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Abstract. A novel method for segmenting simplified skeletons of 3D sisap

presented. The so-called simplified Y-network is computiedining boundaries
between 2D sheets of the simplified 3D skeleton, which we &askeur skeleton
segments. We compute the simplified Y-network using a rabysbrtance mea-
sure which has been proved useful for simplifying complexsk®leton man-
ifolds. We present a voxel-based algorithm and show resumtsomplex real-
world objects, including ones containing large amountsafriglary noise.

1 Introduction

The skeleton, also known as medial axis, is a compact shaueipt®r. The skeleton
is of a lower dimensionality than the shape it describes,raakles the shape’s struc-
ture, such as its topology and articulation, more explidénce, it is a useful tool in
a wide range of computer vision and visualization appl@ai such as shape analy-
sis, recognition, shape alignment, motion planning, arltisean detection. One way
of analyzing the structure of the skeleton is by segmenting its logical parts. To
give just one of many examples, Zhaagal. use such a skeleton segmentation as a
step in their 3D model retrieval pipeline [1]. Besides theleit capture of a shape’s
logical components, skeletons offer pose invariance undaty types of shape defor-
mation. However, skeletons are notoriously unstable tdldmandary perturbations,
which affects the segmentation robustness. What is nes@deabust segmentation of a
simplified skeleton, i.e., a skeleton from which spuriousal-scale, parts are removed.

In this paper, we present a voxel-based algorithm for se¢gingesimplified skele-
tons of 3D shapes into disjoint segments. A 3D skeleton stgsf a set of compact 2D
manifolds, calledsheetsA sheet boundary consists of 1D curves which are either part
of the 3D skeleton’s boundary, or curves where at least thheets intersect. Given
this property, the sheet intersection curves are alsoccaHeurved2]. Our aim is to
robustly segment a noisy 3D skeleton in its sheets.

We compute a robust simplified skeleton using [3], and exthisdnethod to com-
pute the simplified network of Y-curves by combining infoina from two different
simplification levels. Our segmentation, based on this firag Y-network, can han-
dle objects with large amounts of noise on the boundary,awmitihnaving to prune the
segmentation afterward. Besides the segmentation itbelfsimplified Y-network is



also a useful result of our approach, which can be used ineshaplysis tasks. We
demonstrate our voxel-based algorithm on several realdvexamples, and show that
our approach can handle objects containing large amoumisieé on the boundary.

As far as we know, this is the first segmentation method spadifidesigned for
simplified 3D skeletons. Existing surface-segmentatigoregches, such as the well-
known topological segmentation for discrete surfaces ofakt#ain et al. [4], fail on
our simplified skeletons, as we show in Sec. 5. To achieve terbggmentation, we
consider not only the skeleton itself, but also its relatmthe object boundary.

The outline of this paper is as follows. Section 2 introduitesdefinition of the
skeleton and details on its structure. Section 3 brieflyinesl our previous work on
simplified skeletons necessary for a good understandirtgedbilowing material. Sec-
tion 4 details our novel method for computing the simplifiedé&tworkY, at simplifi-
cation levelr, and the decomposition &f; into its constituent Y-curves. In Section 5,
we extendY, using information from a less-simplified Y-netwoFg to correctly and
robustly segment the simplified skeleton at level of detaiSection 6 presents and
discusses results. Section 7 concludes this paper.

2 Preliminaries

2.1 Skeleton Definition

Let 2¢ be ad-dimensional shape with boundaiyf?. Let D : 2 — RT be the dis-
tance transform, assigning to each object point the minirBuelidean distance to the
object’'s boundary. Lef’ : 2 — P(912) be the feature transform [5] (whef@ is
the power set), assigning to each object point the set of demyrpoints at minimum
distance:

Flpe2)={qed|llp—qll=D(p)}, (1)

where|| - || denotes Euclidean distance. ThieeletonS of {2 can be defined in
multiple equivalent ways: as the locus of centers of maxiriakcribed balls, as the
singularities ofD, or as those object points having at least two feature pdikiésuse
the latter definition:
S(2)={pe2||F(p)>2}. 2

This definition can be used both in 2D and 3D. In 3Ds also called the medial surface,
or surface skeletgrto distinguish it from the curve skeleton, or centerling [6has
been proved that the skeleton is homotopic to the origirabshin any dimension [7].

2.2 Skeleton Structure and Segment Definition

It is well known that the skeleton of a 3D object consists ohifidds, calledsheets
that intersect in curves, calledcurveg?2]. A sheet's boundary consists of Y-curves
and/or skeleton boundary curves. In addition to the abogetdhoundary curves, a 3D
skeleton can also contain isolated curves in some degersasés, such as a cylinder.
We assume for the time being that the skeleton contains nio degeneracies. The
set of Y-curves is called th¥-network denotedY” = {yi, ...,y }. In the following,
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Fig. 1. Skeleton structure of a box. Points a sheet point having two feature poipts p2, point
q is a Y-curve point having three feature poigis ¢z, gs.

a skeleton segmeri$ equivalent to a sheet. For example, Fig. 1 shows the skelet
of a box. This contains 12 skeleton boundary curves (dottest), and a Y-network
containing 12 Y-curves (thick lines), yielding 13 sheetssegments. For illustration,
segmen# is bounded by Y-curves, ...y4, whereasB is bounded by Y-curves,, ys, ys
and skeleton boundary curve.

Skeleton points can be classified by the number of featuretpdhey have [8].
A skeleton boundary-curve point has an infinite amount dfuiesapoints, because the
inscribed ball at such a point has a contiguous arc of copiaiots withd (2. A sheet
pointp has two feature point$F'(p)| = 2. Within a sheet, the associated feature points
evolve smoothly over the object boundary. That is, for a ppin- Ap close top, the
feature pointsF'(p + Ap) neighbor the feature point&(p) of p. Finally, a Y-curve
point ¢, where three sheets intersect, has three feature poif(ig)| = 3. Each sheet
contributes two feature points, but each feature pointaseshwith one of the two other
sheets. Fig. 1 illustrates such a sheet ppiahd Y-curve poiny and their respective
feature points (crosses).

3 Simplified Skeletons

Following from Eq. 2, skeletons are inherently sensitivestaall boundary perturba-
tions [9]. Boundary noise, for example due to sampling orgition artifacts, pro-
duces spurious skeleton parts. To handle this, some sh&atmn methods define an
importance measure : S — RT indicating the importance for each skeleton point
to the shape representation. Together with a subsequemingrstrategy, this delivers
a simplified skeleton [10]. Well-known measures are theadist and angle between
feature points [11]. The problem with these measures isthigat are non-monotonic,
which means that a non-trivial, often non-intuitive, pmmstrategy is needed to enforce
connectedness of the simplified skeleton, which is a ddsiaioperty as the skeleton
should be connected (if the original object is connectededuent step of such a prun-
ing strategy is an erosion step (e.g. [12]). To eliminate¢t@mmplications, a monotonic
importance measure can be used, so that simply threshaldinmeasure delivers a
connected skeleton. In 2D, this is achieved by the monotonimdary-distance mea-
sure, which takes as importance for a point the smaller mistalong the boundary



Fig. 2. Simplified skeletons$,— 10, Sr=20, Sr=70 (from left to right) of a noisy box. The intensity
encodes the importance measyrén the right image a voxel was selected which has 4 feature
voxels, resulting in 6 paths.

between its two feature points [13—-15]. A robust, progredgisimplified, connected
skeleton is obtained simply by thresholding this measutk increasing values.

In [3], we extended the boundary-distance measure to 3D ohatained the first
monotonic importance measure for 3D skeletons. We assigadh pointp € S the
length of the shortest geodesic on the surfafebetween the two feature poinkyp).
This measure is continuous on sheets, over which the feptints evolve smoothly,
may contain jumps at Y-curves (cf. Fig. 2), and has a localimar ridge that forms
a 1D connected structure ¢h This last property has been shown in [16] and was used
to formally define a curve skeleton.

The next section explains how we compute our measure in eetlissetting, a step
which is needed prior to computing the simplified Y-netwdsle¢. 4).

3.1 Computing Simplified Skeletons

Most skeletonization methods work on discretized objacs)g e.g. a boundary sam-
pling [13] or a volumetric sampling on a regular voxel gd. We take the latter,
voxel-based, approach. Def. 1 and 2 for the continuum halse tdapted accordingly.
The objectf?, its boundary (2, and skeletos are represented as sets of voxels. We
compute the feature transform &fby the raster-scanning approach of [17]. Voxeliza-
tion introduces the problem that when placing a discretinedribed ball at a skeleton
voxel, this ball does not always touch the boundary exastiwd voxels: It might touch
it only in one [5]. Thus, weextendthe feature transform by merging the feature set of a
voxelp = (p,, py, p-) With the feature sets gfs 26-neighbors in the first octant:

Flpe Q)= U F(py + Ax,py + Ay, p, + Az) . 3)
Ax,Ay,Aze{0,1}

In the rest of this paper, the extended feature transformsimiply be referred to as
feature transform. Hence, skeletons based'aan be up to two voxels thick.

In order to compute our importance measpifer a voxelp € {2, we compute the
shortest-path setf’, by computing between each two feature voxels the shortest



pathv(a, b), as discrete equivalent to the shortest geodesic, on thedaoy (2:

rp= U b, 4)

a,beF(p)

Shortest paths are computed as 26-connected voxel chais Digkstra’s algorithm
on the boundary graph, in which the voxéIf are the nodes, and the 26-neighborhood
relations represent the edges. By caching computed patfesj@id computing the same
path twice, and thereby accelerate the method, as detai[&§l i

The importance measugeis now defined for each object voxehls the maximum
shortest-path length if(p):

p(p € £2) = max ||y, (5)
vl (p)

where||v|| denotes the length of path computed using the geodesic length estimator
of [18]. In Figure 2 (right), the shortest-path détontaining 6 paths for a voxel with 4
feature voxels is shown. The resultipgs robust as it maximizes path length.

Finally, the simplified skeletos, is defined by imposing a threshotdon p:

S-(2)={pe2|pp) >r}. (6)

The threshold functions as a continuous scale-parameter controllingithplification
level. Smallr values eliminate less important skeleton parts that araaamall-scale
surface features such as noise. Largemalues can be used to retain the most salient
parts of the skeleton. Thresholdipgombines both skeleton detectiand simplifica-

tion in a single step. Experimental studies show thatfor 5 all non-skeleton voxels
are pruned. Figure 2 illustrates the use-dbr a noisy box. Wherea$, _1, (left) con-
tains some spurious sheefs._o (middle) can be considered robust, as it contains 13
sheets like a non-noisy box. 8. _7q (right), only the center sheet is retained, which
can be seen as a coarse scale representation of the box.

The simplified skeleton is homotopic to the original objextang as the local maxi-
mum ridge in the thresholdedforms a connected structure. For completeness, we note
that an alternative definition @f (Eq. 5) can be formulated on this ridge in order to ob-
tain a monotonic measure fal skeleton points [3, 19], so that the simplified skeleton
is homotopic for every. However, this is outside this paper’s scope.

4 The Simplified Y-network

In this section, we show how we extend the previous work orphfied skeletons to
compute a simplified Y-network, on which our skeleton segtatgon is based.

4.1 Computing the Y-network

In order to find the Y-network, i.e. the sheet-intersectiorves, of a simplified skeleton
S, we must check if a voxel is on a Y-curve or not. In the contiraiBd space, an
intersection curve point has (at least) three feature pgjift > 3 (Sec. 2.2). However,



(a) The feature transforA. (o) The simplified feature transfori., .

Fig. 3. A (non-axis aligned) box with its detected netwdrk-1,. Three selected poinis ¢, r: a
sheet poinp, a Y-curve pointg, and a Y-curve intersection

as indicated in Section 3, the feature transfdrifp) for a skeleton voxep consists
of several voxels. For examplé(p) in Fig. 3(a) contains 4 feature voxels...p, and
F(q) contains 6 voxelsy; ..qs. If we naively use the cardinality df to detect the Y-
curves, then both andq would be selected, which is wrong fprTo solve this problem,
we group each two feature points that have a small geodestiandie (shortest-path
length) on the boundary. More formally, we define an equivedgrelatioru ~ b on F:

a~bsyeb) <7, (7)

wherer is the same threshold we used to simplify the skeletons (Ed.H6s relation
gives rise to a number equivalence classes. We now repldnethesimplified feature
transformF ., defined as a set of class representatives following Ece 7aisubset of
F containing one point from each equivalence class. Whictiquéar point we choose
in a class is not important, as we are only interested in thdirality of ..

Using the simplified feature transform,, we replace the definition &, in Eq. 6
with:

S-(2)={pe 2|[F:(p)] > 2}, (8)

which more closely parallels Eq. 2. i, all sheet point® that have a shortest path
between their two feature points that is shorter thaor in other words, that have a
lower importance tham, are pruned.

Now, thesimplified Y-networiks straightforwardly defined as:

Y. ={pe||F:(p) >3}, 9

which is a subset of .. For a Y-curve poiny, where three sheets meetgis neigh-
borhood, this means that if one of the sheets in its neighdmattis pruned because
its importance is lower than, the point is not considered a Y-curve point¥h. It is
important to note that the simplified Y-network is not simplypost-processing of the
simplified skeleton. Instead, the Y-network is computeddty out of the shape, using



(a) Two pointsp, g on a Y-network. (b) The detected Y-curves of a box.

Fig. 4. Y-network decomposition into Y-curves.

the integral quantity of geodesic distance on the objechtaty. This is more stable
than extracting the sheet-intersection curves from thekzed skeleton, and also offers
a natural scale parameter.

Fig. 3 shows a non-axis aligned box with its simplified netwiy, - = 10. Like in
the continuous case, the discrete Y-network forms a coedesttucture. Three points
p, q,r are selected: a sheet popta Y-curve pointy, and a Y-curve intersection point
r. Their feature voxels are connected to the correspondiimggby line segments.
Fig. 3(a) uses the non-simplified feature transfafnfor the selected points, while
Fig. 3(b) uses the simplified feature transfofm. We see the merit of .: p andgq
can be classified as a sheet and a Y-curve voxel respectiasldoon the cardinality
|F .|, but not on|F|. For pointg for instance F', gives us exactly three feature points
71,43, 3, I.€. the representations of the clasées g2}, {q3, ¢4}, {5, ¢6}-

4.2  Y-network Decomposition

Although Eq. 9 enables the detection of the Y-network vaxetoes not make explicit
the structure of the Y-network as a collection of Y-curvesisisection presents how to
compute such a decomposition. The next section shows hosetthe decomposition
to compute a skeleton segmentation.

To decompose the netwolk into itsn Y-curves{ys, ..., y, }, we define two points
p, q € Y, to be on the same Y-curve when there is no junction in the Waorkt between
them. For illustration, Figure 4(a) sketches (part) of aetwork. Letp, ¢ be two points
onY,, each one having three feature points, with the indexeg., ps andq1, ¢2, g3
chosen in such a way that they are “aligned”, that is, the stitmeogeodesic distances
> I7(pis ¢i)| is minimal. Suppose now there is a junctigbetweerp, ¢, due to a
Y-curvey, as shown (dotted) in the figure. Such a Y-cugyeresults from a sheed
with a local importance higher than otherwisey, would have been pruned and would
not be present iy’.. Thus, we can detect whether there is a juncjitr@tweerp andg
by looking at the geodesic distanftg|| between the feature points pindq. Because



(a) SheetsA, B and D are wrongly in
the same segment.

Fig. 5. Segmented simplified skeleton of the Deformed Box udipg

the feature points evolve smoothly within a skeletal sheetargue that if there is a Y-
curvey, betweerp, g due to sheeti, the geodesic distance between the feature points
p2 andg, must be larger than, becausel’s importance is at least Generalizing, two
pointsp, ¢ € Y, belong to the same Y-curygeif and only if all three geodesic distances
between each pair of feature poirits, ¢;) are smaller tham:

pacyeY, & Vicnasnllvpi @)l < 7. (10)

One remark is due. Voxels where several Y-curves come tegétive more than
three feature points (see e.g. Fig. 3(b), penflo handle these cases, Eq. 10 is applied
for all subsets of botlp andg, having 3 feature points. One might ask why we do not
just detect the Y-curve intersection points and use thesegarate the Y-curves, which
is more trivial. The first reason is that our approach is ofgoikel precision: a single
voxel may contain multiple Y-curves. Second, our methodsduoa use a topological
analysis of the Y-network voxels and is thus more accuratases where Y-curves
meet under small angles. Figure 4(b) shows the segmentzttha Y-network of a box
obtained using Eq. 10. The Y-curves are distinctively aedfr

5 Skeleton Segmentation

Although it seems natural to use the simplified netwbikto segment the skeleton
S, both computed at the same scalghis can sometimes deliver unexpected results.
Figure 5(a) shows the segmentation produced for the skefstgr = 10) of a twisted
box. We expect 13 segments, similar to the skeleton segtientaf a non-deformed
box (Sec. 2.2). Yet, for the deformed box some segments gefadénadvertently. For
example, the skeleton sheets B and D are incorrectly merged, whereas they should
be distinct segments as for a non-deformed box.

Figure 5(b) is a schematic close-up of the situation. Thévlera is that the Y-
curvey € Y, does not extend all the way to the skeleton boundary. Themigsart is

% Please view the images in color



indicated by the dotted line. A narrow tunnel connects teas# andB on the skeleton
manifold, so that they end up in the same segment. The relhatiis too short is that
sheet” is simplified for lower values of thanA andB at the dotted line segment. The
cardinality of the simplified feature transform for theséng®is 2, so that poing, for
example, is not detected as a Y-curve point by Eq. 9. In otleedsy only two sheets
are found to come together atin the simplifiedskeleton, namelyd and B. For the
same reason, other surface segmentation approaches alee@dladopology, e.g. [4],
would fail segmenting thisimplifiedskeleton. Note that it would also fail because our
skeletons are two voxels thick.

We solve the issue noticing that curyen Fig. 5(b) would be longer for less sim-
plified skeletons. For non-simplified skeletons, we would lmeve the problem at all.
Hence, to segment a skeletSn we use a less simplified Y-netwolk,, v < 7, which
contains longer, extended, versions of the Y-curves whialied prematurely irY.
However, we must be careful to only extend Y-curves flBmand not to incorporate
anyY-curves that only occur ity,,. Hence, we only consider those Y-curyes Y, for
which there is at least one pointc y in Y,.. We call this set the extension Bf using
Y., denoted a7 ,:

Y‘r,v = {y €y, ‘ EJpEy pe Y‘r} : (11)

Finally, we compute the decomposition Bf ,, into its respective Y-curves by taking
both scales- andv into account and adapting Eq. 10 accordingly:

TifpeY, NqeY:

v otherwise. (12)

P,q €Y €Yy & Vicrr2 Vi, @)l < {

We have not yet specified the value «@f For all objects we tested, a fixed value of
v = b gives very good results. As explained in Sec. 3, this valsermslly robustly
yields the entire skeleton of a 3D shape.

After computingY; ,, we can segmers, as follows. We consider the skeleton
as a 26-connected graph, from which we remove the voxelspiedibyY; ,,, and then
determine the connected components in the remaining skedeaph using e.g. a flood-
fill. Since S, can be up to two voxels thick [3] and the Y-network is only omel
thick, we first dilate the Y-network by 1 voxel in each 26-diien, before removing
them from the skeleton graph. Hereafter we erode the difétedtwork so that these
voxels are also part of a segment. Clearly, many other atiimplementations are
possible once we have a robust Y-network.

Figure 6 shows’,, Y7, Y; , (decomposed in its Y-curves), and the segmentation
based orY- ,, respectively, which is a correct segmentation of the deéafivox skele-
ton as opposed to Fig. 5(a).

6 Results and Discussion

We have tested our method on shapes of varying complexityaaralint of boundary
noise. As input objects we used 3D triangle meshes, voxelising binvox (http://
www.cs.princeton.edufmin/binvox/) in various resolutions ranging up to two nahi
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Fig. 6. Correctly segmenting the simplified skeleton of a deformex b

(d) segmentation

object voxels. For all images in this paper, the originalcbmesh representation is
rendered instead of its voxel representation for nicerldisp
Figure 7 shows a selection of the results. For each objeistempirically chosen
based on the noise level of the object, and we show both teedetl simplified network
Y, ., decomposed into its Y-curves (top image), and the segrientaf the simplified
skeleton (bottom image) usifig ... In Figures 7(a) and 7(e), we added 5-10% noise to
show the robustness of our approach.
We highlight some of the results. For the Noisybox, we setahiamethod correctly
detects 13 segments and 12 Y-curves. For the Dinosaur asgdiioo, the four legs and
feet are all assigned different segments. Our method dbrreegments the skeleton
of the Dodecahedron (Fig. 7(f)). This is a difficult skeletonsegment as it contains
degeneracies, in the sense that each Y-curve actuallyatepdive sheets instead of the
usual three, which is why the Y-network is thicker than far tither objects.
Table 1 shows timing measurements performed on a Pentiun3M8 with 1 GB
of RAM for all objects in this paper. Columns “dim”|£2|", and |0f2| denote the grid
resolution, and the amount of object and boundary voxelse@sely. Columns 8§
time” and “segm. time” denote the wall-clock time for comipgtthe skeleton and seg-
mentation respectively. The most time is spent computiogtsbt paths in the boundary
graph, needed in both stages.

7 Conclusion

We have presented a voxel-based approach for robustly segmsimplified skeletons
of 3D shapes, based on the simplified feature transform amglisied Y-network. The

Table 1. Timing measurements

Object dim [£2] |0£2||S time (s) segm. time (
Deformed Box 65x64x124 247k 24k 21s 11
Dodecahedron 124x124x124 945k 39k 48s 17
ET 125x78x173 1.045k 93k 304s 37
Noisydino 99x325x365 1.128k 100k 62s 33
Rockerarm 366x188x112 2.000k 181k 470s 62

o0

~



(a) Noisybox,r = 20 (b) ET,7 =10

(d) Dino,T = 16 (e) Noisydino,r=16 () Dodecahedron;=10

Fig. 7. Results. Y-network decomposition (top imageS$),segmentation (bottom images).

Y-network is decomposed into its respective Y-curves. Timpbfied Y-network could
prove to be more useful in certain shape analysis or retriasts than the segmentation
itself, because the Y-curves change more continuouslynside deformations than
the segmentation does.

Our entire method relies upon the choice of a single parametehich controls
the simplification of the skeleton [3], bubtthe segmentation itself, thereby yielding a
fully autonomous segmentation method. One limitation af@urent implementation
is that cylindrical object-parts having degenerate cukeétesons may locally result in



over-segmentation. Second, the two-voxel thickness oflteéetons might yield unde-
sirable topological changes in the skeleton for too complgrcts, when compared to
thin skeletons.

In future work, we would like to investigate whether our skteh segmentation can

be used to achieve a robust patch-type segmentation of {hetairface. As opposed
to traditional methods acting only on the surface, a skakbiased segmentation has the
benefit that it captures a sense of symmetry, and is potntialre robust, being based
on the object’s volume, not on its surface.
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