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Abstract. A novel method for segmenting simplified skeletons of 3D shapes is
presented. The so-called simplified Y-network is computed,defining boundaries
between 2D sheets of the simplified 3D skeleton, which we takeas our skeleton
segments. We compute the simplified Y-network using a robustimportance mea-
sure which has been proved useful for simplifying complex 3Dskeleton man-
ifolds. We present a voxel-based algorithm and show resultson complex real-
world objects, including ones containing large amounts of boundary noise.

1 Introduction

The skeleton, also known as medial axis, is a compact shape descriptor. The skeleton
is of a lower dimensionality than the shape it describes, andmakes the shape’s struc-
ture, such as its topology and articulation, more explicit.Hence, it is a useful tool in
a wide range of computer vision and visualization applications, such as shape analy-
sis, recognition, shape alignment, motion planning, and collision detection. One way
of analyzing the structure of the skeleton is by segmenting it in its logical parts. To
give just one of many examples, Zhanget al. use such a skeleton segmentation as a
step in their 3D model retrieval pipeline [1]. Besides the explicit capture of a shape’s
logical components, skeletons offer pose invariance undermany types of shape defor-
mation. However, skeletons are notoriously unstable to small boundary perturbations,
which affects the segmentation robustness. What is needed is a robust segmentation of a
simplified skeleton, i.e., a skeleton from which spurious, small-scale, parts are removed.

In this paper, we present a voxel-based algorithm for segmenting simplified skele-
tons of 3D shapes into disjoint segments. A 3D skeleton consists of a set of compact 2D
manifolds, calledsheets. A sheet boundary consists of 1D curves which are either part
of the 3D skeleton’s boundary, or curves where at least threesheets intersect. Given
this property, the sheet intersection curves are also called Y-curves[2]. Our aim is to
robustly segment a noisy 3D skeleton in its sheets.

We compute a robust simplified skeleton using [3], and extendthis method to com-
pute the simplified network of Y-curves by combining information from two different
simplification levels. Our segmentation, based on this simplified Y-network, can han-
dle objects with large amounts of noise on the boundary, without having to prune the
segmentation afterward. Besides the segmentation itself,the simplified Y-network is



also a useful result of our approach, which can be used in shape analysis tasks. We
demonstrate our voxel-based algorithm on several real-world examples, and show that
our approach can handle objects containing large amounts ofnoise on the boundary.

As far as we know, this is the first segmentation method specifically designed for
simplified 3D skeletons. Existing surface-segmentation approaches, such as the well-
known topological segmentation for discrete surfaces of Malandain et al. [4], fail on
our simplified skeletons, as we show in Sec. 5. To achieve a better segmentation, we
consider not only the skeleton itself, but also its relationto the object boundary.

The outline of this paper is as follows. Section 2 introducesthe definition of the
skeleton and details on its structure. Section 3 briefly outlines our previous work on
simplified skeletons necessary for a good understanding of the following material. Sec-
tion 4 details our novel method for computing the simplified Y-networkYτ , at simplifi-
cation levelτ , and the decomposition ofYτ into its constituent Y-curves. In Section 5,
we extendYτ using information from a less-simplified Y-networkYυ to correctly and
robustly segment the simplified skeleton at level of detailτ . Section 6 presents and
discusses results. Section 7 concludes this paper.

2 Preliminaries

2.1 Skeleton Definition

Let Ωd be ad-dimensional shape with boundary∂Ω. Let D : Ω → R
+ be the dis-

tance transform, assigning to each object point the minimumEuclidean distance to the
object’s boundary. LetF : Ω → P(∂Ω) be the feature transform [5] (whereP is
the power set), assigning to each object point the set of boundary points at minimum
distance:

F (p ∈ Ω) =
{

q ∈ ∂Ω
∣

∣ ‖p− q‖ = D(p)
}

, (1)

where‖ · ‖ denotes Euclidean distance. TheskeletonS of Ω can be defined in
multiple equivalent ways: as the locus of centers of maximally inscribed balls, as the
singularities ofD, or as those object points having at least two feature points. We use
the latter definition:

S(Ω) =
{

p ∈ Ω
∣

∣ |F (p)| ≥ 2
}

. (2)

This definition can be used both in 2D and 3D. In 3D,S is also called the medial surface,
or surface skeleton, to distinguish it from the curve skeleton, or centerline [6]. It has
been proved that the skeleton is homotopic to the original shape in any dimension [7].

2.2 Skeleton Structure and Segment Definition

It is well known that the skeleton of a 3D object consists of manifolds, calledsheets,
that intersect in curves, calledY-curves[2]. A sheet’s boundary consists of Y-curves
and/or skeleton boundary curves. In addition to the above sheet boundary curves, a 3D
skeleton can also contain isolated curves in some degenerate cases, such as a cylinder.
We assume for the time being that the skeleton contains no such degeneracies. The
set of Y-curves is called theY-network, denotedY = {y1, ..., yn}. In the following,



Fig. 1.Skeleton structure of a box. Pointp is a sheet point having two feature pointsp1, p2, point
q is a Y-curve point having three feature pointsq1, q2, q3.

a skeleton segmentis equivalent to a sheet. For example, Fig. 1 shows the skeleton
of a box. This contains 12 skeleton boundary curves (dotted lines), and a Y-network
containing 12 Y-curves (thick lines), yielding 13 sheets, or segments. For illustration,
segmentA is bounded by Y-curvesy1...y4, whereasB is bounded by Y-curvesy4, y5, y6

and skeleton boundary curvee1.
Skeleton points can be classified by the number of feature points they have [8].

A skeleton boundary-curve point has an infinite amount of feature points, because the
inscribed ball at such a point has a contiguous arc of contactpoints with∂Ω. A sheet
pointp has two feature points,|F (p)| = 2. Within a sheet, the associated feature points
evolve smoothly over the object boundary. That is, for a point p + ∆p close top, the
feature pointsF (p + ∆p) neighbor the feature pointsF (p) of p. Finally, a Y-curve
point q, where three sheets intersect, has three feature points,|F (q)| = 3. Each sheet
contributes two feature points, but each feature point is shared with one of the two other
sheets. Fig. 1 illustrates such a sheet pointp and Y-curve pointq and their respective
feature points (crosses).

3 Simplified Skeletons

Following from Eq. 2, skeletons are inherently sensitive tosmall boundary perturba-
tions [9]. Boundary noise, for example due to sampling or acquisition artifacts, pro-
duces spurious skeleton parts. To handle this, some skeletonization methods define an
importance measureρ : S → R

+ indicating the importance for each skeleton point
to the shape representation. Together with a subsequent pruning strategy, this delivers
a simplified skeleton [10]. Well-known measures are the distance and angle between
feature points [11]. The problem with these measures is thatthey are non-monotonic,
which means that a non-trivial, often non-intuitive, pruning strategy is needed to enforce
connectedness of the simplified skeleton, which is a desirable property as the skeleton
should be connected (if the original object is connected). Afrequent step of such a prun-
ing strategy is an erosion step (e.g. [12]). To eliminate these complications, a monotonic
importance measure can be used, so that simply thresholdingthe measure delivers a
connected skeleton. In 2D, this is achieved by the monotonicboundary-distance mea-
sure, which takes as importance for a point the smaller distance along the boundary



Fig. 2.Simplified skeletonsSτ=10,Sτ=20,Sτ=70 (from left to right) of a noisy box. The intensity
encodes the importance measureρ. In the right image a voxel was selected which has 4 feature
voxels, resulting in 6 paths.

between its two feature points [13–15]. A robust, progressively simplified, connected
skeleton is obtained simply by thresholding this measure with increasing values.

In [3], we extended the boundary-distance measure to 3D, andobtained the first
monotonic importance measure for 3D skeletons. We assign toeach pointp ∈ S the
length of the shortest geodesic on the surface∂Ω between the two feature pointsF (p).
This measure is continuous on sheets, over which the featurepoints evolve smoothly,
may contain jumps at Y-curves (cf. Fig. 2), and has a local maximum ridge that forms
a 1D connected structure onS. This last property has been shown in [16] and was used
to formally define a curve skeleton.

The next section explains how we compute our measure in a discrete setting, a step
which is needed prior to computing the simplified Y-network (Sec. 4).

3.1 Computing Simplified Skeletons

Most skeletonization methods work on discretized objects,using e.g. a boundary sam-
pling [13] or a volumetric sampling on a regular voxel gridZ

3. We take the latter,
voxel-based, approach. Def. 1 and 2 for the continuum have tobe adapted accordingly.

The objectΩ, its boundary∂Ω, and skeletonS are represented as sets of voxels. We
compute the feature transform ofΩ by the raster-scanning approach of [17]. Voxeliza-
tion introduces the problem that when placing a discretizedinscribed ball at a skeleton
voxel, this ball does not always touch the boundary exactly in two voxels: It might touch
it only in one [5]. Thus, weextendthe feature transform by merging the feature set of a
voxelp = (px, py, pz) with the feature sets ofp’s 26-neighbors in the first octant:

F (p ∈ Ω) =
⋃

∆x,∆y,∆z∈{0,1}

F (px + ∆x, py + ∆y, pz + ∆z) . (3)

In the rest of this paper, the extended feature transform will simply be referred to as
feature transform. Hence, skeletons based onF can be up to two voxels thick.

In order to compute our importance measureρ for a voxelp ∈ Ω, we compute the
shortest-path setΓ , by computing between each two feature voxelsa, b the shortest



pathγ(a, b), as discrete equivalent to the shortest geodesic, on the boundary∂Ω:

Γ (p) =
⋃

a,b∈F (p)

γ(a, b) . (4)

Shortest paths are computed as 26-connected voxel chains using Dijkstra’s algorithm
on the boundary graph, in which the voxels∂Ω are the nodes, and the 26-neighborhood
relations represent the edges. By caching computed paths, we avoid computing the same
path twice, and thereby accelerate the method, as detailed in [3].

The importance measureρ is now defined for each object voxelp as the maximum
shortest-path length inΓ (p):

ρ(p ∈ Ω) = max
γ∈Γ (p)

‖γ‖, (5)

where‖γ‖ denotes the length of pathγ, computed using the geodesic length estimator
of [18]. In Figure 2 (right), the shortest-path setΓ containing 6 paths for a voxel with 4
feature voxels is shown. The resultingρ is robust as it maximizes path length.

Finally, the simplified skeletonSτ is defined by imposing a thresholdτ onρ:

Sτ (Ω) = {p ∈ Ω | ρ(p) > τ} . (6)

The thresholdτ functions as a continuous scale-parameter controlling thesimplification
level. Smallτ values eliminate less important skeleton parts that are dueto small-scale
surface features such as noise. Largerτ values can be used to retain the most salient
parts of the skeleton. Thresholdingρ combines both skeleton detectionandsimplifica-
tion in a single step. Experimental studies show that forτ ≥ 5 all non-skeleton voxels
are pruned. Figure 2 illustrates the use ofτ for a noisy box. WhereasSτ=10 (left) con-
tains some spurious sheets.Sτ=20 (middle) can be considered robust, as it contains 13
sheets like a non-noisy box. InSτ=70 (right), only the center sheet is retained, which
can be seen as a coarse scale representation of the box.

The simplified skeleton is homotopic to the original object as long as the local maxi-
mum ridge in the thresholdedρ forms a connected structure. For completeness, we note
that an alternative definition ofρ (Eq. 5) can be formulated on this ridge in order to ob-
tain a monotonic measure forall skeleton points [3, 19], so that the simplified skeleton
is homotopic for everyτ . However, this is outside this paper’s scope.

4 The Simplified Y-network

In this section, we show how we extend the previous work on simplified skeletons to
compute a simplified Y-network, on which our skeleton segmentation is based.

4.1 Computing the Y-network

In order to find the Y-network, i.e. the sheet-intersection curves, of a simplified skeleton
Sτ we must check if a voxel is on a Y-curve or not. In the continuous R

3 space, an
intersection curve point has (at least) three feature points: |F | ≥ 3 (Sec. 2.2). However,



(a) The feature transformF . (b) The simplified feature transformF τ .

Fig. 3.A (non-axis aligned) box with its detected networkYτ=10. Three selected pointsp, q, r: a
sheet pointp, a Y-curve pointq, and a Y-curve intersectionr.

as indicated in Section 3, the feature transformF (p) for a skeleton voxelp consists
of several voxels. For example,F (p) in Fig. 3(a) contains 4 feature voxelsp1...p4 and
F (q) contains 6 voxels:q1..q6. If we naively use the cardinality ofF to detect the Y-
curves, then bothp andq would be selected, which is wrong forp. To solve this problem,
we group each two feature points that have a small geodesic distance (shortest-path
length) on the boundary. More formally, we define an equivalence relationa ∼ b onF :

a ∼ b ⇔ ‖γ(a, b)‖ < τ , (7)

whereτ is the same threshold we used to simplify the skeletons (Eq. 6). This relation
gives rise to a number equivalence classes. We now replaceF by thesimplified feature
transformF τ , defined as a set of class representatives following Eq. 7, i.e. a subset of
F containing one point from each equivalence class. Which particular point we choose
in a class is not important, as we are only interested in the cardinality of F τ .

Using the simplified feature transformF τ , we replace the definition ofSτ in Eq. 6
with:

Sτ (Ω) =
{

p ∈ Ω
∣

∣ |F τ (p)| ≥ 2
}

, (8)

which more closely parallels Eq. 2. InSτ all sheet pointsp that have a shortest path
between their two feature points that is shorter thanτ , or in other words, that have a
lower importance thanτ , are pruned.

Now, thesimplified Y-networkis straightforwardly defined as:

Yτ =
{

p ∈ Ω
∣

∣ |F τ (p)| ≥ 3
}

, (9)

which is a subset ofSτ . For a Y-curve pointq, where three sheets meet inq’s neigh-
borhood, this means that if one of the sheets in its neighborhood is pruned because
its importance is lower thanτ , the point is not considered a Y-curve point inYτ . It is
important to note that the simplified Y-network is not simplya post-processing of the
simplified skeleton. Instead, the Y-network is computed directly out of the shape, using



(a) Two pointsp, q on a Y-network. (b) The detected Y-curves of a box.

Fig. 4. Y-network decomposition into Y-curves.

the integral quantity of geodesic distance on the object boundary. This is more stable
than extracting the sheet-intersection curves from the voxelized skeleton, and also offers
a natural scale parameter.

Fig. 3 shows a non-axis aligned box with its simplified network Yτ , τ = 10. Like in
the continuous case, the discrete Y-network forms a connected structure. Three points
p, q, r are selected: a sheet pointp, a Y-curve pointq, and a Y-curve intersection point
r. Their feature voxels are connected to the corresponding points by line segments.
Fig. 3(a) uses the non-simplified feature transformF for the selected points, while
Fig. 3(b) uses the simplified feature transformF τ . We see the merit ofF τ : p andq

can be classified as a sheet and a Y-curve voxel respectively based on the cardinality
|F τ |, but not on|F |. For pointq for instance,F τ gives us exactly three feature points
q1, q2, q3, i.e. the representations of the classes{q1, q2}, {q3, q4}, {q5, q6}.

4.2 Y-network Decomposition

Although Eq. 9 enables the detection of the Y-network voxels, it does not make explicit
the structure of the Y-network as a collection of Y-curves. This section presents how to
compute such a decomposition. The next section shows how to use the decomposition
to compute a skeleton segmentation.

To decompose the networkYτ into itsn Y-curves{y1, ..., yn}, we define two points
p, q ∈ Yτ to be on the same Y-curve when there is no junction in the Y-network between
them. For illustration, Figure 4(a) sketches (part) of a Y-network. Letp, q be two points
on Yτ , each one having three feature points, with the indexesp1, p2, p3 andq1, q2, q3

chosen in such a way that they are “aligned”, that is, the sum of the geodesic distances
∑

i ‖γ(pi, qi)‖ is minimal. Suppose now there is a junctionj betweenp, q, due to a
Y-curveya as shown (dotted) in the figure. Such a Y-curveya results from a sheetA
with a local importance higher thanτ , otherwiseya would have been pruned and would
not be present inYτ . Thus, we can detect whether there is a junctionj betweenp andq

by looking at the geodesic distance‖γ‖ between the feature points ofp andq. Because



(a) SheetsA, B andD are wrongly in
the same segment.

(b) Close-up of (a).

Fig. 5. Segmented simplified skeleton of the Deformed Box usingYτ .

the feature points evolve smoothly within a skeletal sheet,we argue that if there is a Y-
curveya betweenp, q due to sheetA, the geodesic distance between the feature points
p2 andq2 must be larger thanτ , becauseA’s importance is at leastτ . Generalizing, two
pointsp, q ∈ Yτ belong to the same Y-curvey if and only if all three geodesic distances
between each pair of feature points(pi, qi) are smaller thanτ :

p, q ∈ y ∈ Yτ ⇔ ∀i∈{1,2,3}‖γ(pi, qi)‖ ≤ τ . (10)

One remark is due. Voxels where several Y-curves come together have more than
three feature points (see e.g. Fig. 3(b), pointr). To handle these cases, Eq. 10 is applied
for all subsets of bothp andq, having 3 feature points. One might ask why we do not
just detect the Y-curve intersection points and use these toseparate the Y-curves, which
is more trivial. The first reason is that our approach is of sub-voxel precision: a single
voxel may contain multiple Y-curves. Second, our method does not use a topological
analysis of the Y-network voxels and is thus more accurate incases where Y-curves
meet under small angles. Figure 4(b) shows the segmentationof the Y-network of a box
obtained using Eq. 10. The Y-curves are distinctively colored3.

5 Skeleton Segmentation

Although it seems natural to use the simplified networkYτ to segment the skeleton
Sτ , both computed at the same scaleτ , this can sometimes deliver unexpected results.
Figure 5(a) shows the segmentation produced for the skeletonSτ (τ = 10) of a twisted
box. We expect 13 segments, similar to the skeleton segmentation of a non-deformed
box (Sec. 2.2). Yet, for the deformed box some segments get merged inadvertently. For
example, the skeleton sheetsA, B andD are incorrectly merged, whereas they should
be distinct segments as for a non-deformed box.

Figure 5(b) is a schematic close-up of the situation. The problem is that the Y-
curvey ∈ Yτ does not extend all the way to the skeleton boundary. The missing part is

3 Please view the images in color



indicated by the dotted line. A narrow tunnel connects the areasA andB on the skeleton
manifold, so that they end up in the same segment. The reason thaty is too short is that
sheetC is simplified for lower values ofτ thanA andB at the dotted line segment. The
cardinality of the simplified feature transform for these points is 2, so that pointq, for
example, is not detected as a Y-curve point by Eq. 9. In other words, only two sheets
are found to come together atq in the simplifiedskeleton, namelyA andB. For the
same reason, other surface segmentation approaches based on local topology, e.g. [4],
would fail segmenting thissimplifiedskeleton. Note that it would also fail because our
skeletons are two voxels thick.

We solve the issue noticing that curvey in Fig. 5(b) would be longer for less sim-
plified skeletons. For non-simplified skeletons, we would not have the problem at all.
Hence, to segment a skeletonSτ we use a less simplified Y-networkYυ, υ < τ , which
contains longer, extended, versions of the Y-curves which ended prematurely inYτ .
However, we must be careful to only extend Y-curves fromYτ , and not to incorporate
anyY-curves that only occur inYυ . Hence, we only consider those Y-curvesy ∈ Yυ for
which there is at least one pointp ∈ y in Yτ . We call this set the extension ofYτ using
Yυ, denoted asYτ,υ:

Yτ,υ =
{

y ∈ Yυ

∣

∣ ∃p∈y p ∈ Yτ

}

. (11)

Finally, we compute the decomposition ofYτ,υ into its respective Y-curves by taking
both scalesτ andυ into account and adapting Eq. 10 accordingly:

p, q ∈ y ∈ Yτ,υ ⇔ ∀i∈{1,2,3}‖γ(pi, qi)‖ ≤

{

τ if p ∈ Yτ ∧ q ∈ Yτ

υ otherwise.
(12)

We have not yet specified the value ofυ. For all objects we tested, a fixed value of
υ = 5 gives very good results. As explained in Sec. 3, this value essentially robustly
yields the entire skeleton of a 3D shape.

After computingYτ,υ we can segmentSτ as follows. We consider the skeletonSτ

as a 26-connected graph, from which we remove the voxels occupied byYτ,υ, and then
determine the connected components in the remaining skeleton graph using e.g. a flood-
fill. Since Sτ can be up to two voxels thick [3] and the Y-network is only one voxel
thick, we first dilate the Y-network by 1 voxel in each 26-direction, before removing
them from the skeleton graph. Hereafter we erode the dilatedY-network so that these
voxels are also part of a segment. Clearly, many other alternative implementations are
possible once we have a robust Y-network.

Figure 6 showsYυ, Yτ , Yτ,υ (decomposed in its Y-curves), and the segmentation
based onYτ,υ respectively, which is a correct segmentation of the deformed box skele-
ton as opposed to Fig. 5(a).

6 Results and Discussion

We have tested our method on shapes of varying complexity andamount of boundary
noise. As input objects we used 3D triangle meshes, voxelized using binvox (http://
www.cs.princeton.edu/∼min/binvox/) in various resolutions ranging up to two million



(a) Yυ, υ = 5 (b) Yτ , τ = 10 (c) Yτ,υ (d) segmentation

Fig. 6. Correctly segmenting the simplified skeleton of a deformed box.

object voxels. For all images in this paper, the original object mesh representation is
rendered instead of its voxel representation for nicer display.

Figure 7 shows a selection of the results. For each object,τ is empirically chosen
based on the noise level of the object, and we show both the extended simplified network
Yτ,υ, decomposed into its Y-curves (top image), and the segmentation of the simplified
skeleton (bottom image) usingYτ,υ. In Figures 7(a) and 7(e), we added 5-10% noise to
show the robustness of our approach.

We highlight some of the results. For the Noisybox, we see that our method correctly
detects 13 segments and 12 Y-curves. For the Dinosaur and Noisydino, the four legs and
feet are all assigned different segments. Our method correctly segments the skeleton
of the Dodecahedron (Fig. 7(f)). This is a difficult skeletonto segment as it contains
degeneracies, in the sense that each Y-curve actually separates five sheets instead of the
usual three, which is why the Y-network is thicker than for the other objects.

Table 1 shows timing measurements performed on a Pentium IV 3GHz, with 1 GB
of RAM for all objects in this paper. Columns “dim”, “|Ω|”, and |∂Ω| denote the grid
resolution, and the amount of object and boundary voxels respectively. Columns “S
time” and “segm. time” denote the wall-clock time for computing the skeleton and seg-
mentation respectively. The most time is spent computing shortest paths in the boundary
graph, needed in both stages.

7 Conclusion

We have presented a voxel-based approach for robustly segmenting simplified skeletons
of 3D shapes, based on the simplified feature transform and simplified Y-network. The

Table 1.Timing measurements

Object dim |Ω| |∂Ω| S time (s) segm. time (s)
Deformed Box 65x64x124 247k 24k 21s 11s
Dodecahedron 124x124x124 945k 39k 48s 17s
ET 125x78x173 1.045k 93k 304s 37s
Noisydino 99x325x365 1.128k 100k 62s 33s
Rockerarm 366x188x112 2.000k 151k 470s 62s



(a) Noisybox,τ = 20 (b) ET,τ = 10 (c) Rockerarm,τ = 10

(d) Dino,τ = 16 (e) Noisydino,τ=16 (f) Dodecahedron,τ=10

Fig. 7. Results. Y-network decomposition (top images),Sτ segmentation (bottom images).

Y-network is decomposed into its respective Y-curves. The simplified Y-network could
prove to be more useful in certain shape analysis or retrieval tasks than the segmentation
itself, because the Y-curves change more continuously under shape deformations than
the segmentation does.

Our entire method relies upon the choice of a single parameter τ , which controls
the simplification of the skeleton [3], butnot the segmentation itself, thereby yielding a
fully autonomous segmentation method. One limitation of our current implementation
is that cylindrical object-parts having degenerate curve skeletons may locally result in



over-segmentation. Second, the two-voxel thickness of theskeletons might yield unde-
sirable topological changes in the skeleton for too complexobjects, when compared to
thin skeletons.

In future work, we would like to investigate whether our skeleton segmentation can
be used to achieve a robust patch-type segmentation of the object surface. As opposed
to traditional methods acting only on the surface, a skeleton-based segmentation has the
benefit that it captures a sense of symmetry, and is potentially more robust, being based
on the object’s volume, not on its surface.
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