
Skeletonization and Distance Transforms of 3D

Volumes Using Graphics Hardware

M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, the Netherlands

m.a.m.m.van.dortmont@student.tue.nl, wstahw@win.tue.nl, alext@win.tue.nl

Abstract. We propose a fast method for computing distance transforms
and skeletons of 3D objects using programmable Graphics Processing
Units (GPUs). We use an efficient method, called distance splatting,
to compute the distance transform, a one-point feature transform, and
3D skeletons. We efficiently implement 3D splatting on GPUs using 2D
textures and a hierarchical bi-level acceleration scheme. We show how
to choose near-optimal parameter values to achieve high performance.
We show 3D skeletonization and object reconstruction examples and
compare our performance with similar state-of-the-art methods.

1 Introduction

The skeleton of a three-dimensional object is the set of interior points that have
at least two closest points on the object surface. Alternative definitions use the
set of centers of maximal contained balls [1] or first order singularities of the ob-
ject surface’s distance transform (DT). The skeleton points, together with their
distance to the 3D surface, define the Medial Surface Transform (MST), which
can be used for volumetric animation [2], surface smoothing [3], or topological
analysis used in shape recognition, registration, or feature tracking.

While 2D skeletonization of raster images is a well-studied problem, skele-
tonization of 3D volumes still has some open issues. First, 3D skeletons tend to
be far more complex than their 2D counterparts. Second, there exist several 2D
criteria used to detect and/or simplify the skeleton in a noise-resistant way, e.g.
the collapsed boundary length criterion [4, 5, 6]. However, there are hardly any
similar 3D criteria that comply with the same requirements, e.g. prune and/or
detect the skeleton starting from its less important points inwards, prevent skele-
ton disconnection during pruning, and are robust to noise. Last but not least,
computing skeletons for large 3D volumes like nowadays medical scans can be a
time-consuming process.

In this paper, we show how to compute 3D skeletons and distance transforms
by extending to the 3D case a recent 2D skeletonization method that uses a new
idea of computing skeletons by splatting distance textures [7]. We show how to
efficiently implement the non-trivial 3D distance splatting on GPUs. Next, we
show how to integrate a well-known 3D skeletonization criterion [8] in our splat-
ting approach in order to compute 3D skeletons fully on the graphics card. We

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 617–629, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

618 M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

keep the attractive features of the original 2D method (speed, implementation
simplicity, arbitrary distance metrics). We demonstrate our approach with ex-
amples of skeletonizing and surface smoothing of real-world complex 3D objects.

The structure of this paper is as follows. Section 2 briefly overviews related
work. Section 3 outlines the 2D splatting proposed by [7]. Section 4 details how
we extended splatting to compute 3D skeletons. Section 5 presents our results,
discusses the method, and compares it with its main competitor [8]. Finally,
Section 6 concludes this paper.

2 Background

The methods for computing medial axes and skeletons can be algorithmically
classified into three groups: thinning [9], Voronoi-based methods [4], and dis-
tance field methods [3, 7, 6]. In 3D, many such methods still have limitations.
First, there is no generally accepted skeleton detection and/or pruning criterion
that yields noise-resistant and connected 3D skeletons. For example, the θ-SMA
method [10] detects skeleton points by thresholding the angle between the so-
called feature points, or anchor points. This can yield skeletons with holes or
even disconnections and is sensitive to noise. Euclidean Skeletons [11] improves
upon θ-SMA by using a combined angle and feature point distance criterion.
Other local criteria, e.g. divergence-based (Siddiqi et al. [12]) and moment-based
(Rumpf and Telea [3]) have the same problem, i.e. can yield disconnected skele-
tons, unless homotopy is explicitly enforced, e.g. as in [13]. In this paper, we do
not consider homotopy preservation as this is not efficiently implementable on
GPUs. A second problem of 3D skeletonization is its relatively low speed. Recent
GPU-based methods are one up to two magnitude orders faster than CPU-based
skeletonization methods. Sud et al. [8] extract 3D skeletons on the GPU using
the θ-SMA detector and Voronoi-based clamping techniques to limit overdraw.
A related method [14] computes 3D signed distance transforms on the GPU, but
not 3D skeletons. Strzodka and Telea [7] use the GPU to compute 2D skeletons
using the collapsed boundary length, or anchor point distance, detector [4,5,6].
The skeleton and the boundary’s distance transform (DT) are computed by a
simple idea, called distance splatting, which is efficiently implemented on GPUs.
Besides being simple, this method allows using any Lp metric, like Manhattan
or (an)isotropically weighted Euclidean. Finally, we mention the important class
of 3D thinning methods that compute skeletons by iteratively removing voxels
from the object boundary in a given order [9]. Although simple to implement,
and yielding connected skeletons, such methods can generate ill-centered and/or
noisy skeletons, unless voxel removal is done in a true distance-to-boundary or-
der, e.g. as proposed by [15].

3 Distance Splatting in 2D

Our aim is to generalize the 2D method described in [7] to perform 3D DT
computation and skeletonization on the GPU, preserving its attractive points:

Skeletonization and Distance Transforms of 3D Volumes 619

simplicity, accomodation of several distance metrics, and efficiency. The exten-
sion is not trivial, as the 3D case introduces specific difficulties, not present
in 2D. We detail these (and our solution) in the following, starting with some
definitions. Given an object Ω ∈ R

3 with surface ∂Ω, the distance transform
DT : Ω → R of ∂Ω can be defined as

DT (p) = min
q∈∂Ω

(dist(p, q)) (1)

where dist(p, q) is a distance metric (e.g. Euclidean or Manhattan). For a p ∈
Ω, the feature transform FP (p) yields the boundary points at distance DT (p)
from p

FP (p) = {q ∈ ∂Ω|dist(p, q) = DT (p)} (2)

The skeleton of Ω can be defined as

S(Ω) = {p ∈ Ω|∃q, r ∈ ∂Ω, q �= r : dist(p, q) = dist(p, r) = DT (p)} (3)

The tuples (p, DT (p)) with p ∈ S(Ω) form the medial surface transform (MST).
Using the MST, one can reconstruct the surface ∂Ω. To allow us to easily measure
distances at any point q ∈ Ω from a given point p ∈ ∂Ω, we introduce the Point
Distance Function (PDF)

PDFp(q) = dist(p, q) (4)

For typical distances, we also have that

PDFp(q) = PDF0(q − p), (5)

i.e. we can compute PDFp by translating the PDF centered at the origin, PDF0.
The 2D splatting method [7] we shall extend to 3D works on a discrete (im-

age) sampling (V, VS) of (Ω, ∂Ω). Splatting computes 2D skeletons on the GPU
in two steps. First, DT (VS) is computed by drawing PDF0, sampled in a 2D
texture, centered on all pixels p ∈ VS . The actual distance minimization (Eqn. 1)
is done during the drawing, by assigning the luminance-encoded distance values
to the depth channels of the drawn pixels, and using the depth (Z buffer) test
to mask pixels with greater distance values. The implementation takes a single
texture draw with the pixel shaders functions of modern GPUs. Besides distance,
splatting also propagates a second signal U , which encodes an arc-length bound-
ary parameterization, so the method effectively computes a one-point feature
transform of VS . Next, the (pruned) skeleton S(V, τ) is computed as

S(V, τ) = {(i, j) ∈ Ω|max(Ui+1,j − Ui,j, Ui,j+1 − Ui,j) > τ} (6)

The above gives the so-called collapsed boundary length at every pixel [4, 5,
6], i.e. all skeleton points where more than τ boundary units have collapsed.
Increasing τ values prune the skeleton inward from its outer branches, yielding
a connected, noise-free skeleton.

620 M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

4 Distance Splatting in 3D

4.1 New Algorithm

A first problem of extending the above 2D algorithm to 3D is finding a suitable
3D replacement for the collapsed boundary length. A ’collapsed surface area’ cri-
terion would be a good candidate. However, we do not know how to (easily) com-
pute such a measure. Hence, we use some simpler, though arguably less robust,
local skeletonization criteria. Unlike global criteria, like the collapsed boundary
length, local criteria, e.g. the θ-SMA angle [10], the divergence-based [12] or the
moment-based criterion [3] use only information in a small neighbourhood of the
considered point. These are more vulnerable to noise and can yield gaps or even
disconnections in the skeleton. However, local criteria are simple and very effi-
cient to implement on GPUs. After several experiments, we found the combined
measure of angle between feature points and distance between feature points [11]
the most robust in 3D and chose it as basis for our GPU skeletonization. A sec-
ond problem is how to efficiently extend the 2D distance splatting [7] to 3D.
In 2D, splatting could directly implement Eqn. 1, as explained in Sec. 3. How-
ever, though modern GPUs have 3D (volumetric) textures, they cannot render
3D primitives. To perform 3D splatting, we must find efficient ways to render
volumetric primitives as a set of 2D (polygonal) primitives.

In our algorithm, we first generate the DT similarly to the 2D algorithm [7].
For all points p in the discretely sampled (voxelized) volume V counterpart of
Ω, we compute the distance DT (p) to the voxelized surface VS counterpart of
∂Ω, as well as one of its feature points FP (p)

1 I n i t i a l i z e DT to ∞
2 f o ra l l p in VS

3 f o ra l l q in V
4 i f (PDFp (q) < DT(q))
5 DT(q) = PDFp (q)
6 FP(q) = p

Listing 1.1. Splatting-based DT computation

This yields a one-point feature transform of VS [16]. Next, we compute a
skeleton detector f(p) similar to [11]. In detail, we use

f(p) = angle(q)a ∗ DT (q)b (7)

where a=1, b=3/2, angle(q) is the maximum angle between feature vectors r−p
at p, where r ∈ FP (p) and dist(q) is the maximum distance between feature
points FP (p) at p. Since we compute a single feature point FP (p) instead of
all potentially many feature points, we actually compute angle(q) and dist(q)
using the neighbours n(p) of p. Indeed, if p is near or on the skeleton, it will have

Skeletonization and Distance Transforms of 3D Volumes 621

a neighbour n(p) that has a feature point FP (n(p)) in a significantly different
location than FP (p), yet with a similar DT as p (see Eqn. 3). Another property
to check for skeleton points is whether they are centers of maximal balls. If q
is such a point, no ball centered at a neighbor p of q, of radius DT (p), can
completely contain a ball centered at q with radius DT (q), i.e. ∀p, q ∈ Ω : p ∈
n(q) : DT (q)+‖q−p‖ > DT (p). This property holds, among others, for the city
block, chessboard, D6 and D26 distance metrics. If a neighbour p of q fails this
test, q is not the center of a maximal ball, so is not part of the skeleton. The
complete detector computation is shown in Listing 1.2.

1 f o ra l l q in V
2 de t e c t o r (q) = d i s t (q) = angle (q) = 0
3 f o ra l l q in V
4 f o ra l l p in n(q)∩V
5 i f (DT(p) ≤ DT(q) + ‖q − p‖)
6 angle (q) = max(∠ (FP(p)−p ,FP(q)−q) , angle (q))
7 d i s t (q) = max(‖FP(q)−FP(p)‖ , d i s t (q))
8 else
9 angle (q) = d i s t (q) = 0

10 break out o f loop
11 de t e c t o r (q) = f (angle (q) , d i s t (q))

Listing 1.2. Pseudocode for angle and distance-based skeleton detector

For n(p), we use the 6-neighbour set. [11] states that this suffices for accurately
computing the detector in Eqn. 7. The skeleton S(p, τ, α, β) = {p ∈ Ω|f(p) >
τ ∧ angle(q) > α ∧ DT (q) > β} is obtained by thresholding the detector f as
well as the maximal feature angle angle and maximal inter-feature distance dist.
Similar to [11], typical thresholds values are τ ≈ 180, α ∈ [45, 100] degrees, and
β ∈ [0.05D, 0.15D] where D = 2max(DT) is the object diameter.

4.2 Implementation

We implemented our method in C++ using OpenGL and Cg (C for graphics) [17]
as our shader language. We splat the 3D PDF texture (Listing 1.1, Sec. 4.1)
using only 2D rendering primitives. We splat several 2D textures on an xy-axis-
aligned, slice-by-slice basis, as described next (see also Fig. 1; line numbers refer
to Listing 1.1). For every xy slice, the initialization (line 1) is done by clearing
the depth and color buffers. We implement the loops in lines 2 and 3 by drawing
quadrilaterals on the current slice (the thick vertical line in Fig. 1), textured
with a 2D slice from the 3D PDF function (Eqn. 5). The distance minimization
(line 4) is done by assigning the PDF value from the texture to the depth value
of the drawn pixels, using a pixel shader. We use the depth test, so this implicitly
does the minimization and yields the minimal DT value in the depth (Z) buffer.
We save the DT (line 5) by copying it to the alpha channel of the drawn pixel.

622 M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

Finally, we store the feature point (line 6) by writing the splatted point p’s
coordinates to the RGB color channels of the drawn pixel. The drawn image
thus holds the DT in the alpha channel and the one-point feature transform FP
in the RGB channels. The efficiency of our implementation depends critically on
the PDF texture size. We store the 3D PDF as 2δ 2D texture slices of size (2δ)2,
where δ is the PDF radius. Such a slice is shown in Fig. 1 with gray values. We
do not use 3D textures as these lack the high numerical precision needed and
also do not allow non-power-of-two sizes, which would increase δ unnecessarily.
When splatting, we do not iterate over the entire set VS , but over the smaller
’band’ V ′

S (thick line in Fig. 1), which includes the points on slices at most δ
pixels from the current slice, since these are the only ones that can influence the
DT result on the current slice.

Fig. 1. 3D distance splatting principle

A (naive) upper bound for δ is |V |/2, i.e. half of the shortest axis of V ’s
bounding box. However, this leads to many draw operations that do not affect the
final DT. We reduce the overdraw by two techniques: a hierarchical optimization
and a tighter upper bound estimation for δ, as follows. We implement a 3D
version of the adaptive hierarchical optimization proposed by [7], as follows. We
divide V in equally sized blocks B of c3 voxels. We construct a coarse-scale
version Vc of V , where Vc contains one sample of every block in V . We compute
(also by GPU splatting) the coarse-scale distance transform DTc of Vc, where
the distance between two samples in Vc is is the maximal distance between any
two voxels from their blocks B ⊂ V . For every block B, we splat only those
boundary voxels that can affect its DT. These are all p ∈ VS that are closer to B
than DTc(B). This bi-level hierarchical scheme has three advantages. First, we
can quickly skip splatting the blocks B which are outside V . Second, we check if
the minimal distance from B to the surface point p undergoing splatting (|p− q|
in Fig. 1) exceeds DTc(B) (shown by the radius of the circle centered at B).

Skeletonization and Distance Transforms of 3D Volumes 623

If so, p cannot affect the DT of any voxel in B, so we skip splatting p over B.
Finally, DTc upper-bounds the radius at which a surface point p can influence
the DT , so we use it as a tighter upper bound for the PDF size d than |V |/2.
Our improved PDF size δ′ is

δ′ = min
(|V |

2
, max
B⊂Vc

(DTc(B)) + 1
)

. (8)

This is a globally optimized PDF size (GPDF). We also tried a locally op-
timized PDF size (LPDF) that changes for every block B. However, this was
slower than the GPDF, as detailed further in Sec. 5.

The second stage of the algorithm (Listing 1.2) is also implemented by render-
ing xy-aligned slices. The initializations (lines 1,2) are done by clearing the color
buffer before drawing a slice. Next, we draw a rectangle for every volume slice
(loop at line 3). The inner loop (line 4) is done using a vertex shader to generate
the texture coordinates of the neighbours n(q) so that the pixel shader can use
these to access the relevant textures. If the fragment fails the ball containment
test (line 5), it is discarded, since not part of the skeleton (lines 9,10). If the
fragment passes the test, the maximum distance and angle are calculated (lines
6,7). We then use these to evaluate the detector f (Eqn. 7) and store it in a tex-
ture (line 11). Finally, we threshold this texture on-the-fly with the user-chosen
values τ, α, β (Sec. 4.2), yielding the desired pruned 3D skeleton.

5 Discussion

We tested our method on both synthetic volumes and volumes segmented from
real 3D scans (see Fig. 3). We used an Athlon 3.4GHz PC with 1 GB RAM
and tested on two different GPUs, i.e. a GeForce 6800 with 128 MB and a
GeForce 6600 with 256 MB graphics memory. We first compared our results
with a software-only implementation based on the Euclidean Feature Transform
method [16], which efficiently computes a feature transform (Table 1,column SW)
and uses the same skeleton detector (Eqn. 7). Both methods yielded identical
skeletons. We also used the pruned skeletons to reconstruct smoothed objects,
by splatting the skeleton voxels with PDF functions equal to their correspond-
ing MST values. It is well known that this replaces small-scale boundary details,
corresponding to pruned skeleton points, with spherical surface segments. Fig-
ure 4 shows reconstructions for several objects. Our skeletons are indeed exact,
as shown by the cube reconstructed from a non-pruned skeleton (Fig. 4 b), which
is identical to the original cube (Fig. 3 f). We can easily handle noisy objects
with highly complex 3D skeletons, e.g. the CT-scanned frog intestin (Fig. 3 a)
or the MRI-scanned colon (Fig. 3 h). Reconstructing the colon from a highly
pruned skeleton yields the smooth shape shown in Fig. 4 d.

We stress that our 3D distance splatting is exact by construction. Splatting
propagates the distance from a boundary point directly, thus exactly, to the in-
terior points. The depth test guarantees that the minimal distance is always cor-
rectly kept. This is not the case for incremental methods, e.g. level-set based [3,6],

624 M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

Table 1. Benchmarks of splatting-based skeletonization

model volume PDF object surface SW 6600 6800 skel. recon. voxels/
size size voxels voxels time time time voxels time sec.

cube 128x128x128 45 91125 11618 18 3.8 2.5 4961 0.8 4647

box 151x101x101 37 67392 9592 11.1 2.3 1.7 4032 0.5 5642

sphere 1 128x128x128 85 324157 18642 145.2 23.2 10.0 1 0.5 1864

sphere 2 256x256x256 171 2627271 75942 N/A 452.7 199.3 1 2.0 381

cylinder 1 51x51x51 31 61590 8138 5.9 1.7 1.2 4303 0.7 6781

cylinder 2 129x129x213 61 1674880 72043 781 188.1 19.2 37461 42.7 3752

cow 165x107x64 53 190041 21152 30 13.3 6.7 6402 2.6 3157

ellipse 100x100x100 25 23094 4164 3.2 0.9 0.7 288 0.1 6940

spring 100x100x100 15 38978 14013 2.2 1.7 1.5 2289 1.2 9342

ice 2 80x80x80 23 29880 5948 3.6 1.2 1.0 1255 0.6 5948

ice 3 80x80x80 29 41964 8104 4.7 2.3 1.7 1551 1.3 4767

rings 100x100x100 33 264784 28272 28.4 9.1 6.1 3222 1.6 4634

duo 72x69x90 23 36931 8636 3.1 1.7 1.4 2261 1.2 6168

intestin 60x71x94 17 13599 5724 3 0.9 0.8 1611 0.6 7155

colon 256x256x311 43 653170 81308 350.7 42.4 26.1 65120 35.7 3115

bent 150x150x150 49 429307 34211 92.9 21.8 11.6 10706 7.9 2949

that propagate information (e.g. distance, feature points) from point to point.
Unless special measures are taken, such methods accumulate errors yielding vis-
ibly incorrect DTs and skeletons [16].

We would like to compare the performance of our GPU-based skeletonization
with other methods, e.g. [3], [10], [11], [13], [8], and [12]. Unfortunately, this is
far from trivial. These methods use different input and/or skeleton data models
and skeleton detectors; have non-trivial, non-available implementations and/or
test datasets; and performance is reported for different platforms. For example,
we use a voxel-based model for both the input object and the computed skeleton,
just as [11] and [12]. In contrast, [13], [10] and [3] use polygonal surface models
for either or both.

The most interesting method to compare against is probably DiFi [8]. DiFi
also uses GPUs to compute a DT and skeletons, and has a very similar skeleton
detector (θ-SMA). DiFi handles both polygonal and volumetric objects. Since
we do not have a DiFi implementation, nor its test objects, we shall compare
our method with DiFi using the number of input object surface points processed
per second. Comparing Table 1 (rightmost column) with Table 2), we see a large
performance overlap between our method and DiFi. Our method skeletonizes
objects at a rate of [3157..9342] surface voxels/second, with an average of 5356
(we left out the two spheres from this benchmark, since they are special absolute
worst-case situations for any skeletonization method, also not present in DiFi’s
benchmarks). For DiFi, these figures are [1500..10500] voxels/second, with an
average of 5516. As our method, DiFi can also handle many distance metrics,
e.g. all Lp norms, if the Voronoi regions of the surface elements are connected.
However, it is much easier to change the distance metric with our method than

Skeletonization and Distance Transforms of 3D Volumes 625

with DiFi. We can use a specific distance metric by providing its sampled version
as a 3D PDF texture. We can do this globally, but also locally. Every surface
point can use another PDF function just by using another texture. For example,
we can easily compute the so-called Johnson-Mehl or Apollonius diagrams [18],
also called generalized skeletons, using additively, respectively multiplicatively,
weighted Euclidean PDF functions, by scaling or multiplying the PDF texture at
every point [7]. Doing this with DiFi appears to be significantly more complex [8].

Table 2. Skeletonization performance, DiFi method (from [8])

model surface (voxels) time (sec.) voxels/sec.

octahedron 4862 0.85 5720

brain 1 18944 1.82 10408

brain 2 4988 0.64 7793

sinus 1 34507 22.1 1561

sinus 2 104154 49.7 2095

As Table 3 c shows, using our globally optimized PDF size (GPDF) calcula-
tion (Sec. 4.2) has a major performance impact for relatively elongated objects
(e.g. ’bent’, ’colon’, ’intestin’) where it massively reduces the amount of GPU
overdraw during splatting. For objects tightly fitting their bounding-box, e.g.
’sphere’ or ’cube’, the optimization has no impact. Since the optimization itself
does not cost extra time, it is always an efficient, valuable mechanism. Finally,
we see that reconstruction is clearly faster than skeletonization (Table 1, column
’recon’). This is as expected, since a (pruned) skeleton has less points than the
surface it comes from, and its MST values are exactly equal to the distance-
to-boudary at every point, i.e. they match the absolute optimal PDF size value
(Sec. 4.2).

Fig. 2. Performance of local versus global PDF size choices

626 M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

(a) Intestin (b) Rings (c) Bent (d) Cylinder

(e) Spring (f) Cube (g) Cow (h) Colon

Fig. 3. Examples of 3D splatting-based skeletonization

Table 3 (a,b) shows the effect of using different coarse grid block sizes c in our
bi-level hierarchical acceleration (Sec. 4.2). Increasing c means less CPU over-
head, but more GPU overdraw. Decreasing c has the opposite effect. Varying c
also implicitly affects the PDF size (Table 3). An optimal PDF size estimation
would be obtained for the minimal block size c = 1. However, decreasing c in-
creases the time needed to compute DTc as well as the GPDF (Eqn. 8). For c ≤ 9

Skeletonization and Distance Transforms of 3D Volumes 627

(a) Spring (b) Cube (c) Cow (d) Colon

Fig. 4. Reconstruction of smoothed objects by splatting pruned skeletons

Table 3. Benchmarks for variable coarse grid size (a,b); Naive versus globally-
optimized PDF size performance (c)

(a)

model grid time PDF
size (sec) size

rings 6 10.0 49
7 9.9 53
8 10.9 55
9 12.8 63
10 12.7 61
11 14.6 67
100 23.3 97

cow 6 7.4 53
7 6.3 53
8 6.5 53
9 6.7 53
10 6.7 53
11 6.8 53
100 6.8 53

bent 6 19.7 65
7 16.1 65
8 17.1 73
9 17.4 74
10 18.2 75
11 21.0 83
100 49.4 131

(b)

model grid time PDF
size (sec) size

spring 6 3.4 37
7 4.0 43
8 4.6 49
9 5.2 55
10 5.9 61
11 6.6 67
100 8.7 83

duo 6 2.0 37
7 2.4 43
8 2.6 49
9 2.9 55
10 3.3 61
11 3.3 61
100 3.5 61

colon 6 76.0 55
7 57.7 57
8 47.9 61
9 45.9 67
10 44.4 69
11 51.9 77
100 112 119

(c)

naive globally
optimized

model PDF time PDF time
size size

cube 45 2.5 45 2.5

box 37 1.7 37 1.7

sphere 1 85 10.0 85 10.0

sphere 2 171 199.3 171 199.3

cylinder 1 31 1.2 31 1.2

cylinder 2 129 72.3 61 19.2

cow 53 6.7 53 6.7

ellipse 25 0.7 25 0.7

spring 83 7.4 15 1.5

ice 2 43 1.6 23 1.0

ice 3 79 4.5 29 1.7

rings 97 19.7 33 6.1

duo 61 3.3 23 1.4

intestin 43 1.5 17 0.8

colon 119 179.9 43 26.1

bent 131 50.1 49 11.6

voxels, this cost is no longer negligible. After extensive testing on several models,
we found the optimal coarse block size c to lie between 7 and 10, so we chose
10 as a default value. Finally, we compared the efficiency of local (per-block)
and global PDF size optimizations (see Sec. 4.2). We timed our method using
the locally optimized PDF size (LPDF), globally optimized PDF size (GPDF),
and also, for comparison purposes, a fixed-size PDF (FPDF) manually set to
values ranging from 25 to 201. As the graph in Fig. 2 shows, GPDF picks a
PDF size δ′ for which the FPDF (ascending graph) and LPDF (leveled graph)

628 M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

have the same, roughly linear, performance. For PDF sizes slightly larger than
δ′ (around 60 voxels in our graph), LPDF clearly beats FPDF. However, GPDF
picked a size below this range for any configuration (3D shape) we availed of, so
we settled with GPDF, which is simpler to compute than LPDF.

6 Conclusion

We have presented a flexible and efficient, yet very simple to program, algorithm
to compute 3D skeletons on the GPU. We generalize the 2D distance splatting
idea presented in [7] to the 3D case, and combine it with a different skeleton
detector. Similar to [7], we use a bi-level hierarchical scheme to speed up our
method by reducing the overdraw amount. Additionally, we use the coarse-scale
distance transform (DT) to estimate an optimal size for our splat radius (PDF
size), and thus reduce the overdraw even further. Since the optimal PDF size is
highly object-dependent, and the GPU drawing performance is at least linearly
dependent on the PDF size, this optimization can drastically improve the overall
performance, as shown by our experiments. We performed extensive testing to
evaluate our method on a range of volumetric objects, deduce optimal parameter
values, and validated our results by performing (smoothed) object reconstruc-
tions from the skeleton. Overall, our simple splatting-based DT computation
and skeletonization is as efficient as more complex methods, such as DiFi [8],
and also lets one quite easily customize the distance metric used just by defining
a 3D texture.

A more challenging subject, however, is finding efficient global criteria for
noise-resistant detection and hole-free pruning of 3D skeletons. What such cri-
teria might be, and whether they can efficiently be implemented on GPUs, is a
subject for further research.

References

1. Blum, H.: A Transformation for Extracting New Descriptors of Shape. In: Models
for the Perception of Speech and Visual Form. MIT Press (1967) 362–380

2. Gagvani, N., Kenchammana-Hosekote, D., Silver, D.: Volume animation using the
skeleton tree. Proc. IEEE Volume Visualization (1998) 47–53

3. Rumpf, M., Telea, A.: A Continuous Skeletonization Method Based on Level Sets.
Proc. VisSym (2002) 151–158

4. Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognition
28(3) (1995) 343–359

5. Costa, L., Cesar, R.: Shape Analysis and Classification: Theory and Practice. CRC
Press, Inc. (2000)

6. Telea, A., van Wijk, J.J.: An Augmented Fast Marching Method for Computing
Skeletons and Centerlines. Proc. IEEE VisSym (2002) 251–258

7. Strzodka, R., Telea, A.: Generalized Distance Transforms and Skeletons in Graph-
ics Hardware. Proc. VisSym (2004) 221–230

8. Sud, A., Otaduy, M.A., Manocha, D.: DiFi: Fast 3D Distance Field Computation
Using Graphics Hardware. Computer Graphics Forum 23(3) (2004) 557–566

Skeletonization and Distance Transforms of 3D Volumes 629

9. Palágyi, K., Kuba, A.: Directional 3D Thinning Using 8 Subiterations. Proc. DGCI
(1999) 325–336

10. Foskey, M., Lin, M.C., Manocha, D.: Efficient Computation of a Simplified Medial
Axis. Proc. ACM Symp. Solid Modeling (2003) 96–107

11. Malandain, G., Fernández-Vidal, S.: Euclidean Skeletons. Image and Vision Com-
puting 16(5) (1998) 317–327

12. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi Skeletons.
IJCV 48(3) (2002) 215–231

13. Sud, A., Foskey, M., Manocha, D.: Homotopy-Preserving Medial Axis Simplifica-
tion. Proc. ACM Symp. Solid Modeling (2005) 39–50

14. Sigg, C., Peikert, R., Gross, M.: Signed Distance Transform Using Graphics Hard-
ware. Proc. IEEE Visualization (2003) 83–90

15. Pudney, C.: Distance-ordered homotopic thinning: A skeletonization algorithm
for 3d digital images. Computer Vision and Image Understanding 72(3) (1998)
404–413

16. Reniers, D., Telea, A.: Quantitative comparison of tolerance-based distance trans-
forms. Proc. VISAPP’06 (2006) 57–65

17. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-
Performance Graphics. Addison-Wesley (2005)

18. Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data
structure. SIAM J. Comp. (27) (1998) 654–667

	Introduction
	Background
	Distance Splatting in 2D
	Distance Splatting in 3D
	New Algorithm
	Implementation

	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

