
An Interactive Visualisation Tool Applied to the Simulation of

Glass Pressing

K.Laevsky, A. Telea, R.M.M. Mattheij

Department of Mathematics and Computer Science,

Eindhoven University of Technology,

PO Box 5613, 5600 MB The Netherlands

Abstract

An interactive numerical simulation approach to the process of glass pressing is presented.

Glass is modelled as a strongly viscous Newtonian fluid whose deformation under pressure is de-

scribed by a Stokes equation. Modelling the evolution of the glass free boundary in time poses a

particular problem which is dealt with by a special integration technique. Next, we present how

we integrate the numerical simulation with an interactive visualisation and computational steer-

ing tool. The resulting application allows for interactive simulation control and result monitoring.

The presented software integration technique does not require any changes to the numerical simu-

lation code and can be thus used to couple other similar computational engines with a steering and

visualisation front-end.

1 Introduction

An important tool in scientific computing is the visualisation of numerical simulations. Traditionally

the simulation is performed by a numerical package and the visualisation is seen as a separate process

of producing one or more pictures from the computed data sets. For practical use this is often cumber-

some, as insight in a time-dependent process implies the ability of the user to interactively control the

simulation parameters and monitor its results. A second problem is that program modification, such as

1

inserting a new numerical solver or mesh generator, or changing the visualisation method, usually re-

quires manual editing and recompilation of the source code. In contrast to the above, one would rather

like to have a simple, interactive way to monitor, control and construct the simulation and visualisation

program, e.g. by means of a graphics-user interface driven tool.

This paper describes such a system for a specific application: the pressing of glass in a mould. In

this problem one wishes to predict the flow development (in terms of velocity and pressure quantities)

of a gob of glass under pressure in a confinement. The ultimate goal is to obtain an optimal mould shape

(geometry) based on the pressing simulation. The simulation evolution is affected by many parameters

such as initial velocity, mould geometry, etc. An interactive simulation and visualisation tool is thus

essential for solving the inverse problem of assessing the optimal mould shape, by providing steering

and result monitoring facilities.

In order to understand the pressing process, the mathematical model used is first described in Sec-

tion 2. Next we discuss how we solve the reslting equations numerically (Section 3). The rest of the pa-

per is devoted to the description of an interactive visualisation tool for the glass simulation. In Section 4

the advantages of steering simulation and visualisation systems as opposed to non-interactive systems

are outlined. Section 5 shows how the glass pressing problem has been implemented in the interactive

simulation and visualisation system VISSION. Section 6 illustrates the potential of our approach by

showing various results. We conclude the paper with a discussion of some further possibilities.

2 Modelling the Process

This section describes the morphology process for producing packing glass, such as bottles or jars.

From the oven a gob of glass is being transported to a mould and there it is pressed into a preform by

a plunger which is moving upward. The result of this is a so called parison, which is an intermediate

product only. The next and final step is the blowing phase where this parison is brought to its final

shape by air pressure (see Fig.2.1). We shall only consider the pressing phase here.

The pressing of glass in a mould is still a complicated process. In order to simplify our discussion

below we will neglect the influence of the temperature on the flow. Since the viscosity of the mate-

rial is strongly dependent on the temperature, one may wonder whether this is realistic. One can show,

2

����
����
����
����
����
����
����

���
���
���
��
��

��
��

���
���
���
���
���
���
���

���
���
���
��
��

��
��

���
���
���

���
���
���
���
���
���

���
���
������������
�
�

�
�

�
�

��

���
���
���
���
���
���
���

��
��
��
��
��

��

����
����
����
����
����
����
����

��
��
��
���
���

����
����
����
����
����
����
����

����
����
���������������
��
��

��
��

��
��
��

��������
����

��
��
��
��

����
����
����
����
����
����
����

��
��
��
��

��
�� ����

����
����
����
����
����
����

��
��
��
��

���
�������

����
����
����
����
����

����
����
����
���
�������
����
��
��
��

��
��
��

��
��

��������
����

���
���
���
���
���
���
���

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

�����
�����

����
��������

��������
���

���
���
���
���

����
���

��
��
��
��

����
���

����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����

���
��������

�������
���
���

�����
�����
�����
�����
�����
�����
����������
�����������
���

��
��
��

Figure 2.1: Production process.

however, that the actual flow of the glass is nearly isothermal in most cases, because of the low conduc-

tivity. As a consequence the heat exchange effectively takes places only after the motion has stopped.

Actually, in the present problem that kind of a decoupling is a bit more complicated. One can assume

that heat may arise because of friction if the viscous forces are high. But it is not the case here (see

[1]). Hence, in order to describe the morphology of the glass we consider only the motion equations

with corresponding boundary conditions, which define the velocity field and the pressure. Moreover

we will assume the glass to be an incompressible Newtonian fluid.

Typical values for the problem under consideration are:

η = 104 kg/sec m – the dynamic viscosity of the glass,

ρ = 2.5 · 103 kg/m3 – the density of glass,

T = 10−1 sec – the typical pressing ,

L = 10−2 m – the typical scale for the parison,

(2.1)

and finally the typical velocity which is dependent on T and L:

U := L/T = 10−1 m/sec.

Let �t be the region occupied by the liquid at time t ∈ [0, T]. Denote the velocity and the stress

tensor by v and σ respectively. Consider then the Navier-Stokes equations for incompressible fluids in

3

the time dependent domain �t :

ρ

(
∂v
∂t

+ v · ∇v
)

− ∇ · σ = ρf, in �t ,

∇ · v = 0, in �t ,

(2.2)

where ρ is the mass density and f are the volume forces. The stress tensor σ is related to velocity

gradient ∇v, pressure p and dynamic viscosity µ as follows:

σ = −pI + µ
(∇v + (∇v)T)

(2.3)

Substitution of (2.3) into (2.2) gives us the following equations

ρ

(
∂v
∂t

+ v · ∇v
)

= ρf + ∇ p − µ∇2v in �t ,

∇ · v = 0, in �t .

(2.4)

The same equations can be rewritten in dimensionless form. Using the definitions in (2.1) we have:

v = L

T
v′, p = 1

Re
ρU 2 p′, Re = ρU L

η
,

x = Lx′, t = L

U
t ′, µ = ηµ′,

where Re is the Reynolds number and v′, p′, x′, t ′ are dimensionless variables. Then the previous sys-

tem of equations (2.4) reads as follows:

Re

(
∂v′

∂t ′
+ v′ · ∇v′

)
= Re

L

U 2
f + ∇ p′ − µ′∇2v′ in �t ,

∇ · v′ = 0, in �t .

(2.5)

The volume forces consist of the force of gravity only, i.e.

‖f‖ ≈ 10 kg m/sec2

According to (2.1) the Reynolds number for the problem is approximately 10−4; hence the left-hand

side of 2.5 is sufficiently small and can thus effectively be skipped from the equation. According to

4

the previous remark the term which includes the volume forces is approximately 10−3, which is also

negligible. This all means that the viscous forces dominate the volume forces.

As a result we obtain the Stokes equations for an incompressible fluid. Ommiting the prime they

read

µ∇2v − ∇ p = 0 in �t ,

∇ · v = 0, in �t .

(2.6)

This system of equations together with boundary conditions define the velocity field and the pressure.

Although the initial form of the gob may not necessarily be axisymmetric, it is reasonable to employ

the axisymmetric geometry of mould and plunger and assume the flow as such to be axisymmetric as

well; see Fig. 2.2 a,b. Hence it can be reduced to a two dimensional case. The domain �t will be

associated now with the configuration in Fig. 2.2 b.

Let �t = ∂�t be the boundary of �t . It is easy to see that �t consists of four parts:

�t = �m ∪ � f ∪ �p ∪ �s,

corresponding to the mould, free boundary, plunger, and symmetric part respectively.

Assuming slip boundary conditions on the corresponding parts �m , �p of the boundary �t we have

v · n = 0,

α v · t = (1 − α)(σn) · t,
(2.7)

on �m , and

v · n = vp · n,

β v · t = β vp · t + (1 − β)(σn) · t,
(2.8)

on �p, where vp := (0, V)T is the velocity of the plunger. Both in (2.7), (2.8) the slip parameters α, β

are from the interval [0, 1]. It is easy to see that maximum value of the parameter corresponds to the

no-slip boundary conditions, i.e. for α = 1 we have v = 0 on �m , and for β = 1 we have v = vp on

�p.

5

a)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Ωt

Γ

Γ

Γf
Γp

s

m

x

y

Θt

b)

Figure 2.2: Problem domain.

At the free boundary, the normal stress must be equal to external pressure p0, which is assumed to

be constant. The tangential stress must be equal to zero. Hence:

(σn) · n = p0,

(σn) · t = 0.

(2.9)

For the symmetry boundary �s the normal component of velocity must be equal to zero, as well as the

tangential component of stress vector σn:

v · n = 0,

(σn) · t = 0.

One should note that (2.6) is not a stationary problem since we have the kinematic boundary condi-

tion (2.8). Indeed, the domain �t , corresponding to the region occupied with glass at time t , is time-

dependent and changes during the process. In the next section we will discuss how we deal with this

problem numerically.

6

Ω t

Ω t

��

x i

vi

n

n+1

Figure 3.1: Clip algorithm.

3 Numerical approach

The Stokes equations (2.6) together with the boundary conditions (2.7-2.10) can be solved by a finite

element code. One should note that the geometry of �t is defined by mould and plunger, except for

the free part � f . The approximation of � f requires a special technique which we shall describe now.

First we note that the aforementioned Stokes problem, although stationary, has a kinematic boundary

condition 2.8. The resulting velocity field v for this geometry can be used to predict the next position

of the free boundary. More precisely, let x : [0, T] × �0 → IR2 be such a mapping that:

x(0) = �0, x(t) = �t , (3.1)

where �t is the problem domain as defined before. Then the relation between velocity field and the

domain geometry can be described by the initial value problem:

dx(t)

dt
= v(x(t)), t ∈ [0, T],

(3.2)

x(0) = �0.

The velocity field v(x(t)) can be obtained by solving the Stokes equations in �t . However, one should

realise that the geometry of �t depends on that velocity field.

In order to overcome this problem we will use the following strategy. Let us define

tn = n	t, n = 1, . . . , N,

such that t0 = 0, tN = T . After discretisation and solving Stokes equations with corresponding

boundary conditions in �tn (which are assumed to be defined) we obtain the velocity field vn . Instead

7

of (3.2) we solve the initial value problem (3.3):

dx(t)

dt
= vn, t ∈ [tn, tn+1],

(3.3)

x(tn) = �tn .

In particular for any point xn
i at the free boundary � f we may consider this as a Lagrangian dis-

placement, which we may e.g. discretise by the explicit Euler method:

xn+1
i = xn

i + 	tvn
i . (3.4)

The global error for this algorithm is of the first order.

The geometry of �tn+1 can be obtained now, and hence the boundary conditions required for solving

the flow equations at tn+1 can be defined. The same procedure is repeated then until the final geometry

�tN and corresponding flow quantities have been computed. One should note that �tn , n = 1, . . . , N

according to (3.3) is an approximation of original mapping (3.1). Instead of Euler explicit it is possible

to use more sophisticated integration schemes. For our present problem setting however, we will be

satisfied with (3.4).

Consider now in more detail the deformation of the free boundary during a time step. Applying

formula (3.4) for a point xn
i at the boundary �n

f (i.e. the boundary � f at time tn) with corresponding

velocities vn
i , we see that some of the points xn+1

i don’t belong to the domain as defined by the mould

and the plunger. Let us denote the latter by
tn+1 (see Fig. 2.2 b). This configuration is changed ex-

plicitly by moving the plunger at each time iteration. We now simply clip displacements outside this

tn+1 , see Fig. 3.1. So the position of xn+1
i is defined now by intersection of xn

i + 	tvn
i and
tn+1 :

xn+1
i = xn

i + αi	tvn
i , αi ∈ (0, 1]. (3.5)

Where αi is chosen such that

�tn+1 ⊂
tn+1 .

We shall call this algorithm the ”clip” algorithm. For the velocities that must be clipped (αi < 1) the

error is apparently O(h2)! The actual values of αi depend on the characteristics of the process, 	t and

8

the mesh size h. In a practical implementation the term (1 − αi)‖ẋi (tn)‖ should be first order in 	t ,

as is also the actual order of the explicit Euler method. One can analyse this in a more detailed way.

However, we shall stick to this approach that allows the fast computations needed by our interactive

tool presented next.

4 Interactive Visualisation Tool Design

We now turn to our implementational platform. To begin with, we note that there are two important

dimensions of computer based simulations, namely controlling and interacting with the simulation on

one hand, and examining (e.g. by direct visualisation) the generated data on the other. Combined in

a flexible way, the above features lead to software tools which help conveying a better insight and un-

derstanding of the evolution of the simulated process.

Based on the way they address the above process control and data interrogation requirements, sim-

ulation systems range from non-interactive systems to steering systems (see [11, 15]). Most such sys-

tems implement the same simulation scenario consisting of a problem definition phase, followed by

the numerical computations phase, and finally the result interrogation phase In our case, these phases

correspond with the initial mould geometry and velocity setup, solving the Stokes problem and moving

the boundary at every simulation time step (Section 3), and visualising the obtained mould geometry.

Non-interactive systems implement the above three phases in a loosely coupled, unsynchronized

manner, usually as one or several batch applications run separately by the user who manually feeds

the output of an application to the input of the next in terms of files (Fig. 4.1 a). Interactivity is lim-

ited to configuration file editing, and simulating time dependent processes is reduced to running the

above pipeline manually to produce a set of output files corresponding to input data at different time

instants. Such systems can thus convey only a limited insight in time-dependent processes, as the time-

dependent behaviour is manually simulated by the user. The advantage of the non-interactive system

model is its loose coupling, meaning that various independently developed software applications can

cooperate without having to reprogram them, based on an input-output file compatibility. As most nu-

merical simulation software comes as batch monolithic applications whose interactivity is limited to

reading and writing files, the non-interactive system simulation model is still the most widespread.

9

A1 A2 A3 An
....

computational applications

 file-based data streams
(manually user controlled)

Controller

A1 A2 A3 An

GUI

data streams

user
commands

data
interrogation

computational modules

a) b)

....

Figure 4.1: Non-interactive (a) and steering (b) simulation systems

Steering systems are the other implementation extreme [10, 4, 8, 13, 12, 14]. They treat the three

simulation phases uniformly, providing interactive ways to control all the problem definition, com-

putation, and result visualisation phases (usually by means of graphics user interfaces (GUIs)), and a

pipeline synchronisation controller that makes a stage compute automatically as soon as the previous

stage has produced its result (Fig. 4.1 b). Direct control over all the parameters enables the user to in-

vestigate the process parameter space easily, tune the computational controls on the fly, and monitor

on-line the process evolution in time. However, implementing a steering model for simulations raises

two main problems:

1. most steering systems have a single control thread, meaning that their interactivity is bounded by

the speed of the slowest stage. The numerical computations are however rarely real-time, like

the Stokes problem solving involved in our glass pressing simulation. The interactivity of all

the stages (including e.g. tuning the parameters of the faster visualisation stage) is thus brought

practically to zero. This diminishes considerably the attractivity of using steering systems to

integrate the computational stage.

2. to provide uniform control, synchronisation, and GUI policy for all stages, steering systems re-

quire these stages to conform to various software interfaces. This often implies fundamental

modifications of the numerical simulation code requiring extensive programming knowledge.

This makes the integration option less attractive for non-programming experts such as numeri-

10

cal analysts.

5 An Interactive Visualisation Application for the Glass Pressing Simu-

lation

We have developed a software application that integrates an interactive visualisation back-end with a

numerical simulation of the glass pressing process. The numerical simulation was designed and imple-

mented as a stand-alone monolithic aplication, to which an interactive visualisation environment was

further coupled. The resulting application allows for an automatic monitoring of the time-dependent

numerical data produced by the finite element simulation and offers an interactive way to choose and

tune various data visualisation methods.

The first part of the pipeline (Fig. 5.1) is a classical example of monolithic finite-element applica-

tion written in Fortran that performs the computational domain discretisation followed by the iterative

solving of the time-dependent Stokes equations amd boundary displacement for a sequence of time

moments. The second part of the pipeline consists of the general-purpose object-oriented environment

for scientific visualisation VISSION [7]. VISSION is based on the dataflow model ([5, 4]), in which

visualisation or data processing tasks are described as networks of computational modules communi-

cating by reading, processing, and writing data to each other. VISSION provides an interactive way to

construct a visualisation or data processing task by visually assembling module icons picked from an

available module icon library to create the desired network. Next, various data sets can be fed into the

network to be processed (e.g. compute gradients of scalar fields, extract isosurfaces or trace stream-

lines in datasets), visualized in various ways (e.g. surfaces, flow ribbons, elevation plots, stream tubes,

wireframe meshes, etc) and manipulated in 2D or 3D interactive viewers. The user can also interac-

tively change the parameters of the network modules via several GUIs to e.g. select a new isosurface

threshold, zoom/pan the data viewers, or interactively probe the datasets to find their values in some

points of interest.

We could easily couple the numerical simulation stage with the visualisation environment back-end

without having to modify a single line of the numerical software by using the so-called data sensors

11

Controller

GUI
user
commands

data
interrogation

A1

A2

A3

A3

An....DS

data streams

data/control streams

 file
write

 file read /
 monitor

 file
system

The Vission Environment

Glass Pressing
 Numerical
 Simulation

dataflow graph

data sensor
 module

Figure 5.1: Pipeline for interactive visualisation of the glass pressing simulation

of VISSION. These are special modules which, placed at the beginning of dataflow networks, monitor

some desired data files for specific changes such as file creation or modification. As the numerical ap-

plication completes a new simulation time step, it writes the new computational mesh and solution data

(glass pressure and velocity in our case) as a new file or set of files, or modifies existing ones. When

this event happens, VISSION’s data sensors fire and the new data is read in the input of the visualisa-

tion network (Fig. 6.1) which automatically executes presenting a new view to the user. The whole

process executes as though the data flows transparently from the numerical solvers up to the visuali-

sation viewer modules, producing an effect similar with the one obtained if the numerical simulation

had been integrated in the dataflow network as a VISSION module.

Coupling the numerical simulation with VISSION via data sensors has several advantages:

1. the numerical simulation and the VISSION environment can run either on the same machine or on

different workstations sharing the same file system transparently (see Fig. 5.2 a). This was very

useful as we could run the whole application on a single machine or use a powerful machine for

performing the numerical computations and a separate fast graphics workstation for performing

the visualisation.

2. the second advantage of the data sensor coupling resides in the fact that the numerical simulation

12

and the visualisation have independent control threads. The user can interactively choose several

visualisation modules (i.e. edit VISSION’s dataflow network), tune their parameters on-line, and

see the changes in the visualized images almost instantly, as the visualisation modules are very

fast, while the numerical simulation keeps computing at its own, usually slower pace. When a

new time step is ready, the new data ’flows into’ VISSION transparently. Similarly with editing or

changing the parameters of the visualisation independently of the numerical simulation’s pace,

one can stop, reconfigure, and restart the numerical application without having to care of the

possibly several VISSION sessions monitoring its output.

Combining the monolithic numerical simulation with the interactive visualisation by allowing an in-

dependent control thread is an attractive variant of the steering solution, as the inherently interactive

part (the visualisation) remains interactive and still synchronized with the slower computational part.

This setup was especially convenient in the two-machine scenario described above.

 Vission
Visualization

Machine 1

 Vission
Visualization

Machine 2

 Vission
Visualization

Machine 3

Glass Pressing
 Numerical
 Simulation

Machine 0

 shared
file system

 file write

 file read /
 monitor

Glass Pressing
 Numerical
 Simulation

 Vission
Visualization

solution
output

problem
 input

a) b)

Figure 5.2: Distributed computation and visualisation (a). Steering pipeline combining computation

and visualisation (b).

To couple VISSION with the numerical glass simulation (or any similar computational application

exporting its data via files or other UNIX mechanisms such as pipes, message queues, or shared mem-

ory) we only have to write a simple data reader VISSION module accepting the data file format pro-

vided by the numerical code. The object-oriented design of VISSION and its rich support of data set

types (unstructured, regular, rectilinear, and curvilinear grids with multidimensional data per point or

cell ([5]) allowed us to write such a reader in about one hour. The alternative of integrating the numer-

13

ical application in VISSION as a computational module would have meant complex reprogramming of

the numerical code. The file sensor approach practically extends the dataflow network outside VIS-

SION’s boundaries by treating the numerical simulation as an ’external module’ at the network’s input.

Synchronized communication with the numerical application is thus provided transparently, without

having to modify its code, by using the file system’s file access mechanisms.

Overall, the presented architecture combines the advantages of monolithic applications (reuse with-

out reprogramming) and steering systems (interactivity, several control threads, visual programming,

GUIs) presented in Section 4 and allows transparent execution of the numerical computations and vi-

sualisation on the same or different machines. In the same time, the mentioned disadvantages of tight

integration based on reprogramming are removed by using the data sensor mechanism. The presented

mechanism was also used to integrate other simulations with the interactive visualisation environment

VISSION.

6 Results

To illustrate the interactive visualisation system described in the previous section, several results are

presented. Figure 6.1 presents an overview picture of an interactive glass pressing visualisation in the

VISSION environment. In this example, a dataflow network was visually constructed to monitor the

output of the glass pressing numerical simulation and display the computed flow velocity magnitude

in two data viewers, overlaid with a set of stream lines for the flow field (left data viewer), respectively

contour lines of the flow field magnitude (right data viewer). The dataflow network starts with a data

sensor module which provides the interactive monitoring of the running numerical simulation (as de-

scribed in the previous section), followed by a data file reader. When the data sensor is removed from

the network, one can use the system as a classical off-line visualisation tool for already computed flow

data sets. The reader module loads two data sets computed by the numerical simulator, i.e. a veloc-

ity and a pressure field defined on the 2D glass mould cross-section mesh. The rest of the network

contains various modules that compute the velocity field magnitude, stream lines, and contour lines

from the simulation input data, and present the resulting information to the end-user in the data viewer

windows that provide zoom, pan, and rotate facilities. Figure 6.2 shows several images produced with

14

the visualisation setup described above, displaying the glass velocity magnitude (left column), respec-

tively its pressure (right column) at six different time instants during a pressing simulation. The above

application is an exact implementation of the conceptual pipeline presented in Fig. 5.1.

The results of the glass pressing simulation are ultimately to be used in an industrial production

environment. In order to convey a more intuitive understanding of the glass pressing process for the

industry end-users, a tri-dimensional reconstruction of the process was performed in the VISSION en-

vironment. The reconstruction pipeline takes as input the boundaries of the 2D computational meshes

produced by the numerical simulation and rotates each of them around their symmetry axis to produce

a 3D shape. Next, the obtained shapes are rendered with appropriate lighting and glass-like material

properties in the same data viewer we used for the visualisation of the 2D computational data. The end-

users can now manipulate the obtained 3D glass shapes directly in the viewers to get a better impression

of the simulation results. In order to visualize the results independently on the VISSION environment, a

MPEG movie production module was appended to the reconstruction pipeline. This allowed us to au-

tomatically create MPEG movies of the glass pressing simulation and of its 3D reconstruction, which

can be played back by standard MPEG players independently on the VISSION system. Figure 6.3 shows

12 frames from a movie produced in VISSION using the above method. All the above operations (3D

reconstruction, lighting, rendering, and MPEG production) could be done using less than 10 of the

standard VISSION modules.

7 Discussion

Several other solutions to the problem of interactive visualisation and steering of scientific computa-

tions exist. The Computational Steering Environment (CSE) [10] consists of a synchronisation kernel

(the Data Manager) to which several satellites running on the same or different machines can be at-

tached to perform visualisation and computational tasks. The satellites can run asynchronously, the

data access being synchronized by the Data Manager. However, the CSE offers no capability to inter-

actively build a visualisation network by visual assembly of modules as VISSION does, nor it supports

other dataset representation besides structured grids, making it unflexible for our purposes. Finally,

VISSION can easily provide most of the satellite-Data Manager communication facilities by implement-

15

ing several types of data sensors that monitor various resources (e.g. files, shared memory, message

queues, sockets) for various events. The CSE application steering capabilities could be also provided

in the context of VISSION’s file sensors. For example, we could steer the numerical simulation from

VISSION’s interactive GUI by making the latter export the parameters it modifies as shared resources

(e.g. files or pipes) and making the former read the data in these resources (see Fig. 5.2 b for a sketch

of the computational steering loop).

The AVS and Oorange systems ([4, 6]) are also based on the dataflow network and visual network

editor concepts similarly to VISSION. However, their multi-programming language design exposes

their users to several technicalities of several programming languages, making it harder to program

new modules (e.g. data readers or data sensors) for non-programming experts. These isues are de-

tailed by us elsewhere [16].

The Visualisation Toolkit (vtk) system ([5]) offers practically the same data representation classes

and ease to write new modules as VISSION (which actually incorporates the vtk modules). However,

vtk offers no visual dataflow network editor, nor module GUIs, limiting the run-time user interaction to

scripting languages. Moreover, vtk uses a demand-driven network update policy, while AVS, VISSION,

and Oorange use an event-driven one (see [5, 7] for details). This would make the implementation

of data sensors considerably more difficult in vtk than e.g. in VISSION, where a file sensor code has

approximately 50 lines of C++.

References

[1] T.D. CHANDRA, S.W. RIENSTRA, Analytical Approximation to the Viscous Glass Flow Problem in the Mould-Plunger

Pressing Process, RANA 97-08, Technical University of Eindhoven,1997.

[2] B. STROUSTRUP, The C++ Programming Manual, Addison-Wesley,1993.

[3] J. WERNECKE, The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor, Addison-

Wesley, 1993.

[4] C. UPSON, T. FAULHABER, D. KAMINS, D. LAIDLAW, D. SCHLEGEL, J. VROOM, R. GURWITZ, AND

A. VAN DAM, The Application Visualization System: A Computational Environment for Scientific Visualization., IEEE

Computer Graphics and Applications, July 1989, 30–42.

16

[5] W. SCHROEDER, K. MARTIN, B. LORENSEN, The Visualization Toolkit: An Object-Oriented Approach to 3D Graph-

ics, Prentice Hall, 1995

[6] C. GUNN, A. ORTMANN, U. PINKALL, K. POLTHIER, U. SCHWARZ, Oorange: A Virtual Laboratory for Exper-

imental Mathematics, Sonderforschungsbereich 288, Technical University Berlin. URL http://www-sfb288.math.tu-

berlin.de/oorange/OorangeDoc.html

[7] A.C. TELEA, J.J. VAN WIJK, VISSION: An Object-Oriented Dataflow System for Simulation and Visualization, in

Proceedings of the VisSym’99 IEEE-Eurographics Symposium on visualization and scientific simulation, Vienna, Aus-

tria

[8] A.C. TELEA, C.W.A.M. VAN OVERVELD, An Object-Oriented Interactive System for Scientific Simulations: Design

and Applications, in Mathematical Visualization, H.-C. Hege and K. Polthier (eds.), Springer Verlag 1998

[9] B. MEYER, Object-oriented software construction, Prentice Hall, 1997

[10] J. J. VAN WIJK AND R. VAN LIERE, An environment for computational steering, in G. M. Nielson, H. Mueller and H.

Hagen, eds, Scientific Visualization: Overviews, Methodologies and Techniques, Computer Society Press, 1997

[11] J.E. ROSENBLUM AND R.A. EARNSHAW, EDITORS, Scientific visualization: advances and challenges, Academic

Press, London, 1997

[12] S. RATHMAYER AND M. LENKE, A tool for on-line visualization and interactive steering of parallel hpc applications,

in Proceedings of the 11th International Parallel Processing Symposium, IPPS 97, 1997

[13] D. JABLONOWSKI, J. D. BRUNER, B. BLISS, AND R. B. HABER, VASE: The visualization and application steering

environment, in Proceedings of Supercomputing ’93, pages 560-569, 1993

[14] G. A. GEIST, J. A. KOHL, P. M. PAPADOPOULOS, CUMULVS: Providing fault tolerance, visualization, and steering

of parallel applications, in The International Journal of Supercomputer Applications and High Performance Comput-

ing, 11(3): 224-235, 1997

[15] M. J. NOOT, A. C. TELEA, J. K. M. JANSEN, R. M. M. MATTHEIJ, Real time numerical simulation and visualization

of electrochemical drilling, Computing and Visualization in Science, vol. 1, Springer, 1998, pp. 105-111

[16] A. C. TELEA Combining Object Orientation and Dataflow Modelling in the VISSION Simulation System, in Proceed-

ings of the TOOLS’99 Europe Conference, ACM Press, 1999, pp 56-65

17

module library

GUI interactors

dataflow network

data viewers

data sensor

Figure 6.1: Interactive visualisation session for the glass pressing simulation

18

1 2

3 4

5 6

1 2

3 4

5 6

Figure 6.2: Frames from a 3D animation of the glass pressing simulation

19

121110

987

4 5 6

1 2 3

Figure 6.3: Frames from a 3D animation of the glass pressing simulation

20

