of ordinary differential equations (ODEs); operators
which act on linear operators (for instance image filters).
The operator framework is open, users can define cus-
tomised operators z = F(x).

2. Problem-specific solvers for systems of ODEs: Time-step
and time-integration operators formulated with the use
of (parts of) the problem-specific operators mentioned
above. The former operators require non-linear solvers for
the computation of solutions.

3. Solvers for systems of non-linear equations: Such systems
are operators, and their solution is reduced to the solution
of a sequence of linear systems.

4. Solvers for systems of linear equations: Such systems are
also operators F(x) = Ax —b. Their solution is reduced to
a sequence of operator evaluations and vector space oper-
ations.

The reduction from one type of operator into another is
commented on in the subsections of Sect. 2, in the reverse
order of the itemisation above. Thus, Sect. 2.1, examines sys-
tems of (non-)linear equations and preconditioners, Sect. 2.2
considers the reduction of systems of ODEs to non-linear
systems, and Sect. 2.3 deals with an initial boundary value
problem. The presented mathematical reductions are de facto
standards, new is NumLab’s software implementation which
maps one to one with these techniques.

2.1 Non-linear systems and preconditioners

This subsection presents NUMLAB’s operator approach, and
demonstrates how operator evaluations reduce to repeated
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vector space operations and operator evaluations. This is il-
lustrated by means of examples, which include (non-)linear
systems, and preconditioning techniques.

First, consider linear systems of the form F(x) = f. Here
F(x) = Ax is a linear operator, with an N by N coefficient
matrix A, and f € RV is a right hand side. The NUMLAB
implementation of the evaluation z = F(x) is:

F.eval(z, x);

The actual implementation of eval () varies with the ap-
plication type (for instance full matrix, sparse matrix, image,
etc.). Though z is a resulting value, its initial value can be
used for computations (for instance as an initial guess).

Next, NUMLAB formulates a linear system F(x) = f with
the use of an affine operator G:

Gx)=Fx)—f. ()
The user constructs this NUMLAB system with
G.setO(F);

G.setI(f);

and computes the residual z = G (x) with:
G.eval(z, x);

The routines with name set - provide G with the linear op-
erator and a right hand side vector.

Next, let x € RN be a given vector, and focus on the solu-
tion(s) of G(z) = x, i.e, on solution methods for affine opera-
tors. Assume that operator R approximates G '

GR)=x<=7=G"'(x) <=z~ Rx). 2

For the sake of demonstration, and without loss of generality,
we assume that R is a left-preconditioned Richardson itera-
tive solution method, with preconditioner P. Such a method
is based on a successive substition process:

2D =2 _ P (G (V) —x) , 3)

which terminates as soon as S(P(G(z®)—x)) =0, for
a user-provided stopping criterion S: R” — {0, 1}. This re-
cursion will converge if for instance G is as in (1) with F
positive definite, and if P(x) = hx with i positive and small
enough.

The related NUMLAB operator R for (3) is defined by its
implementation of its eval () method:

R.eval (z, x)
{
P.setO(G) ;
repeat
{
G.eval (r, z);
r-=X;
P.eval(s=0, r);
zZ-=5;
}
while (S(s) >0);
}

The system G (z) = x is solved with a few instructions:

R.setO(G) .setP(T) .setS(S) ;
R.eval(z, x);

Observe that solver R uses z both as initial guess z® e RY
and final approximate solution, whereas preconditioner P
must use 0 as an initial guess. If a preconditioner is not
provided, a default — the identity operator — is substituted.
The stopping critria are similarly dealt with. Next, as could
be observed, operators can make use of operators: The pre-
conditioner for Richardson’s algorithm could have been
Richardson’s algorithm itself, a diagonal preconditioner, an
(incomplete) LU factorisation, and so forth. Furthermore, the
eval () methods of the solver R, preconditioner P and sys-
tem G are syntax-wise identical.

The pseudo code for R above executes P.setO (G), so
preconditioner P can use (has access to) G and its Jacobian.
Further, the linear system F(z) = f could have been solved
directly with R:

R.setO(F) ;
R.eval(z, \f);

NuMLAB formulates systems, solvers and preconditioners
all with the use of set- and eval () syntax — though re-
lated mathematical concepts differ. Few other methods such
as update () exist, and relate to data flow concepts, outside
the current paper’s scope.

A closer examination of the Richardson operator reveals
more information of interest. NUMLAB implements all its
operator evaluations with: (1) Vector space operations; and
(2) all which remains: Nested operator evaluations. This is
clearly demonstrated by R’s implementation above:

1
r2a =9

@ _
r=r—x;

1
s2Pr);

2
2 20—, @

where, ) denotes operator evaluation and ® vector space op-
eration. This clear cut classification of operations thoroughly
simplifies the mathematical framework.

Though NUMLAB regards preconditioning as approxi-
mate function evaluation — which simplifies its framework
— this does not solve the problem of proper precondition-
ing. Specific iterative solution methods might require pre-
conditioners to preserve for instance symmetry (such as the
preconditioned gradient method PCG [8]) or at least pos-
itive definiteness of the symmetric part (for minimal re-
sidual methods, see [42] for GMRES and [5] for GCGLS).
All iterative solvers have some requirements: Robust methods
(e.g. [30]), multi-level methods (e.g. [7] and [31]), multi-grid
methods (e.g. [25]), and incomplete factorisation methods
(e.g. [24]).

The application designer should keep these mathematical
restrictions in mind, when designing a suitable solver for the
problem at hand.

Similar to linear systems, NUMLAB also formulates non-
linear systems with the use of operators G, and looks for
solutions of G(z) = x. The Jacobian (Frechet derivative) of
a (non-linear) operator G at point x is denoted by DG (x) — or
by DG if G is linear.

Related non-linear solvers are again formulated as oper-
ators. Non-linear operators G which do not provide deriva-
tive evaluation, can be solved with the use of a fixed point



method (comparable to the Richardson method above),
or with a combinatorial fixed point method [48] (a multi-
dimensional variant of the bisection method). Non-linear
operators G which provide derivative evaluation can also
be solved with (damped, inexact) Newton methods (see [18]
and [20]). A typical NUMLAB code for an undamped Newton
method is:

Newton.eval (z, x)
{

repeat

{

G.eval(r, z);

r -=X;

Solver.setO(G.getJacobian(z)) ;
Solver.eval (s, r) ;
z-=8;

}

while (S(s) >0);

}

and a system G (z) = x is solved by this method with:

Newton.setO(G) .setSolver (R) ;
Newton.eval (z, x) ;

where Richardson’s method is used to solve the linear sys-
tems.

Again, the application designer should take care that the
fixed point function is chosen properly, so it preserves prop-
erties of F, such as symmetry and positive definiteness of the
symmetric part.

In order to close this section on systems of equations and
solvers, note that images are also treated as operators

F(x) = Ax, (&)

where A is a matrix (or block-diagonal) matrix of colour
intensities. Thus, image visualisation reduces to Jacobian vi-
sualisation. An application of the above to image processing
is illustrated in Fig. 4m.

2.2 Ordinary differential equations

Standard discretisations of ordinary differential equations can
also be formulated as operators whose evaluation reduces to
a sequence of vector space operations and function evalua-
tions. For instance, let E be an operator, and consider the
initial value problem: Find x(#) for which:

%ﬂﬂ:EOJ@D t>0), x(0)=x. (6)

Let h > 0 denote the discrete time-step, and define t; = kh
for all k=0,1,2,.... Provided with an approximation x®
of x(#;), a fixed-step Euler backward method determines an
approximation x**V of x(f;41)

x&D _x® _pE (thrl’ x(k+l)) , 7
which can be rewritten as

D —x® —hE (t41, x%Y) =0. ®)
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Define the operator T as follows:
T(x) =x—x" —hE (1141, %). ©)

Then x**D is a solution of T(x) = 0. Of course, T depends
on the user-provided values x®, #; and 4. The NUMLAB eval-
uation code of z = T'(x) is:
T.eval(z, x)
{
E.setT(t_k+h);
E.eval(z, x);

z *=h;
Z+=X;
z -=xX_Kk;

}

Next, the approximate solution x**1) at time #;, | is computed
with:

T.setT(t_k) .setX(x_k) .setH(h) ;
Newton.setO(T) .setSolver (R) ;

Newton.eval (z, 0) ;

The operator formulation x*+" = T=1(0) applies to all ex-
plicit methods such as Runge—Kutta type methods [13], as
well as to all implicit discretisation methods, such as Euler
Backward and Backward Difference Formulas (BDF) [22].

It is obvious that the evaluation of T at a given x again
only involves vector space operations and operator evalua-
tions. Solving T'(x) = 0 can thus be done by several methods:
Successive substitution, Newton type methods, precondi-
tioned methods, etc.

Naturally, a time-step integrator complements the time-
step mechanism. NUMLAB provides standard fixed time-step
methods and — required for stiff problems — adaptive time-
step integrators of the PEC and PECE type [34]. An example
is the solution of the Lotka-Volterra predator-prey problem,
shown in Fig. 41. Phase-plane plots can also be generated.

2.3 Partial differential equations and initial boundary value
problems

In order to show how partial differential equations (PDEs)
are reduced to (non-)linear systems of equations, consider an
initial boundary value problem. Let £2 C R? be the bounded
region of interest, and let 052 denote its boundary. We denote
points in this region with ¢ € §2 (x is reserved for vectors and
related iterands). The problem of interest is: Find a solution u
on [0, co0) x £2 which satisfies

a
—u=Au+f

o (1> 0, (10)

subject to initial condition u(0, ¢) = up(c) for all ¢ € £2,
and boundary conditions u(t, ¢) = y(c) for all ¢ € [0, co) and
¢ € 952. For the sake of presentation, the boundary conditions
are all assumed to be of Dirichlet type. With a method of
Lines (MOL) approach, (10) fits into the framework (6), for
a suitable operator E, to be defined.

As an alternative, one can first discretise in time, and next
discretise in space, or simultaneously discretise with respect
to both (see for instance [6]).

For a MOL solution of (10), the region of interest £2 is
covered with a grid of elements (with the use of a uniform,
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Delaunay, or bisection type [35] grid generator). Next, the
static equation —Au = f is discretised with one of the avail-
able methods (standard conforming higher order finite elem-
ents, and non-forming elements as for instance in [29]).

A standard Galerkin approach assumes that the solution u
isin a linear vector space V with basis {v; }]Nz |- For the method
of lines approach applied to (10) one sets

u(t.c) =y xi(tvilc). (11)

for all time 7 and ¢ € §2. Functions in V are identified with
their coefficient vectors in R”, so u is identified with x. Mul-
tiplication of (10) with (test) functions {vj}jl."= 1» followed by
partial integration over §2 leads to a system of ODEs

d
MEx(t) =—-G(x(), t>0). (12)
Here,
N
Gl= [ |V x| v s | (13)
j=1
if variablei = 1, ... , N is not related to a Dirichlet point and
[G (x)]; = 0 otherwise, and
M1 = [ty (14)

if neither variable i nor variable j is related to a Dirichlet
point, and [M];; = §;;, the Kronecker Delta otherwise. M is
a standard finite element mass-matrix.

The Jacobian DG of G is

[DG],'J' = I[ijVvi] (15)

if neither variable i nor variable j is related to a Dirichlet
point, and [DG];; = §;;, the Kronecker Delta otherwise.

Functions in the linear vector space V do not need to
satisfy the Dirichlet boundary conditions. Let «: 92 — R.
Define the set (not necessarily a vector space)

V¥={xeV:x=uaatd2}. (16)

Then V° (homogeneous boundary conditions) is a vector
space, and V7 is the set of all function which satisfy the
Dirichlet boundary conditions.

The solution z of G(z) = 0 is obtained by application of
a full Newton step

7— >z +[DG@)]'[-G(2)] (17)

to an initial guess z(@.

The NUMLAB code for the related undamped Newton
method is:
Newton.setO(G) .setSolver (R) ;
Newton.eval (z, 0) ;
In the example code, Richardon’s iterative solver R is used for
the solution of G(x) = 0.

Note that operator G in (13) maps V onto V°, and that its
Jacobian matrix DG in (15) maps V° onto V°. Assume that

the (iterative) solver for the solution of the linear maps (1) V°
onto V0 and (2) is the identity on V — VO, Then, by induction,
also (17) satisfies both assumptions. Because all common lin-
ear solvers (PCG, GCGLS, CGS, Peaceman—Rachford, etc.)
map V° onto V°, all of NUMLAB s solvers map V" onto V.
This holds for the (non-)linear (iterative) solvers, as well as
for the solvers for systems of ordinary differential equations.

For linear systems G(z) =0 with G affine, as for in-
stance in (13), the use of Newton’s method (17) may seem an
overkill. However, this is not the case: Under the assumption
that all coefficients of x are degrees of freedom — including
the ones related to Dirichlet points — the solution of G(z) =0
requires the solution of (17) above.

In order to see this, define the linear system F(x) = f
with

N

Pl = [V X | vur . (18)
=1

and

Lfl = [[fvi] , (19)

for all i. The problem F(x) = f has no unique solution be-
cause F is singular.

Under the assumption that we compute with all coeffi-
cients x;, F(x) = f is below transformed in a standard man-
ner, which results in the system G (x) = 0, and requires solu-
tion method (17).

First, define the projection C: RY > R by

[C(x)]; = x; for all related non-Dirichlet supports ¢; ,
=0 elsewise. (20)

Next, the vector x is coefficient-wise split into a vector which
contains all Dirichlet related function values x© and interior
degrees of freedomd, i.e., we set

x=x9+d. 1)
Then x@ turns out to be the solution to
(I-C)+CDF (xV)Cc")d=C (f—F (x)) . (22)

This shows that the for the solution of a linear boundary value
problem F(x) = f, we must solve (17), and in fact exactly
solve G(x) = 0.

The standard splitting (21) for linear systems makes use of
an x@ e VO (in (22)) which is zero at all nodal points, except
those at the Dirichlet boundary. This — socalled elimination of
boundary conditions — is a poor choice because x has steep
gradients near Dirichlet boundaries, whence the induced ini-
tial residual r© for the iterative solver is large. Fortunately,
from (21) it follows that we can also take different x© e V0.
In order to minimize the amount of iterative solution steps, we
best use a smooth x©.

Finally, we consider the NUMLAB formulation of an op-
erator for the solution of (10). This operator, of which the
discrete solution of (12) is a root, is contructed similar to
the operator constructed in (6)—(9), for E(t, x) := —G(x) and
T(x) = M(x —x®) — hE(t;11, x). This construction is such



that a symmetric positive definite Jacobian of G (x) implies
a likewise Jacobian of T'(x). Therefore, the initial boundary
value problem (10) reduces to a sequence of systems of non-
linear equations.

2.4 Conclusions

The examples in Sects. 2.1, 2.2 and 2.3 have shown how
mathematical problems with a seemingly different formula-
tion can be reduced to the two basic operations of vector
space computations and operator evaluation. Because of this,
the NUMLAB software provides the basic notions as well as
concrete specialisations of vector spaces V and operators G
onV.

3 From the mathematical to the software framework

In this section, we show how the notion of operators F and
arguments v in (cross-product) spaces V map to a software
framework. As outlined in the previous section, a large class
of solution methods for problems of the form F(x) = 0, can
be reduced to a simple mathematical framework based on fi-
nite dimensional linear vector spaces and operators on those
spaces. The software framework we propose will closely fol-
low the mathematical model. As a consequence, the obtained
software product will be simple and generic as well.

Consider the mathematical framework for spaces V
and operators F in more detail. In general, let £2 be the
bounded polygonal/polyhedral domain of interest, with
smooth enough boundary 952. The linear vector space V =
Vi x---xV, is a cross-product space of n spaces (n is the
amount of degrees of freedom). Each space V; is spanned
by basis functions {vl:,'};vz"l where v;j: 2 — R. An elem-
ent x € V is a vector function from £2 to R”, and is written
as x =[xy, ..., x,], a vector of component functions. Each
component x; € V; is a linear combination of basis functions:
forallc € 2

N
xi(e) =) x()vy(e) . (23)

Jj=1

Each element x; is associated with a unique scalar vector
Xi=[xi1,...,xin;] € RMi. At its turn, X denotes the aggre-
gate of these vectors: X =[X1,..., X,], and X;; = [X;];.
Summarised, we have vector functions x = [xq, ... , x,] and
related vectors of coefficient vectors X = [X1, ..., X,].

Whenever n = 1, we use a more standard notation. In
this case, the space is V, spanned by basis functions {vj};V: 1s
and elements x € V are related to coefficient vector x =
[xl, . ,)CN].

For most finite element computations, the basis functions
v; of V; have local support. However,basis functions have
global support in spectral finite elements computations. The
local supports, also called elements, are created with the use
of a triangulation algorithm.

The next subsections describe NUMLAB’s software com-
ponents related to the mathematical concepts discussed in
this section: Grid generation in Sect. 3.1, bases generation
in Sect. 3.2, vector functions in Sect. 3.3, and related opera-
tors in Sect. 3.4.
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3.1 The Gridmodule

To be able to define local support for the basis functions v;;
later on, we need to discretise the function’s domain $2. This
is modelled in the software framework by the Grid mod-
ule, which covers the function’s domain with elements e. This
Grid module takes a Contour as input, which describes the
boundary 92 of §2. The default contour is the unit square’s
contour.

In NUMLAB, the grid covers regions 2 in any dimen-
sion (e.g. 2D planar, manifold or 3D spatial), and consists of
a variety of element shapes, such as triangles, quadrilaterals,
tetrahedra, prisms, hexahedrals, n-simplices (see [35]), and so
on. All grids implement a common interface. This interface
provides several but few services. These include: Iteration
over the grid elements and their related vertices, topological
queries such as the element which contains a given point. The
amount of services is a minimum: Modules which use a grid
generator and need more service must compute the required
relations from the provided information.

Specific Grid generator modules produce grids in differ-
ent manners. NUMLAB contains Delaunay generators, sim-
plicial generators, and regular generators, and "generators"
which read an existing grid from a file. An example genera-
tor is illustrated in Fig. 4k, which shows a cubic finite element
interpolant on a 2-manifold in R3.

3.2 The Space module

The linear vector space V is implemented by the software
module Space. Space takes a Grid and Boundary-
Conditions as inputs. The grid’s discretisation in com-
bination with the boundary conditions are used to build the
supports of its basis functions v;;. The default boundary con-
ditions are Dirichlet type conditions for all solution compo-
nents. None, Robin, Neumann and vectorial boundary condi-
tions are specified per boundary part. Recall that elements in
V do not have to satisfy the Dirichlet boundary conditions.
Recall that elements of V do not have to satisfy the essential
boundary conditions.

Because Grid has a minimal interface, some informa-
tion — required by Space for the construction of the basis
functions — is not provided. Whenever this happens, Space
internally computes the required information with the use of
Grid’s services.

A specific Space module implements a specific set of
basis functions, such as constant, linear, quadratic, or even
higher order polynomial degree, matched to the elements’
geometry. The interface of the Space module follows the
mathematical properties of the vector space V presented so
far: Elements x, y € V can be added together or scaled by real
values. Furthermore, elements v;; of V are functions, and V
permits evaluation at points ¢ € £2 of such functions and their
derivatives.

It should be kept in mind that elements of V are functions,
not linear combinations of functions. Therefore, the name
SPACE is somewhat misleading. However, for the brevity
of demonstration, the name SPACE will also be used in the
sequel.

In most cases, the required basis functions have local
support, also called element-wise support. The restriction of
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global basis function v;; to support e is said to be local func-
tion v;.. In software, this is coded as follows: For space
component i (so V;), element e, and local basis function r
thereon, j := j (i, r) induces basis function v;;. The soft-
ware implementation is on element-level for efficiency pur-
poses: Given a point ¢ € §2, Space determines which support
e contains ¢ for the evaluation of v;;(c).

3.3 The Function module

As discussed, a vector function x: £2 — R” in a space V gen-
erated by v;; is uniquely related to a coefficient vector X with
coefficients X;;. Based on this observation, NUMLAB soft-
ware module Function implements a vector function x as
a block vector of real-valued coefficients X;;, combined with
a reference to the related Space — which contains related
functions vj;.

The Function module provides services to evaluate the
function and its derivatives at a given point ¢ € §2. To this end,
both x’s coefficient vector X and the point ¢ are passed to the
Space module referred to by x. At its turn, the Space mod-
ule returns the value of x(c). This is computed following the
definition x(¢) = [Y_ ; Xijvii(e)], as described in the previous
section. The computation of the partial derivatives of a given
function x in a point ¢ follows a similar implementation.

Providing evaluation of functions x € V and of their
derivatives at given points is, strictly speaking, the minimal
interface the Space module has to implement. However, it
is sometimes convenient to be able to evaluate a function at
a point given as an element number and local coordinates
within that element. This is especially important for effi-
ciency in the case where one operation is iterated over all
elements of a Grid, such as in the case of numerical inte-
gration. If the Space module allows evaluating functions at
points specified as elements and local element coordinates,
the implementation of the numerical integration is consider-
ably faster than when point-to-element location has to be per-
formed. Consequently, we also provided the Space module
with a function evaluation interface which accepts an element
number and a point defined in the element local coordinates.

3.4 The Operator module

As described previously, an operator F: V > W maps an
element x € V to an element z € W. The evaluation z = G (x)
computes the coefficients z;; of z from the coefficients x;; of
x, as well as from the bases {v;;} and {w;;} of V and W re-
spectively. Next to the evaluation of G, derivatives such as the
Jacobian operator DG of G are evaluated in a similar man-
ner. Such derivatives are important in several applications.
For example, they can be used in order to find a solution of
G (z) = x, with Newton’s method.

The software implementation of the operator notion fol-
lows straightforwardly the mathematical concepts introduced
in Sect. 2. The implementation is done by the Operator
module, which offers two services: evaluation of z = G (x),
coded as G.eval(z,x), and of the Jacobian of G in
point y, z = DG(y)x, coded as G.getd (y) .eval (z, x).
To evaluate z = G(x), the Operator module takes two
Function objects z and x as input and computes the coeffi-
cients z;; using the coefficients x;; and the bases of the Space

objects z and x carry with them. It is important that both the
‘input’ z and the ‘output’ x of the Operator module are
provided, since it is in this way that Operators determine
the spaces V, respectively W.

To evaluate z = DG (y)x, the Operator proceeds sim-
ilarly. Internally, DG(y) is usually implemented as a coef-
ficient matrix, and the operation DG (y)x is a matrix-vector
multiplication. However, the implementation details are hid-
den from the user (DG (y)x may be computed element-wise,
i.e. matrix-free), who works only with the Function and
Operator mathematical notions.

Specific Operator implementations differ in the way
they compute the above two evaluations. For example, a sim-
ple Diffusion operator z = G(x) may operate on a scalar
function and produce a function z where z; = x;_1 — 2x; +
Xi+1. A generic Linear operator may produce a vector of
coefficients z = Ax where A is a matrix. A Summator op-
erator z = G(x) + Gy(x) may take two inputs G| and G,
and produce a vector of coefficients z; = [G (x)]; + [G2(x)];.
Remark that the modules implementing the Linear and
Summator operators actually have two inputs each. In both
cases the function x is the first input, while the second is the
matrix A for the Linear operator and the operators G; and
G, for the Summator operator. These values could be as
well hard-coded in the operator implementation. In both cases
however, we see Operator as a function of a single variable
x, as described in the mathematical framework.

3.5 The Solver module

We model the solving of G(z) = x by the module Solver
in our software framework. Mathematically, Solver is simi-
lar to an operator S: V> W, where V and W are function
spaces. The interface of Solver provides evaluation at func-
tions x € W, similarly to the Operator module. The im-
plementation of the Solver evaluation operation z = S(x)
should provide an approximation z to z &~ F~!(x). However,
Solver does not provide evaluation of its Jacobian, as this
may be undesirably complex to compute in the general case.

Practically, Solver takes as input an initial guess
Function object x and an Operator object G. Its output
z is such that G(z) = x. The operations done by the solver
are either vector space operations or Operator evaluations,
or evaluations of similar operators G(z). In the actual imple-
mentation, this is modelled by providing the Solver module
with one or more extra inputs of type Solver. In this way,
one can for example connect a nested chain of precondition-
ers to an iterative solver module.

The implementation of a specific Solver follows
straightforwardly from its mathematical description. Iterative
solvers such as Richardson, GMRES, (bi)conjugate gradient,
with or without preconditioners, are easily implemented in
this software framework.

The framework makes no distinction between a solver
and a preconditioner, as discussed in Sect. 2. The sole dif-
ference between a solver and a preconditioner in this frame-
work is semantic, not structural. A solver is supposed to
produce an exact solution of G(z) =0 (up to a desired nu-
merical accuracy), whereas the preconditioner is supposed to
return an approximate one. Both are implemented as Solver
modules, which allows easy cascading of a chain of pre-



conditioners to an iterative solver as well as using precondi-
tioners and solvers interchangeably in applications. Further-
more, the framework makes no structural distinction between
direct and iterative solvers. For example, an ILUSolver
module is implemented to compute an incomplete LU fac-
torisation of its input operator G. The TLUSolver mod-
ule can be used as a preconditioner for a Conjugate-
Gradient solver module. In the case the ILUSolver is
not connected to the ConjugateGradient module’s in-
put, the latter performs non preconditioned computations.
Alternatively, a LUSolver module is implemented to pro-
vide a complete LU factorisation of its input operator G.
The LUSolver can be used either directly to solve the
equation G(z) = x, or as preconditioner for another Solver
module.

3.6 An object-oriented approach to the software framework

So far, sections have outlined the structure of the pro-
posed numerical software framework. This structure is based
upon a few basic modules which parallel the mathematical
concepts of Grid, Function, Space, Operator, and
Solver. These modules provide their functionality via in-
terfaces containing a small number of operations, such as the
Operatoxr’s evaluation operation or the Grid’s element-
related services previously outlined.

As stated in the beginning of this section, a large range of
numerical problems can be modelled with these few generic
modules. In order to capture the specifics of a given problem,
such as the type of PDE to be solved or the basis functions
of an approximation space, the generic modules have to be
specialised. The specialised modules provide the interface de-
clared by their class, but can implement it in any desirable
fashion. For example, a ConjugateGradient module im-
plements the Solver interface of evaluating z = G~'x by
using the conjugate gradient iterative method.

The above architectural requirements are elegantly and
efficiently captured by using an object-oriented approach to
software design [10, 12,36,41]. Consequently, we have im-
plemented our numerical software framework as an object-
oriented library written in the C4++ language [45]. This de-
sign enabled us to naturally model the concepts of basic and
specialised modules as class hierarchies. The software frame-
work implements a few base classes Grid, Function,
Space, Operator, and Solver. These base classes de-
clare the interface to their operations. The interface is next
implemented by various specialisations of these base classes.
An overview of the implemented specialisations follows:

— Grid: 2D and 3D grid generators for regular and un-
structured grids, and grid file readers;

— Function: Several specific functions v; j are generated,
such as cosines, or piecewise (non-)conforming poly-
nomial functions in several dimensions;

— Space: There is a single Space class, but a multitude
of basis functions are implemented, as described further in
Sect. 5;

— Operator: Operators for several ODEs, PDEs, and
non-linear systems have been implemented, such as
Laplace, Stokes, Navier—Stokes, and elasticity problems.
Next, several operators for matrix manipulation and image
processing have been implemented. For example, matrix
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sparsity patterns can be easily visualised, as in other ap-
plications like Matlab (Fig. 4j);

— Solver: A range of iterative solvers including bi-
conjugate gradient, GMRES, GCGLS, QMR, etc. are
implemented. Several preconditioners such as ILU are
also provided as Solver specialisations, following the
common treatment of solver and preconditioner modules
previously described.

Besides the natural modelling of the mathematics in terms
of class hierarchies, the object-oriented design allows users to
easily extend the current framework with new software mod-
ules. Implementing a new solver, preconditioner, or operator
usually involves writing only a few tens of lines of C++ to
extend an existing one. The same approach also facilitates
the reuse of existing numerical libraries such as LAPACK [2]
or Templates [9] by integrating them in the current object-
oriented framework.

4 Transient Navier—Stokes equations

This section examines the mathematical concepts at the foun-
dations of a NUMLAB solver for transient Navier—Stokes
equations. These concepts (1)—(4) in Sect. 2, have been exam-
ined in Sects. 2.1-2.3 for small model problems, suited for
presentation purposes. Here, these concepts are all worked
out in relation to a single problem, the solution of transient
Navier-Stokes equations. Section 5 discusses the design of
a NUMLAB application with the NUMLAB operators dis-
cussed here.

The transient Navier—Stokes equations have been chosen
since related finite element operators require a finite dimen-
sional cross product vector space V of basis functions, and
because the transient formulation leads to differential alge-
braic equations, and requires solution techniques related to
ODEs. The DAE class of equations is non-trivial to solve,
and common in industrial problems. Our claim is — see Sect. 5
for details — that NUMLAB provides a sophisticated frame-
work for the integration of complex Navier—Stokes solvers,
not that NUMLAB provides solvers better than those found in
the literature.

First we examine the static problem. For a particular dis-
cretisation, we show that there exists a straightforward and
lucid relation between the mathematical formulas and the
NUMLAB software implementation: The NUMLAB imple-
mentation of F accomplishes the finite element required (nu-
merical) integration without space V exposing its basis func-
tions and element geometries to F.

The static case is followed with the mathematical formu-
lation of the transient problem. We demonstrate that (com-
ponents of) the static problem operator F can be used in
combination with all suitable time-integrators S — suited for
indefinite/stiff problems.

Due to the high degree of orthogonality between F, V
and time-stepper methods, NUMLAB can and does offer
a range of finite element types — higher order, as well as
non-conforming Crouzeix-Raviart (see [17]) — on rather arbi-
trary support geometries: simplices, parallelipipeda, prisms,
etc. It facilitates and supports user-defined reference bases
and geometries, as well as user-supplied geometries and grid
generators. Existing applications do not have to be adapted
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for new bases and geometries, as long as all required mathe-
matical conditions hold.

4.1 The Navier-Stokes equations

The incompressible Navier—Stokes equations describe an in-
compressible fluid u subject to forces f, in a region £2 C R?,
assumed for the sake of brevity. Then the fluid velocities are
u = [uy, uz], and p denotes the pressure. The classical prob-
lem is to find sufficiently smooth (#, p) such that in £2:

{—SAu—l—uVu—i—Vp:f,

Vou=0. (24)

For the sake of demonstration, all boundary conditions are
presumed to be of Dirichlet type (parabolic in/outflow pro-
files and no-slip along walls).

Problem (24) is discretised with the use of a finite elem-
ent method. To this end, one first covers §2 by elements with
the use of a grid generator module Grid (the construction
and refinement of a suitable computational grid is a problem
of its own (see for instance [21]). Then a triplet of finite di-
mensional (Hilbert) finite element spaces V := V) x Vo, x V3
is chosen such that V| x V, and Vj satisfy the L.B.B. condi-
tion [3]. The NUMLAB implementation creates one Space
module V, provided with three reference Basis modules.
For the sake of presentation, quadratic conforming finite
element bases are used for the velocities (V| and V), and
a piecewise linear conforming finite element basis is used for
the pressure (V3).

Next, the equations (24) are multiplied by test functions
(v, @) € V, after which the first one is partially integrated.
This procedure results in a variational problem: Find x =
[t1, u2, pl = (u, p) € V such that for all (v,q) € V

leVu :Vv—pVo+ @Vu— flv=0
(25)
lV~uq=0.

Different finite element discretisations of (24), for instance
an O’Seen discretisation, are also possible. In order to fa-
cilitate the formulation of a NUMLAB application for our
problem, system (25) is now reformulated into operator form:
F(X) =

The operator F related to the discrete variational for-
mulation (25) has three components F := [Fi, F,, F3], each
related to one equation. For the definition of these compo-
nents, first define x = [x1, x2, x3] := [u1, uz, p] € V, and set
z =[z1, 22, 23] € V (assume we use a Galerkin procedure).
Recall that each vector function x is uniquely related to coef-
ficients x;;, at their turn related to functions v;; from £2 to R.
The discrete Navier—Stokes operator, discretised in space,
now is:

Z1j=F(X)=[Fi(X1, X2, X3)];
= l8VX1VU1j-X38XU1j+(x18xx1+x28yxl_fl)vlj
Zyj =F(X) =[F (X1, X2, X3)];

= l8vx2VU2j_x38yU2j+(xlaxx2+x28yx2_f2)v2j

Z3j=F(X) =[F3(X1, X2, X3)];

_ [ (Bux149,62) 03, - 26)

Here, x; is the function related to coefficients X, and so
forth. It is evident — as stated earlier — that F uses the coeffi-
cients of x as well as the bases functions in order to compute
the coefficients of the result z.

The integrals in (26) are computed support-wise, with the
use numerical integration, involving integration points x;. As
can be deduced from (26), required are the values v; ,(xx)
and Vv, .(x;) as well as the values x;(x;) and Vx;(xy).
In the NUMLAB code below, these values are returned in
arrays v (1) (k) (r), dv (i) (k) (r), x(1) (k), respec-
tively dx (1) (k). The selection dv (i) (k) (r) (dY) re-
turns the individual gradient component 9,v; ,(xt). Define
Ul=0, U2 =1, P = 2. The NUMLAB evaluation of
z = F(x) and z = DF (x) *y for support e (typeset to fit this
layout) is:

Operator z = F (%) :

z(U1) (3 (Ul) (xr)) +=qw (k) *
(eps*dx (Ul) (k) *dv (U1) (k) (r) -
x(P) (k) *dv (Ul) (k) (r) (aX) +
(x(U1) (k) *dx (Ul) (k) (dX) +
x(02) (k) *dx (U1) (k) (dY) -
tl(ap(k)) *v(UL) (k) (r)));

z(U2) (3 (U2) (r)) +=qw (k) *
(eps*dx (U2) (k) *dv (U2) (k) (r) -
x(P) (k) *dv (U2) (k) (r) (dY) +
(x(Ul) (k) *dx (U2) (k) (dX) +
x(U2) (k) *dx (U2) (k) (dY) -

2)
2 (ap (k) ) *v(02) (k) (r)));
z(P) (3 (P) (r)) +=qw (k) *
((dx(Ul) (k) (dX) +
dx (U2) (k) (dY)) * v (P) (k) (r));

Jacobian z = DF (X) *vy:

F(U1) (U1) (3 (UL) (x)) (3(UL) (s)) +=qw(k)*
(dv (U1) (k) (s) *dv (U1) (k) (r) +
v(Ul) (k) (s) *dx (U1) (k) (dX) +
x(U1) (k) *dv (U1) (k) (s) (dX)) ;
DF (P) (U2) (3 (P) (r)) (3 (U2) (s)) +=aw(k)*

(dv (U2) (k) (s) (dY) *v (P) (k) (x));

z =DF *vy;

Both evaluation operations have an almost identical loop
structure:

V = x->getSpace () ;
for (Integere=0; e<V->NElements () ; e++)
Vv->fetch(e, j, v, dv, x, dx,
for (Integeri=0; i<j.size(); i++)
for (Integerr=0; r<j(i).size(); r++)
for (Integerk=0; k<x(i).size(); k++)
The Jacobian has an extra inner loop over trial functions

s. With regard to this implementation, several observations
come to mind:



— First, F does not have spaces V and W as input (i.e.,
as auxiliary variables). The spaces are obtained from the
input/output variables. This technique simplifies compu-
tational networks.

— Secondly, because F performs numerical integration, it
solely requires the value of (partial derivatives of) the ba-
sis functions at the quadrature points. The basis functions
themselves are not required, so F operates orthogonal to
Vand W.

— Finally, the NUMLAB operator models the discrete
Navier—Stokes equations in (25) in a convenient fashion.
The software implementation is one-to-one with the math-
ematical syntax, and can in fact be automated.

Finally, recall that the derivative operator acts as the identity
operator on Dirichlet point related variables, which requires
fetch to deliver the related information. This information is
also required for non-homogeneous Neumann boundary con-
ditions and Robin conditions.

4.2 The time discretisation

A transient version of the Navier—Stokes equations in the
previous section can be formulated as so-called differential
algebraical equations (DAEs):

d

—u=¢e¢Au—uVu—Vp+f,

ot (t> 0) 27)
V-u=0,

with initial condition u (0, ¢) = u((c) on §2 and boundary con-
ditions u(t,c¢) = u;(c) for all r € [0, 00) and ¢ € 3§2. We now
construct a non-linear NUMLAB time-step operator F for
a MOL discretisation of (27), which is implicit with respect to
the constraint V-u = 0.

For the sake of presentation, for a discretisation of the first
vectorial equation in (27), we will use a rather basic time-step
method: the 0-method — recall the constrained will be treated
in an implicit manner below. In practice, for stiff problems
— high Reynolds number — one would rather use a backward
difference method. For 6 € [0, 1], the #-method for a general
non-linear system of ODEs

d
—u(h) =E(t,u(t)), 28
dtu( ) (&, u(®) (28)
leads to the recursion:

uo=u(0),
Wiy —uwp =hOEt, u) +h(1 — ) E(ti1, wiy1) (29)

This all fits into the NUMLAB Operator style, if we define
the time-step operator 7' — similar to (9) — as follows:

Tw):=u—u® —hoE (t,u®) —h(1 —0)E(trs1,u). (30)

In this manner, the Jacobian of T is positive definite for
small 7, if the Jacobian of E is, and the approximation u*+V
of u(tx4+1) is a root of

T(u)=0. (€29

For the solution of (27), we first discretise (27), in a manner
similar to how (24) was discretised to obtain (26), with a dis-

J. Maubach, A. Telea

crete solution as formulated in (11). This leads to a discretised
version of (27):

d
M- X, () =—Fi (X))

M%Xz(t) = —F(X() (32)

0=F3(X(®).

subject to initial conditions on the two velocity compo-
nents X1(0) = go, X1(0) = g1. The operators F; are those
defined in (26), and M is the mass matrix. Define Y (f) =
[X (D), Xa2(D)],1.e., X() =[Y (), X3(1)]. Let operator E(X):=
[—F1(X), —F>(X)], then (32) reduces to

d
MEY=EX)

dt (33)
0=F(X),

with related initial and boundary conditions. Finally, with
the application of the #-method (30), the discrete solution
XD = [y*®+D ngH)] of (27) is a root of

G(X) :=[W(X), F5(X)] =10,0], (34)
where W(X) is defined by
M(Y-Y®)—hoE (t:, XP) —h(1 —=0)E (t41, X).  (35)

Summarising (27)—(35), we have shown that each approxi-
mate solution X® of X(#;) must solve a non-linear system of
equations G (X) = 0, which can be supplied to a NUMLAB
non-linear solver.

Finally, some remarks and observations. First, the value
which operator G attains at X, is composed of the values
which F attains at related points. Therefore, the Jacobian
DG (X) can be formulated in terms of DF at related points.
The NUMLAB implementation of time-steps exploits this:
The basic Jacobian implementation of DG(X) is a se-
quence of call-backs to the Jacobians DF. It it pointed out
that the saddle point problems related to (32) are hard to
solve ([21,40]).

5 Application design and use

The previous sections have presented the structure of the
NUMLAB computational framework. It has been shown how
new algorithms and numerical models can easily be embed-
ded in the NUMLAB framework, due to its design based on
few generic mathematical concepts. This section treats the
topics of numerical application construction and use with the
NUMLAB system.

As stated in Sect. 1, a numerical framework should pro-
vide an easy way to construct numerical experiments by as-
sembling predefined components such as grids, problem defi-
nitions, solvers, and preconditioners. Next, one should be able
to interactively change all parameters of the constructed ap-
plication and monitor the produced results in a numerical or
visual form. Shortly, we need to address the three roles of
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component development, application design, and interactive
use for the scientific computing domain.

We have approached the above by integrating the NUM-
LAB component library in the VISSION system. VISSION
is a general-purpose environment for ViIsualisation and
SImulation with Object-oriented Networks. The main feature
of VISSION is its capability to load independently developed
C++ component libraries and to display them in a visual,
iconic form in its network editor user interface (Fig. 1a).
The application designer can construct the desired compu-
tational or visualisation application by visually assembling
the desired components in a dataflow network. VISSION auto-
matically provides graphical user interfaces for all the loaded
components, as the example shown in Fig. 1b. Overall, VIS-
SION provides similar code integration, application construc-
tion, and steering mechanisms as the AVS, IRIS Explorer, or
Oorange environments, and generalises and simplifies their
use for arbitrary component libraries written in C++ (as de-
tailed in [46,47]).

As NUMLAB is written as a C++ component library, its
integration into VISSION was easy. Moreover, the structure of
NUMLARB as a set of components that communicate by data
streams in order to perform the desired computation matches
well VISSTION’s dataflow application model. As no modifica-
tion of the NUMLAB code was necessary, its integration in
VISSION took only a few hours of work.

Once all the NUMLAB components were integrated into
VISSION, constructing numerical applications with inter-
active computational steering and visualisation was easily
achieved by using VISSION’s visual network construction and
end user interaction facilities described above. We shall illus-
trate these with the Navier—Stokes problem discussed in the
previous section.

S0 hetwrork Manager - Em S
- _ network editor
'l Actions Layout Preferences Libraries Help |

5.1 S Navier—Stokes simulation

As outlined previously, numerical applications built with the
NUMLAB components are actually VISSION dataflow net-
works. Figure 1a shows such a network built for the Navier—
Stokes problem discussed in the previous section. The mod-
ules in the Navier—Stokes computational network in Fig. 1 are
arranged in five groups. The functionality of these groups is
explained in the following.

5.1.1 The computational domain. The first group contains
modules which define the geometry of the computational do-
main. This basically contains modules that accomplish three
functions:

1. definition of the computational domain’s contour.
2. definition of the reference geometric element.
3. mesh generation

In our example, the computational domain is a rectangu-
lar region whose boundary is defined by the Geometry-
ContourUnitSquareStandard module. This module
allows the specification of the rectangle’s sizes, as well
as a distribution of mesh points on the contour. Next, the
GeometryGridUniformTriangle module produces
a meshing of the rectangle into triangles. The reference
triangle geometry is given by the GeometryReference-
Triangle. The mesh produced by the GeometryGrid-
UniformTriangle module conforms both to the refer-
ence element supplied as input and to the boundary points
output by the GeometryContourUnitSquareStan-
dard module. Different combinations of contour definitions,
mesh generators, and reference elements are easily achieved
by using different modules. In this way, 2D and 3D regu-
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Fig. 1. a Navier-Stokes simulation built with NUMLAB components. b User interface for the grid generator module



lar and unstructured meshes of various element types such
as triangles, quadrilaterals, hexahedra, or tetrahedra can be
produced. The produced mesh can be directly visualised or
further used to define a computational problem.

5.1.2 Function spaces. The second group contains modules
that define the function space V over the computational do-
main. The modules in this group perform two functions:

1. definition of a set of basis functions v; that span V.
2. definition of V from the basis functions and the discre-
tised computational domain.

The first task is done by the SpaceReferenceTriangle-
Linear and SpaceReferenceTriangleQuadratic
modules, which define linear, respectively quadratic basis
functions on the geometric triangles. The functions are next
input into the Space module, which has already been dis-
cussed in the previous sections. The support of the basis func-
tions is defined by the computational domain’s discretisation
which is also input into Space. In our case, Space uses
the quadratic basis function module twice and the linear basis
function module once, as the 2D Navier—Stokes problem has
two velocity components to be approximated quadratically
and one linearly approximated pressure component.

An important advantage of the design of NUMLAB is
the orthogonal combination of basis functions and geometric
grids. Several other (e.g. higher order) basis function modules
are provided as well, defined on different geometric elements.
By combining them as inputs to the Space module, one can
easily define a large range of approximation spaces for vari-
ous computational problems. In the case of a diffusion PDE
solved on a grid of quadrilaterals, for example, one would
use a single SpaceReferenceQuadLinear basis func-
tion input to the Space module.

5.1.3 Operators and solvers. The third group contains mod-
ules that define the function F for which the equation
F(x) =0 is to be solved, as well as the solution method
to be used. This group contains thus specialisations of the
Operator and Solver modules described in the previous
sections.

In our example, the discrete formulation of (26) discussed
in the previous section is implemented by the Operator-
ImplementationFiniteElementNavierStokes mod-
ule. The Navier—Stokes problem is solved by a Newton
solver implemented by the OperatorIteratorNon-
LinearNewtonDamped module. The linear system output
by the Newton module is then solved by a conjugate gra-
dient solver implemented by the OperatorIterator-
LinearCGS module. The solution is accelerated by using
an incomplete LU preconditioner OperatorIterator-
LinearILU which is passed as input to the conjugate gra-
dient solver.

Other problems can be readily modelled by choosing
other operator implementations. Similarly, to use another so-
lution or preconditioning method, a chain of Solver spe-
cialisations can be constructed. As solvers have an input of
the same Solver type, complex solution algorithms can be
built on the fly.

5.1.4 Functions. The fourth group contains specialisations of
the Function module. These model both the solution of
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a numerical problem as well as its initial conditions or other
involved quantities such as material properties. In our ex-
ample, the FunctionVector module holds both the vel-
ocity and pressure solution of the Navier—Stokes equation.
The solution is updated at every iteration, as this module is
connected to the solver module’s output. As explained in the
previous sections, a function is associated with a space. This
is seen in the Function’s input connection to the Space
module.

The solution of the problem is initialised by connecting
the FunctionSymbolicBubble module to the Func-
tionVector’s input. When the user changes the initial
solution value, by changing an input of the Function-
SymbolicBubble signal or by replacing it with another
function, the network restarts the computations from this new
value.

5.1.5 Visualisation. As presented in Sect. 1, a computational
environment should provide extensive support for data vi-
sualisation and monitoring. Such support should cover the
following:

— several dataset representations, such as structured, un-
structured, curvilinear, rectilinear, uniform and locally re-
fined grids, with several types of values defined per node
or per cell (scalar, vector, tensor, colour, etc). Support for
image datasets should be provided as well. Besides these
discrete datasets, the possibility of defining continuous
datasets (e.g. implicit functions) should also be taken into
account.

— several dataset processing tools, such as dataset read-
ers and writers for various data formats, filters produc-
ing streamlines, streamribbons, isosurfaces, warp planes,
slices, dataset simplifications, feature extraction, and so
on. Imaging operations should also be supported, such as
image filtering, Fourier transforms, image segmentation,
colour processing, etc.

— several visualisation primitives, such as 2D and 3D ren-
dering or objects with various shading models, mapping
scalars to colours via various colourmaps, direct manipu-
lation of the viewed objects, interactive data probing and
object picking, hard copy options, animation creation, and
SO on.

A second requirement is that the visualisation tools should
be open for extension or customisation, as researchers often
need to extend, adapt, optimise, or experiment otherwise with
various visualisation algorithms and data structures.

Writing such a library is clearly a task out of the scope of
a single person. Moreover, such libraries exist, offering vari-
ous degrees of application domain specificity and numbers of
components. In order to provide NUMLAB with the desired
visualisation capabilities, we have integrated the Visualiza-
tion Toolkit (shortly VTK) [44] library into the VISSION en-
vironment. VTK is one of the most powerful freely available
scientific visualisation libraries, with over 400 components
for scalar, vector, and tensor visualisation, imaging, volume
rendering, charting, and more. Similarly to NUMLAB, VTK is
implemented as a set of C++ classes that specialise a few ba-
sic concepts such as datasets, filters, mappers, actors, viewers,
and data readers and writers.

Back to the Navier—Stokes simulation network of Fig. 1,
we finally discuss the modules that provide visualisation fa-
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cilities. The main module is the FunctionVTKViewer
module group which takes as input the current solution of the
Navier—Stokes equation and the grid upon which it is defined.
In VISSION, a module group represents a whole subnetwork
of modules or groups which are treated as a single mod-
ule. In our example, the FunctionVTKViewer module
inputs the velocity and pressure solution components into var-
ious visualisation modules, such as stream lines and hedge-
hogs for the vectorial, respectively colour plots and isolines
for the scalar component. These modules are accessible to
the interested user by double-clicking on the Function-
VTKViewer icon.

Several other visualisation methods can be easily attached
to the Navier—Stokes simulation, by editing the contents of
the FunctionVTKViewer module group. Keeping the vi-
sualisation back-end pipeline inside a single module group al-
lows a natural separation of the computational network from
the post-processing operations. This also helps to reduce the
overall network visual complexity.

5.2 Navier—Stokes simulation steering and monitoring

Once the Navier-Stokes computational network is con-
structed, one can start an interactive simulation by changing
the parameters of the various modules involved, such as mesh
refinement, solver tolerance, or initial solution value. All the
numerical parameters, as well as the parameters of the visu-
alisation back-end are accessible via the module interactors
automatically created by VISSION (Fig. 1b).

Moreover, the evolution of the intermediate solutions
produced by the Newton solver can be interactively vi-
sualised. This is achieved by constructing a loop which
connects the output of the OperatorIteratorNon-
LinearNewtonDamped module to its input. The module
will then change the FunctionVector, and thus the vi-
sualisation pipeline downstream of it, at every iteration. This
allows one to interactively monitor the improvement of the
solution at a given time step, and eventually change other
parameters to experiment new solvers or preconditioners.

SEEE

obstacle tip
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Figure 2 shows a snapshot from an interactive Navier—
Stokes simulation. The simulation domain, shown meshed
in Fig. 2a, consists of a 2D rectangular vessel with an inflow
and an outflow. The inflow and outflow have both parabolic
essential boundary conditions on the fluid velocity. The sharp
obstacle placed in the middle of the container can be interac-
tively manipulated by the end user by dragging its tip with the
mouse anywhere inside the upper-left vessel picture. Once the
obstacle’s shape is changed, the NUMLAB network re-meshes
the new domain, recomputes the stationary solution for the
Navier-Stokes simulation defined on this new domain, and
displays the pressure and velocity solution (Fig. 2). Various
other parameters, such as fluid viscosity, mesh refinement,
and solver accuracy, can also be interactively controlled. The
computational steering of the above problem proceeds at
near-interactive rates, for e.g. 2000 elements on an SGI O2
R5000 machine. Consequently, such NUMLAB setups can
be used for quick, interactive testing of the robustness and
accuracy of various solvers, preconditioners, and mesh gener-
ators. For example, one can test the speed and robustness of
an iterative solver for different combinations of obstacle size
and shape, mesh coarseness, and fluid viscosity for the above
problem. Alternatively, a fine mesh can be used for obtaining
accurate solutions.

NUMLAB can also be used for solving large computa-
tional problems. In the following example, glass pressing in
the industry is considered. The process of moulding a hot
glass blob pressed by a parison is simulated. The glass is
modelled as a viscous fluid, subjected to the Navier—Stokes
equations. The pressing simulation is a time-dependent pro-
cess, where the size and shape of the computational domain
is changed at every step, after which the stationary Navier—
Stokes equations are solved on the new domain. The flow
equations can be solved on a two-dimensional cross-section
in the glass, since the real 3D domain is axisymmetric.

The simulation is analogous in many respects to the one
previously presented. However, a mesh in the glass press-
ing simulation involves tenths of thousands of finite elements,
whereas the previous example used only a few hundreds.

Ll Bun MNewion iter 0 % Viseosity 1.000 E Mesh 0.423

Fig. 2. Interactive Navier—Stokes simulation: domain, mesh, pressure, and velocity solution
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Fig. 3. 3D visualisation of glass pressing (top row). Pressure magnitude in 2D cross-section (bottom row)

Consequently, the latter simulation can not be steered interac-
tively. However, all computational parameters of the involved
NUMLAB network can be interactively controlled at the be-
ginning of the process, or between computation steps. Fig-
ure 3 shows several results of the glass pressing simulation.
The first row depicts several snapshots of the 3D geometry
of the moulded glass, reconstructed and realistically rendered
in NUMLAB from the 2D computational domain. The sec-
ond row in Fig. 3 shows fluid pressure snapshots taken during
the 2D numerical simulation. The output of the NUMLAB vi-
sualisation pipeline can be connected to the MPEGCreator
module. In this way, one can produce MPEG movies of the
time-dependent simulation which can be visualised outside
the VISSION environment as well. For the MPEGCreator
module, we have actually reused the freely available code of
the same module in the AVS system [49], by adding a simple
C++ class interface to it. This reuse is typical for the open
structure of the NUML AB-VISSION combination.

The above has presented two computational applications
built with the NUMLAB library in the VISSION system. How-
ever different in terms of interactivity, computational com-
plexity, and visualisation needs, these applications illustrate
well the smooth integration of numerics, user interaction, and

on-line visualisation that is achieved by embedding the NUM-
LAB library in the VISSION environment.

6 Conclusions and future work

The numerical laboratory NUMLAB was designed to ad-
dress two categories of limitations of current computational
environments.

First, NUMLAB addresses the functional limitations of
many computational systems by factoring out of a few fun-
damental mathematical notions: Vector functions x, spaces V,
operators F on such spaces, and implementation of the eval-
uation z = F(x). Based hereon, all its (iterative) solution
methods, preconditioners, time integrators, finite element/
difference/volume operators, etc. are instances of approxi-
mate evaluations z &~ F(x). Because roots are in general com-
puted with the use of evaluations z = F(x) — and sometimes
evaluations involving Jacobians — NUMLAB extension are
simple. Its objects are close to the modelled mathematics.

Secondly, NUMLAB is easy to extend, customise and sim-
ple to use for a large application class. It provides interactive
application construction, steering, and visualisation with its
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network editor VISSION. In VISSION, but also outside in com-
piled and interpreted programs, its numerical libraries can be
intermixed with other visualisation, data processing, and data
interchange libraries.

NUMLAB seperates its numerical libraries, visualisation
libraries VTK/OI and interaction and dataflow library VIS-
SION. This makes their extension, maintenance, and under-
standing much easier than in systems where the above li-
braries are amalgamated in one (source) code.

The scientific researcher who uses NUMLAB can with
ease focus on the testing of new mathematical algorithms
and applications. This is shown by the large class of applica-
tions implemented in our framework (Fig. 4). Large datasets
produced by computational flow dynamics simulations are in-
teractively visualised by for instance arrow plots (Fig. 4a),
slices (Fig. 4b), or interactively placed stream tubes (Fig. 4c).
Mathematical objects can be computed and visualised, such
as scalar functions (the isosurface plot in Fig. 4d or a quadric
function), or tensor functions (the hyperstreamline and the
isosurface plots on Fig. 4e,f of a stress tensor caused by
a point load on a semi-infinite domain). Various simula-
tions have been implemented and interactively run, such as
wave simulations (Fig. 4g), elasticity problems, (Fig. 4h), and
global illumination using the radiosity method (Fig. 4i), as de-
scribed in [15, 16].

However flexible, the NUMLAB environment has also
a number of conceptual and practical limitations, as follows.
Conceptually, the network application model it uses can be
sometimes unintuitive for its users. A NUMLAB network (see
e.g. Fig. 1) reflects directly the object oriented structure of the
underlying C++- library. Understanding this structure and the
role its fine-grained components play involves a certain learn-
ing curve for the end users. In many cases, the complexity of
the networks can be hidden from the end user by the usage of
groups (Sect. 5.1.5). Overall, we believe that this extra com-
plexity is a reasonable price to pay for the generic nature of
the toolkit.

From the practical viewpoint, solving large PDE prob-
lems in NUMLAB is still slower compared to using spe-
cialised toolkits. This is due to the generic nature of the
NUMLAB modules that can not make assumptions about
specific data storage or discretisation properties provided
by other modules (see e.g. Sect. 3.3). This problem can be
tackled in several ways: implementing less generic (opti-
mised) modules, reengineering the generic modules’ imple-
mentations to make more extensive use of data caching,
or parallelising the numerical code, as outlined further in
this section. A second limitation involves the need to pro-
gram new Operator subclasses e.g. to model new PDEs
(see Sects. 3.4 and 4.1). A better approach would be to de-
sign generic Operators that accept their definition via
a symbolic, interpreted notation. Implementing such generic
Operators would raise the same efficiency problems out-
lined above.

Multigrid solvers can be used within the NumLab frame-
work, but right now, no special support is provided. In order
to offer convenient multi-grid solver modules, a few mod-
ules need to be extended, and others must be added. The grid
and solution data types must be extended to handle internal
stacks of grids and solutions. Restriction and prolongation re-
quire new modules, and application-specific preconditioners
are desirable. The strong coupling between the grid and basic
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iterative solvers need not be a problem: operator evaluation
can be grid based.

We plan to extend the NUMLAB library with even more
modules, including readers and writers for the standards
MathML and OpenMath [14] Along with this, we plan to
integrate a new technique for automatic, transparent paralleli-
sation of all numerical code in NUMLAB.
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