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Abstract We present a novel approach for extreme
simplification of point set models, in the context of real-
time rendering. Point sets are often rendered using sim-
ple point primitives, such as oriented discs. However,
this requires using many primitives to render even mod-
erately simple shapes. Often, one wishes to render a sim-
plified model using only a few primitives, thus trading
accuracy for simplicity. For this goal, we propose a more
complex primitive, called a splat, that is able to approx-
imate larger and more complex surface areas than ori-
ented discs. We construct our primitive by decomposing
the model into quasi-flat regions, using an efficient alge-
braic multigrid algorithm. Next, we encode these regions
into splats implemented as planar support polygons tex-
tured with color and transparency information and ren-
der the splats using a special blending algorithm. Our
approach combines the advantages of mesh-less point-
based techniques with traditional polygon-based tech-
niques. We demonstrate our method on various models.
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1 Introduction

Interactive rendering of geometric models brings about
the conflicting demands of high frame rates and good
image quality. Changing the representation of the model
to be rendered may help in achieving the right bal-
ance for particular applications. The recent direction of
modeling and rendering using point primitives instead
of traditional triangle meshes is an example of this.
Point-based rendering is more efficient for very complex
models than traditional triangle rendering, because the
scan-line coherence of triangles is lost when projected
to a small screen space area. An additional advantage
of point-based models is that the lack of connectiv-
ity information allows for efficient representation and
easier editing of the model.

The representation accuracy, and ultimately the ren-
dering quality of point models is usually achieved by
using simple point primitives that approximate small
surface areas. Simple point primitives, such as flat discs,
have just a few parameters: position, radius, color, and
normal. This makes them fast to render and efficient
to store. The drawback of this simplicity is that a point
can accurately describe only a small surface area. Very
dense samplings are needed to obtain a good rendering
quality, even for relatively simple models, resulting in
slower renderings than necessary.

Many applications, such as interactive and level-
of-detail rendering, data transmission, and object sim-
plification and matching, need to reduce the number
of primitives that are needed to render a given model,
trading off quality for model size and rendering speed.
When the primitive count is reduced with more than
two orders of magnitude, we speak of extreme model
simplification [10]. In case of simplification of point set
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models, two options are available, as follows. First, one
can use a lower amount of the same kind of simple point
primitives as for the original finely sampled models. The
multiresolution point rendering system QSplat [18] is a
good example of such a system. The simplification qual-
ity may considerably decrease, given the limited approx-
imation power of simple primitives such as oriented
discs. Nonuniform sampling techniques [15] may allevi-
ate this problem by distributing more points of smaller
size in areas of high variations of the model’s shape
and/or color and less larger points in flat, single-color
areas. However, the extreme simplification requirement
of reducing the primitive count from hundreds of thou-
sands to several hundred may lead to poor quality when
using such simple primitives.

A second option in the simplification is to store more
information per primitive. This yields primitives with a
higher approximation power for the model’s geometry
and/or color information, thus less primitives needed for
the same simplification quality. For example, differential
points [12] store local differential geometric information.
The accompanying simplification algorithm delivers a
sparser point set whose local sampling density reflects
the local surface variation. Surfels [16] store pre-filtered
texture, bump, and displacement maps in a multiresolu-
tion hierarchy and reduces the model sampling rate to
match the output screen resolution.

Nevertheless, the above point primitives and multi-
resolution techniques are still insufficient for extreme
simplification of point sets, when our target primitive
count is only a few hundred. The approximation power
of the current point primitives is still too small for the
large surface areas implied by the low primitive count of
our extreme simplification goal. Indeed, the color and
shape variability of larger surface areas can no longer
be accurately captured by simple parametric models or
radial basis functions. For example, the six sides of a
cube model could be optimally captured by six square-
shaped primitives, one for each face. However, even if
we availed of square-shaped primitives, six primitives
would not suffice in case of fine-scale color detail on the
faces. In this case, many point primitives are needed,
as points usually carry a single color per primitive. In
contrast, the classical polygon-based approach would
effectively represent the cube using six textured polygon
primitives.

The approach we present in this paper attempts to
bridge the gap between point-based and polygon-based
rendering. We aim to combine the point-based render-
ing model: many small, blended, mesh-less primitives—
with the polygon-based model: a few large, textured,
flat primitives. On the one hand, our approach inherits
the well-known mesh-less advantages inherent to point

sets. On the other hand, we use textures to increase the
primitive’s geometric and color approximation power,
hence delivering considerably less primitives than in
standard point-based rendering. We want to make use
of commodity graphics hardware for fast rendering, so
we build our primitive model and rendering algorithm
upon textured planar polygons. The trade-off for mas-
sively decreasing the primitive count and still working
with a mesh-less representation is paid by a decrease
in image quality. We control this trade-off by a multi-
scale approach, where every scale delivers a different
number of primitives approximating the given model.
Fine scales carry many primitives, and are close in ren-
dering quality to the classical point-based rendering.
Coarse scale levels address the issue of extreme model
simplification.

Concisely put, we can summarize the quest of our
method as “how to render point sets of hundreds of
thousands of points with a few hundreds of mesh-less
primitives”. Figure 1 illustrates the above. An octahe-
dron point set of 16,000 points is rendered using QSplat
(Fig. 1a). The extreme simplification proposed by our
method reduces it to eight splats, whose rendering is
shown in Fig. 1d. The advantage of our approach is clear;
we render eight hardware-accelerated splats, i.e. eight
textured and alpha-blended polygons, instead of 16,000
points.

Regarding extreme simplification of 3D models, our
approach is related to the recently presented billboard
clouds method [10]. Both methods yield a mesh-less
polygon representation. However, the simplification
heuristics, the implementation, obtained performance

Fig. 1 Global overview of our approach. An octahedron model
of 16,000 points is rendered using point primitives (a). The color-
coded surface classifier (b). The surface is decomposed into eight
domains, indicated by different colors (c). The model is rendered
using eight splats, or domain primitives (d)
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Fig. 2 Steps of the extreme
simplification and rendering
of point sets

and trade-offs are significantly different for the bill-
board clouds technique and the one presented in this
paper.

Our approach consists of three main stages: surface
decomposition, primitive construction and rendering
(see also Fig. 2 for a detailed overview of our pipe-
line). Given our efficiency-motivated choice for tex-
tured polygons as rendering primitives, we decompose
the point-set surface into quasi-flat regions. We com-
pute surface flatness using a moment-based local surface
classifier (Sect. 2.1) which is encoded into a finite ele-
ment matrix (Sect. 2.2). The surface decomposition algo-
rithm, based on an algebraic multigrid (AMG) method,
is detailed in Sect. 2. The AMG method produces a mul-
tiscale representation of the input surface in terms of
feature-aligned basis functions and corresponding sup-
port domains. Next, we construct one splat, or domain
primitive, for each domain and associated basis func-
tion. The domain primitives encode geometric and color
information carried by each region’s point samples in
the alpha, respectively color planes of a texture (Sect. 3).
This effectively and efficiently replaces the original point
model with a small set of textured primitives. Finally, we
render the simplified model by blending together the
splats (Sect. 4). The results of our method are discussed
in Sect. 5. Section 6 concludes the paper and presents
future work directions.

2 Surface decomposition

Recalling our goal, we want to quickly render a 3D sur-
face using just a few mesh-less primitives. As sketched
in Sect. 1, in a primitive-based (in contrast with image-
based) approach, the most complex hardware-supported
primitive we avail of is a textured planar polygon. Con-
sequently, we aim at decomposing the surface defined
by the point set into a number of quasi-flat, or nearly
flat, compact regions. These regions will be subsequently
approximated by domain primitives, i.e. textured poly-
gons. This decomposition is presented in the following.

The method for constructing domain primitives from
the quasi-flat regions is detailed further in Sect. 3. The
complete pipeline is summarized in Fig. 2.

Our decomposition method consists of three sub-
steps. First, we use a local surface classifier to detect
the point set regions corresponding to locally smooth,
respectively non-smooth (curved) areas of the model
(Sect. 2.1). Next, we encode this surface classifier in a
finite element matrix (Sect. 2.2). Finally, we use AMG to
produce a multiscale coarsening of this matrix (Sect. 2.3).

2.1 Local surface classification

Local surface classification attempts to assign a smooth-
ness value to every point x in the point set, in order to
distinguish between smooth, or quasi-flat, surface areas,
and highly curved areas, such as the vicinities of edges,
cusps, or tips. For this aim, we take into account the
points ni in a small 3D spatial neighborhood N of x. N
is chosen such that (a) it contains a minimal number
of points for stable classifier computation and (b) the
radius of N is not larger than the size of the features
we want to be visible in the approximation. For the first
requirement, we efficiently compute N as the k nearest
neighbors of x, for given k. For the second requirement,
we define N as the ball Bε(x) of given radius ε centered
at x. In practice, we combine the above, i.e. prescribe a
minimum number of neighbors kmin, to enforce the first
requirement. If the kth

min closest neighbor of x is closer to
x than the prescribed minimal feature size ε, we consider
all additional nearest neighbors in Bε(x).

Given the above, we use a surface classifier based
on the zero and first moments of N. This classifier is
described in great detail in [3], so here we limit our-
selves to a concise presentation thereof. Moments allow
us both to distinguish between smooth and non-smooth
surface parts (classification) and also to stably compute
local tangent planes to the surface. We use this latter fea-
ture when assembling our surface classification matrix
(Sect. 2.2).
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For a continuous surface M, the zero moment is given
by the local barycenter of M with respect to an Euclid-
ean ball Bε(x) centered at x:

M0
ε (x) = M0

ε :=
∫
−

Bε∩M
x dx. (1)

The first order moment is then defined as:

M1
ε (x) :=

∫
−

Bε∩M
(x − M0

ε ) ⊗ (x − M0
ε ) dx

=
∫
−

Bε∩M
(x ⊗ x − M0

ε ⊗ M0
ε ) dx , (2)

where y ⊗ z := (yizj)i,j=1,...,3. The first moment approx-
imates the matrix �TxM that describes the projection
onto the surface local tangent space TxM [4]. If λ0 >

λ1 > λ2 are the eigenvalues of the 3×3 symmetric matrix
M1

ε , then the corresponding eigenvector e2 is the nor-
mal of the approximate tangent plane, whereas e1 and e0
form a 2D coordinate system in the plane itself. Figure 3a
illustrates the above in two dimensions. The zero and
first moments (Eqs. 1 and 2) are computed numerically
as sums over the sample points. This is very similar to the
principal component analysis, or so-called ‘surface vari-
ation’, used in [1,14,21]. Essentially, the radius ε in both
our moment-based and the surface variation approaches
has the role of a filter size: The tangent plane ignores, or
filters out, features significantly smaller than ε.

Next, we define our surface classifier Cε as:

Cε = G

(
||M0

ε (x) − x||λ2(M1
ε (x))

ε λ0(M1
ε (x))

)
, (3)

with G(s)= (α+β s2)−1 with suitably chosen α, β > 0. In
all our applications, we have fixed α = 0.01 and β = 100.
The function G causes Cε to be close to 1 in relatively
smooth surface areas and one up to several orders of
magnitude smaller close to edges or cusps, thus making

a b

Fig. 3 Tangent plane (a) and local triangulation (b)

surface classification easier. We used a similar classi-
fier for processing of point surfaces [3,6]. Moreover, we
used an analogous classifier, though defined on triangu-
lar mesh surfaces instead of point sets, to decompose
these surfaces into quasi-flat areas. [5].

Figure 1b shows the surface classifier on a point set
model, for different values of k closest points. Smooth
surface regions appear red, whereas highly non-smooth
ones (e.g. creases) appear blue. The value of k, essen-
tially correlated with ε, clearly acts as a filter that
removes small-scale surface noise.

2.2 Matrix encoding of surface classifier

Our goal is to use the local surface classifier introduced
in Sect. 2.1 to decompose the surface into quasi-flat com-
ponents. For example, we would like to decompose the
octahedron shown in Fig. 1a into eight regions corre-
sponding to its faces (Fig. 1c). We shall use for this
decomposition an algebraic multigrid (AMG) approach
(Sect. 2.3). As a prerequisite to using AMG, we need to
‘convert’ our classifier C into a mathematical operator
A[C] defined on the surface. We define this operator as:

A[C] := −div M(C ∇M ) ,

where ∇M and div M are the gradient, respectively its
dual divergence operator on a surface M embedded in
R

3. Essentially, A[C] describes a non-uniform diffusion
process on the surface M, where the classifier C plays
the role of diffusion coefficient. We are not interested in
performing diffusion on the surface itself, just in a mul-
tiscale decomposition of the operator A[C]. To do this,
we first need to discretize the operator. For this, we use
a finite element model, as follows. In case our surface
discretization were a triangular mesh, we could directly
compute A, the discrete matrix form of the operator A:

Aij =
∑

l

C(Tl)∇Tl�i · ∇Tl�j |Tl|, (4)

where �i are the usual linear affine basis functions
defined on the mesh triangles, �k(xj

i) = δkj, for all mesh
nodes k and j. Here {Tl}l denotes the triangle fan around
every mesh node, ∇Tl the gradient of the affine triangle
Tl, C(Tl) the classifier value for triangle Tl computed by
averaging the nodal classifier values (Eq. 3), and |Tl| the
area of this triangle respectively. Assembling A is done
in the usual manner, i.e. by iterating over all mesh trian-
gles, next over all pairings of local nodal basis functions,
followed by updating the entries Aij corresponding to
these pairs. The above procedure is described in full
detail for triangle meshes in [5].

However, in our case we avail of a point set, not a
global triangle mesh. Building the matrix A, as well as
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the underlying finite element model, is different in this
case. Essentially, we use the finite element model for
point sets described in [3], which we briefly outline in
the following for the sake of clarity and completeness.
As described in Sect. 2.1, we compute a tangent plane
{x ∈ R

3 | e2 · (x − xi) = 0} to every point xi of our point
set using the eigenvector e2 of the second moment’s
vanishing eigenvalue. Next, we project all neighbors xj

i
in the neighbor set Ni of xi onto it. To simplify notation,
we add xi as x0

i in Ni. We obtain the projected neighbor
set Np

i = {Xj
i }j=0,···k in the tangent plane (e0,e1) (Fig. 3a).

Next, we compute the Delaunay triangulation Ti of the
projected points Np

i , using an efficient and robust soft-
ware package [20]. Note that this is a 2D triangulation
taking place in the tangent plane. From Ti, we select the
triangle fan Fp

i = {Tp
i }i of projected triangles Tp

i around
the projected seed point X0

i (Fig. 3b). This triangle fan
allows us to define the neighbor set N p

i of xi as being
the points x whose projections Xj

i are used in the trian-
gle fan Fp

i . Finally, we denote by Ni the 3D points that
correspond, via projection, to N p

i .
The above scheme allows us to define a local tangent

finite element space at every point xi in the point set. We
proceed now to assemble the preliminary matrix entry:

Ãij =
∑

l

C(Tl)∇Tl�i · ∇Tl�j |Tl|, (5)

similarly to Eq. 4, but selecting the triangle Tl from the
local triangle fans Fi = {Tl}l. Integration takes place
on the 3D triangle fan Fi, and not on its 2D projection
Fp

i , since we want to encode a strong coupling between
points in quasi-flat regions and weak coupling between
points separated e.g. by a crease.

Ãij describes the coupling of point i with its neigh-
bors j, from the point of view of i. Indeed, Ãij may differ
from Ãji, since the triangle fan computations of i and j
are purely local. To yield a classical stiffness matrix Aij,
we symmetrize the computations by defining:

Aij = 1
2
(Ãij + Ãji), (6)

for i �= j and for the diagonal entries

Aii = −
∑

xj∈N (xi)

Aij. (7)

The matrix A has now the same properties as a classi-
cal stiffness matrix defined e.g. on a triangulation mesh
(Eq. 4). Intuitively, Aij is high if the neighbor points i
and j are situated in a quasi-flat region. Aij reaches its
lowest values for neighbor points i and j that are sepa-
rated by a crease. Among others, A is a sparse matrix, as
the average size of Ni is under ten neighbors per point.

This matrix is the input of our surface decomposition,
detailed in Sect. 2.3. We next comment a few issues on
the proposed matrix construction scheme, for the full
details referring to [3].

The local triangle fan scheme is robust, for two main
reasons. First, we use a relatively large k-closest point set
of 50..100 points. This makes the moment-based eval-
uation of the tangent plane stable [4]. Moreover, the
tangent plane need not be very accurate, since we use
it only as a support for performing the Delaunay trian-
gulation. Next, we select just a small subset Fp

i of 5..10
triangles from this triangulation, which makes the neigh-
bor Ni computation very robust. Practically, the above
mean that small variations of the tangent plane orienta-
tion, caused by the moment evaluation, will not change
a point’s neighbor set [3]. Finally, the symmetrization
phase (Eqs. 6 and 7), needed in those relatively unfre-
quent cases when the neighbor relation is not symmet-
ric, can be seen as a filter acting on the encoded surface
classifier. Even though this may smooth out individual
classifier values, we shall further use just a coarsened
(simplified) version of the matrix A (Sect. 2.3), so the
symmetrization phase has negligible side-effects.

2.3 Algebraic multigrid decomposition

So far, we have encoded the surface’s ‘flatness’, ex-
pressed by our moment-based classifier, into a stiffness
matrix. We now proceed by performing a multiscale sim-
plification, or coarsening, of this matrix. The aim of this
phase is to deliver a multiscale of correspondingly sim-
plified surfaces consisting of progressively larger quasi-
flat regions.

For the matrix coarsening, we use an algebraic mul-
tigrid (AMG) algorithm. AMG was originally designed
for solving large, sparse linear systems Au = f coming
from the discretization of scalar elliptic PDEs, such as
diffusion problems. Briefly, given a fine-scale matrix
A0 = A, AMG attempts to compute a matrix sequence

Al := RlAl−1Pl = (Pl)TAl−1Pl ,

via a so-called Galerkin projection, or ‘natural coars-
ening’. Here, the restriction Rl is the transpose of the
prolongation, Rl := (Pl)T . Figure 4 shows the general
working of the AMG algorithm.

The key element here is defining the prolongation
matrices Pl that describe how coarse-scale (l) basis func-
tions are computed from fine-scale (l−1) basis functions.
AMG constructs prolongations such that the coarse-
scale matrices Al preserve the ‘strong couplings’ pres-
ent in the fine-scale matrices Al−1. For our applica-
tion, it is important to mention that the construction
of the prolongations {Pl}l=0,...,L is equivalent to con-
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Fig. 4 Overview of the AMG algorithm

structing a set of progressively coarser, problem-depen-
dent bases {� l,i}l=0,...,L. On every level, these bases are
aligned with the strong matrix couplings present on that
level. This is done using the notion of algebraic smooth-
ness [2,17], based on the general observation that a sim-
ple Gauss–Seidel relaxation scheme damps components
in the direction of matrix eigenvectors associated with
large eigenvalues. Consequently, the coarse bases � l,i

are chosen such that they deal with the remaining com-
ponents of an eigenvector decomposition. Since AMG
uses just the previous level l − 1 when constructing the
prolongation Pl, it works efficiently even for very large
matrices A0: Its complexity is O(n), where n is the num-
ber of rows of the initial matrix A0.

Although the theory and design of AMG are rather
involved, it can be used as a ‘black box’ for many appli-
cations requiring coarsening of a matrix that encodes
some fine-scale, problem-dependent coupling informa-
tion. Examples of previous applications are multiscale
image segmentation [19], large graph layouts [13], vector
field clustering [9], and multiscale surface decomposi-
tion [5]. In particular, we use here the same surface clas-
sifier, AMG implementation, and parameter settings as
for the surface decomposition method presented in [5].
The main difference is that here we build our stiffness
matrix using finite elements defined on point-based sur-
faces, instead of classical triangle meshes. Finally, we
mention that any AMG tool (see e.g. http://www.mgnet.org)
can be used for our matrix coarsening. Specifically, we
use exactly the same AMG implementation which was
used in [5] and [9], which is described in further de-
tail in [7,8]. Our AMG implementation, in contrast e.g.
to [17], treats robustly only symmetric, diagonally dom-
inant matrices, which is the main technical reason for
which we applied the symmetrization phase described
earlier in Sect. 2.1.

The number of basis functions between successive
scales is reduced by a factor between 2 and 3 approx-
imately. This is inherent to our AMG implementation.

For typical point set models, we obtain thus between 10
and 15 decomposition levels L. Moreover, the coarsest
levels L · · · L − 5 usually contain between under 10 and
up to a few hundred bases � l,i. Since our aim is to render
every such base with a single graphic primitive (Sect. 3),
instead of the initial tens up to hundreds of thousands
of points, we can speak of an extreme simplification.
The above bases � l,i have relatively large supports. We
define the domain Dl,i of a basis function as the set of
points where the basis function value exceeds a user-
defined threshold τ :

Dl,i = {x|� l,i(x) > τ }. (8)

In practice, we set τ to approximately 0.05. This yields
a multiscale surface decomposition into overlapping
domains Dl,i. Since the coarsened matrix encodes sur-
face flatness, the domains Dl,i define regions of the input
surface which are as quasi-flat as the surface’s shape per-
mits. For inherently curved surfaces, such as a ball, these
domains will evidently become progressively less flat
once one considers coarser levels. However, if permit-
ted by the surface’s shape, the decomposition correctly
identifies flat surface components even on the coarsest
level. In Fig. 5b, we show a basis function located on
a large flat surface region (the side face of the rocker-
arm model). We can see that this basis function abruptly
stops at the crease separating the model’s side face from
the upper face, as expected. In the flat area of the side
face, the basis function decreases smoothly, since there
is no curvature variation information. The overlapping
of domains is well visible in Fig. 5d, where each domain
of the rocker-arm decomposition is colored with a dis-
tinct color (red, green, yellow, blue, or purple) different
from its neighbor domains. Color mixing signals over-
lapping domains. In contrast, there is practically no such
domain overlap for the octahedron (Fig. 5c). Here, every
face corresponds to one single domain.

After decomposition, one level is chosen by the user
from the multiscale. Finer levels deliver more domains
of smaller size, which are thus implicitly closer to the
quasi-flat requirement. Coarser levels may, especially
for inherently curved objects, deliver domains which are
far from the quasi-flat desiderate. Since we shall further
use these domains to approximate our point set by a
simplified rendering (Sect. 3), the level choice acts as a
trade-off between performance and visual quality. Given
our extreme simplification goal, we chose in practice a
level around L − 5, where L is the coarsest decomposi-
tion level.

Summarizing, AMG can be considered to define a
fuzzy clustering of the point set into quasi-flat domains:
The bases � l,i(x) define, on every level l, the degree of
membership of every point x to every domain Dl,i. At
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Fig. 5 Basis function for the octahedron and rocker-arm model,
using a blue-to-red color map of the interval [0..1] (a, b). The
domains are shown with distinct colors (c, d). Colors are mixed
for overlapping domains

points situated in clearly flat areas, such as the faces of
the octahedron in Fig. 5a, one basis function � l,i will
be close to unity, whereas all others � l,j, j �= i, will
be close to zero, as the sum of all bases at a point is
always one (partition of unity). By thresholding (Eq. 8),
we further decrease the number of bases acting upon a
point to only those having non-negligible values. In this
way, we further strengthen the partition of points into
disjoint domains Dl,i. In areas of intermediate surface
curvature (i.e. far from clear edges or flat zones), points
will be inherently under the influence of several bases,
i.e. the domains Dl,i will overlap (Fig. 5d). Next, we map
regions to graphical primitives (Sect. 3) and region over-
lap into a blending-based rendering algorithm (Sect. 4),
in order to produce an image of our extremely simplified
model.

3 Primitive construction

The surface decomposition discussed in Sect. 2.3 deliv-
ers, on a given scale l, a set of basis functions � l,i and
associated quasi-flat domains Dl,i. We now construct a
domain primitive for each domain D and basis function
� at the chosen scale. Since primitive construction is

Fig. 6 Primitive construction pipeline

identical for every level l and domain and basis i, we drop
now the indices l and i. When rendered together, domain
primitives should convey an image close to the original
point-based rendering. To maximize speed, we encode
the information in D and � in an efficient rendering
combination: a support polygon P with a texture T. The
complete process is illustrated in Fig. 6. We first describe
how the support polygon is constructed (Sect. 3.1). Next,
the texture construction is detailed (Sect. 3.2).

3.1 Support polygon

The support polygon P serves as planar approximation
for the points {xi} contained in a (quasi-flat) domain D.
The process of constructing P is depicted in Fig. 7. To
limit the geometric information loss produced by pro-
jecting the points of D onto a plane, we choose this plane
to minimize the sum of squared distances to the points
in D, using principal component analysis (PCA). This is
similar to computing the local tangent planes (Sect. 2.1).
However, here we use all points in a domain D, whereas
local tangent planes used just small local neighborhoods.
After projecting the points {xi} to {xP

i } on the tangent
plane, a bounding polygon P is constructed. We compute
P as a bounding rectangle, using the eigenvectors e0 and
e1 of the PCA on D’s points as the rectangle’s main
axes. While this does not deliver an optimal bounding
rectangle, the result is only slightly sub-optimal in prac-
tice. We could construct a tighter fitting, more complex
n-sided bounding polygon instead, e.g. using a convex
hull algorithm. However, using rectangles for P is simple

Fig. 7 Domain points {xi}
(a). PCA is performed to find
the principal axes (b).
Projected points {xP

i } on
plane (e0,e1) (c). The range of
projections of {xP

i } on e0 and
e1 determines the bounding
rectangle’s size (d)
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and efficient to implement, especially when performing
texture mapping (Sect. 3.2).

3.2 Texture construction

The support polygon P described in the previous section
serves to carry a texture map T. This texture encodes two
types of information extracted from the original point
set: point colors, in the texture’s color channels, and
geometric (shape) information, in the texture’s alpha
channel, respectively. Point color information is simply
transferred from the original 3D points {xi} to their 2D
projections {xP

i }. Next, the 2D projections get assigned
transparency values equal to the basis function values
�(xi) at the original 3D locations xi. Finally, from the
set of 2D scattered points {xP

i }, with color and transpar-
ency information, located inside the bounding rectangle
P, we compute a texture T. This amounts to a resam-
pling of the set {xP

i } on a regular grid of texels of user-
specified resolution. For this, we have used two sets of
basis functions: radial and linear, as follows.

Radial basis functions are 1 at the point sample and
fall down to 0 radially. Different profiles are possible,
such as constant, linear, or Gaussian. We set the fall-off
radius proportional to the radius value available in every
point {xi} of the point set [18]. By tuning this factor, as
well as the profile, different degrees of color and trans-
parency data smoothing can be achieved. Large fall-off
radii generate smoother interpolations, but also over-
bright areas resulting from a violation of the partition of
unity. In contrast, linear affine basis functions inherently
enforce the partition of unity. We define such functions
using a Delaunay triangulation of the projected 2D point
set {xP

i }. Triangles created for domain concavities must
be removed, because they do not belong to the domain
surface (Fig. 8). These triangles can be identified by hav-

Fig. 8 Domain triangulation. A domain concavity is encircled.
These triangles are removed from the final result

ing at least one edge which length is more than the sum
of the two incident vertices’ radii. For all texels inside the
triangulation, we interpolate the color and transparency
information using the linear basis functions. For texels
outside the triangulation, but within a point’s radius,
i.e. texels close to the triangulation’s boundary, we use
radial basis functions. All other texels receive a default
value of zero.

At this point, we have transferred the whole (simpli-
fied) point set information into a set of domain primi-
tives consisting of textured polygons. Geometry is
encoded both in the polygons’ orientations as well as in
the textures’ alpha values – the latter encodes the object
shape as captured by the basis functions. Color is nat-
urally encoded in the texture color channels. Finally, if
normal maps are supported by the graphics hardware at
hand, point normal information can be stored in a simi-
lar texture, or normal map. However, using normal maps
during rendering would require programmable graphics
hardware, whereas one of our requirements was to have
a minimal method which requires only the standard,
fixed graphics pipeline of OpenGL 1.1 to be used. This
makes our method applicable on low-end graphics hard-
ware, which makes sense if we think this is precisely the
type of hardware on which one would want to render
highly simplified 3D models.

4 Primitive rendering

In this section we will discuss how to render the domain
primitives, thereby reconstructing a simplified view of
the surface defined by the point set. The main idea
here is to use the basis function information (Sect. 2.3),
encoded as transparency (Sect. 3.2), to blend together
the domain primitives into a smooth-looking surface.
However, blending the domain primitives requires spe-
cial care. First, the interaction between blending and
depth buffering must be taken care of. Second, the par-
tition of unity property, i.e. the fact that basis functions
sum overall to one, holds only on the original 3D surface,
but not on the projected 2D support polygons. These
issues are explained next.

Depth buffering normally ensures that only the front-
most fragment for each pixel is visible on the screen.
However, blending requires that multiple overlapping
surface fragments are combined per pixel. Simply dis-
abling the depth test is erroneous in our case, as visible-
surface determination is no longer performed then.
Depending on the viewpoint, arbitrary basis function
values from completely different parts of the surface
may be projected to the same 2D screen area. Blending
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Fig. 9 Simplified 2D view of a scene. The surface is indicated
by the stippled curve, the domain primitives by straight lines. The
fragment list for pixel x is indicated at the bottom. Its prefix con-
sists of fragments F1 and F2 representing the surface’s front-most
intersection with the view ray through pixel x

will sum up these values, whereas they would not be
summed on the original 3D surface. The result is that
surface parts that should normally be occluded are now
blended with the occluding surface parts. We must thus
solve the visibility problem differently. We make the
observation that for each pixel only the front-most frag-
ments should blend and be visible. By front-most frag-
ments for a given pixel, we mean the fragments that
overlap on the surface at its front-most intersection with
a view ray cast from the viewpoint through the pixel. We
call the correct set of fragments for a pixel the prefix, as
it can be thought of as the prefix of a depth-sorted frag-
ment list along the view ray (see Fig. 9).

Ideally, we could proceed as follows for finding these
prefixes: For each pixel x, cast a ray from x and call
p its intersection with the original surface. Next, addi-
tively blend the primitives Pi whose domains Di con-
tain p and only allow pixel x to be altered. However,
as explained previously, our rendering model operates
primitive-based and not image-based. Furthermore, we
do not wish to use the original 3D surface in our render-
ing. Given this, we now present an object-based approx-
imation to the above rendering algorithm.

We stress that we want a simple rendering algorithm,
without using programmable elements such as pixel shad-
ers, so that simple graphics hardware suffices. Given
this constraint, we must maintain our intermediate pre-
fixes in the framebuffer during primitive rendering. Each
incoming fragment must either additively blend with the
current prefix or be discarded. After all domain primi-
tives have been rendered, the prefix for each pixel must
be complete, so that the framebuffer can be displayed.
Hence, fragments must enter the graphics pipeline in a

Fig. 10 The rendering algorithm

front-to-back order, as an arbitrary order would require
sorting the fragments that make up the prefix. Since
we cannot sort fragments explicitly, we sort the domain
primitives by distance from the viewer to the primitive’s
center, so that their fragments enter the pipeline in a
sorted manner. This holds, however, only when sort-
ing is unambiguous, i.e. when domain primitives do not
overlap in their Z extents, as e.g. for the painter’s algo-
rithm [11]. Ambiguous sorting causes an incorrect pre-
fix, and thereby artifacts. Fortunately, in our case, this
problem is diminished since an exact fragment ordering
within the prefix is not important, as long as the prefix is
correctly separated from the other fragments. In Fig. 9
for example, the exact ordering of domain primitives P1
and P2 is not important, because the exact ordering of
the fragments F1 and F2 does not matter.

We further note that basis functions are only allowed
to be summed, and their domain primitives are only
allowed to blend, when the domains overlap. When they
do not overlap, summing them is not useful and may only
lead to artifacts when they coincidentally project to the
same screen area.

Combining all the above, we obtain the following
algorithm (complete pseudocode is given in Fig. 10). In
each iteration we render the front-most domain prim-
itive d that is not rendered yet, plus all the domain
primitives whose domains overlap with d (called domain
neighbors). We have now created a prefix for each pixel
of d, because a) we render the primitives front-to-back
and b) d was blended with all primitives it was allowed
to, i.e. its neighbors. We now lock the pixels of d so
that these prefixes cannot be overwritten later by other
primitives. The prefixes of the neighbors’ pixels (except
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Fig. 11 If two domains are
considered neighbors even
when they only share one
point, artifacts may occur

d) are not locked, as they will be completed in later
iterations. To lock the pixels, we use the depth buffer.
Rendering a primitive d into the depth buffer effectively
locks its pixels, as primitives of later iterations lie behind
d, assuming an unambiguous primitive sort.

Two (overlapping) domains are considered neigh-
bors if the fraction #common points

#points for at least one of the
two domains exceeds a given threshold. In practice, the
threshold 0.05 performs well for all models we tested.
The above threshold prevents domains that overlap too
slightly (e.g. just over a few points), to be considered
neighbors and thus blended. In Fig. 11a two artifacts,
visible as bright spots, are encircled that result from
incorrect neighbor computation. These bright parts are
caused by the incorrect blending of a ‘molar’ domain
primitive and a ‘palate’ domain primitive. When the
required number of common domain points is raised,
the artifacts disappear as can be seen in Fig. 11b.

The above domain primitive neighbor information
may be regarded as a coarse form of topological mesh
structure, so one may argue that our extreme simplifi-
cation model, although based on overlapping domain
primitives, is not entirely mesh-less. However, looking
at a rendering of the support polygons themselves, we
can see these are far from forming a consistent mesh,
so we cannot consider our primitive set as being just a
mesh-based model simplification (Fig. 12).

We have also experimented with two other render-
ing algorithms that do not need neighbor information.
The first one blends all fragments within a uniform dis-
tance from the front-most fragment, using a two-pass
method similar to the one described in [18]. The second
one uses back-facing polygons to divide the fragment list
into groups. Fragments are allowed to blend only within
a group. Both these algorithms deliver poorer image-
quality than the algorithm using neighbor information.
Concluding, while our domain primitive model does not
necessarily need topological information, the results are
better if we use it for rendering.

Fig. 12 Image b, in which the domain primitives are rendered
opaque and with a green outline, shows that our simplification
(a) is mesh-less

5 Results

We demonstrate the results of our approach for several
models. We describe the cost of our domain primitive
representation by the number of primitives needed and
the number of texels in all their textures. The primi-
tive count can be controlled indirectly by choosing the
AMG level, as described in Sect. 2.3. The texel count
can be controlled by choosing the texture resolution in
the resampling step (Sect. 3.2).
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Fig. 13 Screenshots of the
rocker-arm, balljoint,
dinosaur, santa, and lion
models. For each model, the
point-set rendering is shown
right above the extreme
simplification rendering

Figure 13 shows images of several point-set mod-
els and their corresponding simplified rendering using
domain primitives. Considering our extreme simplifi-
cation goal, which often implies that these models are
not meant for close-ups [10], we observe that impor-
tant model features and its general structure are well
captured even when the primitive count is consider-
ably smaller than the original point count. Moreover,
these models are not rendered with the extra surface
detail normals maps provide, since our hardware did
not support these.

The preprocessing timings for these models are shown
in Table 1. All timings are measured on an Intel Pen-
tium IV 2.4 GHz with 512 MB memory and a GeForce4
MX440. Preprocessing is divided in two steps. sd denotes
the time needed to perform the surface decomposition
(Sect. 2). This step has a computational complexity of

Table 1 Pre-processing times

Model No. of AMG No. of No. of sd time dpc time
points level polys texels (s) (s)

Rockerarm 40k L-5 445 73k 16 20
Dinosaur 56k L-6 563 74k 21 7
Santa 50k L-5 364 60k 24 16
Balljoint 137k L-5 311 141k 46 88
Lion 180k L-4 160 111k 54 134

L is the coarsest AMG scale for the particular model

O(n), n being the number of point samples. dpc is the
time needed to construct domain primitives (Sect. 3).
This step takes O(n log n) for n domain points, given the
Delaunay triangulation involved. Note, however, that
the texture computation, involving resampling, is now
entirely done in software. A simple and quick speed-up
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Fig. 14 Rendering artifacts.
The projection error (a, b),
dark spots (c), and
cracks (d, e)

a b c d e

Table 2 Framerates for the rocker-arm model

Level L-0 L-1 L-2 L-3 L-4 L-5 L-6

No. of polys 5 17 37 84 193 445 1,012
128 × 128 3,200 2,700 2,010 1,750 1,300 590 220
256 × 256 1,100 940 730 670 600 420 220
512 × 512 305 270 218 204 190 155 130

L is the coarsest AMG scale

for the preprocessing can be easily gained if this step is
directly performed in graphics hardware by rendering
the texture as a set of splats, for the radial bases, and
triangle mesh, for the linear affine bases, respectively
(Sect. 3).

Table 2 shows the rendering timings for the rocker-
arm model, for seven different AMG levels and three
screen sizes. Note that the amount of polygons is more
or less doubled with each coarser scale (Sect. 2.3).

Several rendering artifacts may occur, depending on
the model, as follows. First, a projection error appears
since we approximate curved domains by flat domain
primitives. Consider Fig. 14a. Let p be the intersection
for pixel x with the surface represented by the dotted
curve. The color and basis function values of point p
are captured in the color and alpha channels at the per-
pendicular projection of p onto the domain primitive,
namely at p′. However, when the domain primitive is
rendered, x will be painted with the fragment at q, not
p′. The error increases when the angle between the view-
ing direction (indicated by the arrow) and the domain
primitive’s normal n increases. There is no error when
the viewing is perpendicular to the domain primitive
(Fig. 14b). As a result of the projection error, we might
sum two fragments that do not represent the same part of
the surface. This may be visible as a slightly too dark, too
bright, or incorrect hue, spot on the surface. When the
projection error is at its maximum, i.e. when the viewing
direction is perpendicular to the surface normal, dark
spots may occur. Consider Fig. 14c. Domain primitive
P2 that represents p is not rendered because it is back-
facing the viewing direction. The pixel x is thus darker
than it should be. Because this effect is greatest when
the viewing direction is perpendicular to the surface nor-
mal, it is most noticeable at the contours of a model (see
e.g. Fig. 12a).

A second problem is that of cracks, which occur at
strong discontinuities, or ridges, of the surface. Such
ridges represent areas of low coupling in the stiffness
matrix (Sect. 2.2). Consequently, the AMG decomposi-
tion creates two disjunct domains for both discontinuity
sides. The domain primitives separated by the ridge may
not always intersect (Fig. 14d). Depending on the view-
point, a crack is visible in the rendering, as shown in
Fig. 14e for the rocker-arm model. We investigate solv-
ing this problem by adding simple point primitives in the
rendering for the discontinuities, yielding a hybrid point
and domain primitive approach.

6 Conclusions

We have presented a new approach for creating
extremely simplified representations of models, int-
ended for rendering distant geometry. Our current imple-
mentation uses the more difficult case of a point set as an
input. Point set surfaces pose extra challenges, as they
do not allow a natural and direct definition of a finite
element space upon them. Our method can further eas-
ily cope with triangular meshes too, if this is desired
(Sect. 2.3). Instead of using traditional point primitives,
we introduce the domain primitive, a sort of splat, which
is better suited for representing the surface when using
only a few primitives. By using color and transparency
information stored as textures, domain primitives have
more surface approximation power and are more able
to capture shape and color variability than the same
amount of other known primitives in point-based ren-
dering. Domain primitives become most efficient and
effective in terms of rendering performance and quality
respectively when applied with the goal of displaying
extremely simplified models.

Domain primitives are created by a largely automated
and robust pipeline consisting of surface classification,
surface decomposition, and primitive construction. The
methods used for surface classification and decompo-
sition, i.e. moment-based classifiers and algebraic mul-
tigrid respectively, have been already successfully used
on a variety of complex datasets [3–6]. Implementing
the AMG tool is difficult, but fortunately several pack-
ages are already available that can be used, virtually
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as black-boxes, as no parameters need to be specifi-
cally set. AMG’s multiscale decomposition provides dis-
crete simplification levels, enabling an image quality
and framerate tradeoff. Finally, the primitive construc-
tion stage treats every domain primitive independently,
which adds to the elegance of our approach. Overall,
the only user parameters of the complete pipeline are
the classifier neighborhood size (Sect. 2.1), AMG scale
(Sect. 2.3), and texel size (Sect. 3.2). We render our
simplified model by a custom algorithm, as per-primi-
tive blending requires a different visible-surface deter-
mination technique than standard depth buffering. The
proposed algorithm uses only standard OpenGL 1.1
graphics hardware. Summarizing, we can consider the
proposed domain primitive as a multiscale generaliza-
tion of point primitives. Indeed, on the finest AMG scale,
every point has exactly one domain primitive, which
makes the two notions identical. On coarser scales, prim-
itives adapt their shape to the surface shape. Moreover,
primitives are rendered and blended using exactly the
same mechanisms as in standard point-based rendering.

Overall, some artifacts are sometimes visible in the
simplified renderings. The projection error is an inher-
ent problem that is caused by approximation of the
surface by blending flat primitives. Dark spots occur
when the projection error is at its largest. Cracks may
be visible at strong discontinuities, where flat domain
primitives do not overlap. Interestingly, similar cracks
are also visible in the extreme simplification method
for triangular meshes proposed by Décoret et al. [10],
as this method also approximates curved surfaces with
flat textured primitives. A main difference between the
above method and ours is that we blend primitives to-
gether using a continuous transparency signal deter-
mined by our basis function decomposition, whereas
the method of Décoret et al. uses transparency as a
stencil mask, i.e. to turn on and off texture pixels. This
causes our cracks to be often less visible. Also, in con-
trast to Décoret et al., we do not use normal maps to en-
code detail surface variation, but just draw flat textured
polygons. Hence, the quality of our rendering should
be compared actually with a flat shading of an unstruc-
tured polygon soup containing the same small number
of polygons, such as illustrated in Fig. 12b. From this per-
spective, we argue that the relative quality loss of our
method is more than reasonable.

Another aspect concerns the usage of the transpar-
ency, or alpha, channel. As explained so far, we reserve
this channel for combining the multiscale basis functions
by means of additive blending. This leaves the ques-
tion whether our method can handle half-transparent
rendering of simplified objects. To render a simplified
object with transparency α ∈ [0, 1], we use the rendering

method presented so far in Sect. 4, but scale the values
of the texture-encoded basis functions with α. This scal-
ing can be achieved easily and efficiently by using the
imaging operations of the OpenGL 1.1 fixed pipeline.

Several directions of future research are envisaged.
First and foremost, programmable graphics hardware
can be used to enhance the flexibility, thus remove sev-
eral artifacts, of the rendering algorithm used to combine
the domain primitives. The by far most effective addition
to our method would be the addition of normal maps,
stored in similar textures as our current basis functions.
Normal maps would massively improve the rendering
quality and also allow a very simple and effective real-
time relighting strategy. However, as explained earlier,
this would require programmable graphics hardware,
which is typically not present on the low-end machines
which need extreme model simplification, such as web
servers, for example. Second, one could try to combine
several levels of the multiscale generated by the AMG
to render primitives of different sizes and levels of detail
together. Third, a challenging point, as with many visu-
alizations, is to define a meaningful and efficiently com-
putable error metric for measuring the visual quality
of our simplifications. As a starting point, this could be
done by rendering the original and simplified objects
with the same viewing parameters and measuring the
(normalized) difference between the resulting images.
Finally, combining points and domain primitives in a
hybrid rendering can open new ways to low primitive
count, high quality rendering of 3D models.
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