
Visual Analytics for Classifier Construction and
Evaluation for Medical Data

Jacek Kustra and Alexandru Telea

Abstract Designing and optimizing classifiers for multidimensional mixed quantitative-
and-categorical data is a challenging task. We present here a workflow and associ-
ated toolset that assists with this task, by providing the designer with insights into
how the multidimensional input data is structured, and how this structure influences
the classification results. Our approach heavily relies on visual analytics for detect-
ing relevant patterns in the input data, observing the distribution of classification er-
rors, detecting and controlling the effect of feature selection on the classification re-
sults, and comparing in detail the performance of different classification techniques.
We demonstrate the value of our approach on the concrete problem of building a
classifier for predicting biochemical recurrence, indicating potential cancer relapse
after prostate cancer treatment, from clinical patient data.

1 Introduction

In the last decade, machine learning (ML) has made tremendous progresses and in-
roads into a wide range of application areas, including image classification, time
series prediction, text pattern mining, with application to several fields such as so-
cial networks [43], automotive self-driving [27] and last but not least, medical sci-
ence [1].

An important problem that ML addresses is that of classification: Given a set of
observations, the goal is to assign a label from a (typically small) predefined set to
each observation, based on the similarity of such observations with those from a so-

Jacek Kustra
Philips Research, 5656 AE Eindhoven, the Netherlands e-mail: jacek.kustra@philips.
com

Alexandru Telea
Institute Johann Bernoulli, University of Groningen, Nijenborgh 9, 9747 AG Groningen, the
Netherlands e-mail: a.c.telea@rug.nl

1

2 Jacek Kustra and Alexandru Telea

called training set. Classification is central to medical tasks such as diagnosis [26]
and prognosis [1] of various types of diseases based on clinical patient data.

Deep learning techniques based on artificial neural networks (ANNs) are a typi-
cal example used in the later case and have shown strong advantages for such clas-
sification tasks, as they require minimal user intervention and fine-tuning [48]. In
many cases, one can simply feed the training and/or test data at hand to such a
network, and largely rely on the network’s inherent flexibility for learning relevant
features to perform the desired classification. Recent results show very high clas-
sification accuracy for complex problems and datasets [16]. However, ANNs also
have fundamental limitations: They typically require a very high number of labeled
observations for training, in the order of tens of thousands or even more. Obtain-
ing such labeled datasets can be impractical or even impossible in certain medical
contexts, e.g. where observations are patients having a rare condition and/or when
labeling incurs high manual effort [5]. In addition, the understanding of the model’s
intrinsic working and the assumptions underlying the relationships between features
can be of key importance to ensure human (domain) knowledge and supervision are
taken into account when constructing a model, and also to convey trust in how the
model operates. In such contexts, using classifiers based on explicit features can be
more effective than using ANNs. However, this approach has its own challenges:
Simple rule-based models are defined based on vague heuristics; and mixing do-
main expert knowledge with data insights is a complex task as it requires ‘showing’
the domain expert how the data is actually used by the model.

Applying all above in practice is hard as several questions need to be answered,
regarding what is the nature of hard-to-classify observations; which classification
technique is the best, and why; and how to set its parameters. Exploring the high-
dimensional space spanned by all these choices, a process we next call classifier
engineering, is very challenging, time consuming, and error prone [23].

Visual analytics (VA) addresses the problem of understanding large amounts of
high-dimensional unstructured data by interactive and iterative exploration of de-
pictions of such data [22, 21]. As such, VA can be an important instrument in the
toolset of classifier engineering. However, to date, VA has been rarely documented
in how it supports this process end-to-end, i.e., covering the steps of dataset struc-
ture exploration, feature assessment and selection, classifier accuracy comparison,
and classifier improvement. One key reason for this is that ML and VA have evolved
historically separately, with limited cross-discipline dissemination. However, recent
efforts indicate promising results for combining ML and VA techniques for classifier
engineering [46].

In this work, we extend the recent VA approach and VA toolset of Rauber et al.
for classifier engineering [46] in two main directions:

• We extend the functionality of the above-mentioned toolset with additional clas-
sifiers, feature selection methods, and manual data clustering methods;

• We present a detailed step-by-step application of this toolset to the problem of
engineering a classifier for predicting biochemical recurrence, an indicator of
potential cancer relapse after prostate cancer treatment, from clinical patient data.
This presents concrete evidence of the added-value of our approach, and also

Visual Analytics for Classifier Construction and Evaluation for Medical Data 3

provides a practical example of how to cover all the steps required for effectively
and efficiently using VA in such a classifier engineering problem in a real-world
medical context.

2 Related Work

We outline related work in ML and VA along two main axes: classifier design and
visual analytics for classifier design, as follows.

Classifier design: Let D = {di},1 ≤ i ≤ n be a set of observations, or samples
di = (d1

i , . . . ,d
m
i) taken from a m-dimensional space D , where d j

i are the so-called
dimensions, or features, of a sample. We denote by the feature vector f j =(d j

1, . . .d
j
n)

the values of feature j over all samples, and by F = {f j} the set of all m feature vec-
tors. Feature values d j

i can be either quantitative (real) values, or categorical values.
Let L be a set of categorical labels or classes. Briefly put, the problem of designing
a classifier for D is to find a function f : D → L which associates to any sample
in D a label in L. To design f , one typically uses a training set of labeled sam-
ples Dt = {(di, li)} ⊂ D ×L to maximize the number of samples in Dt for which
f (di) = li. Different optimization methods give birth to different classification tech-
niques, such as k nearest neighbors (KNN) [3], random forest classifiers (RFC) [9],
support vector machines (SVM) [7], and learning vector quantization (LVQ) [24].
To test f , one typically counts, for a test set of labeled samples DT |DT ∩Dt = ∅,
the number of correctly labeled samples di ∈ DT | f (di = li). Besides this simple
so-called classifier accuracy, more complex measures can be used, such as the area
under the receiver operator curve (AUROC) [12].

The challenges of developing a good classifier – finding a f which yields high
accuracy and/or AUROC values – can be grouped into intrinsic and technical ones.
Intrinsic challenges relate to the availability of a ‘good’ set of features f j which cap-
ture differences between the different classes; the availability of a sufficient number
of diverse samples that cover well the underlying phenomenon that we wish to clas-
sify; and the accuracy of feature measurements f j

i and assigned labels in Dt . We call
these challenges intrinsic since one cannot typically alleviate such issues by chang-
ing the classifier technique and/or its parameters. Technical challenges relate to the
choice of optimization method and optimization parameters used to compute f –
or, in more familiar words, how one preprocesses and/or selects the features, sam-
ples the hyperparameter space of f , and chooses the actual classification technique
f . Intrinsic challenges are often outside the full control of the classifier engineer.
In contrast, the technical challenges can be seen as a meta-optimization problem:
How can we support the engineer in the process of design, training, and testing a
classifier, so as to obtain maximal accuracy results with minimal effort?

Visual analytics for classifier design: Aware of the above-mentioned challenge
of classifier design, also called the ‘black art’ of, or opening the ‘black box’ of,
classifier design [55, 8, 38, 54, 36], several types of methods have been proposed to

4 Jacek Kustra and Alexandru Telea

help various steps of classifier engineering. The most common techniques include
correlation analysis, displayed e.g. by matrix plots, to show the correlation of any
pair of features (fi, f j); and ROC graphs to show how specificity and sensitivity
are related. Dimensionality reduction (DR) techniques, also called projections, such
as PCA [19], LAMP [18], or, more recently, t-SNE [31] are used to show the so-
called structure of the input data D by means of 2D scatterplots where inter-point
distance reflects sample similarity in D , helping one to correlate sample clusters
with their assigned labels and thus detect the kind(s) of observations that are hard to
classify [28, 29, 4, 32, 50]. Given the recent popularity of ANNs, specialized visual
analytics techniques have been designed for these architectures, to explore e.g. the
activation patterns of hidden-layer neurons [45] or to find problems in the network
design during training [44]. A recent survey of VA techniques for deep learning
is given in [15]. While being good examples of the added-value of VA for machine
learning, such techniques are not applicable to more classical designs, such as KNN,
RFC, SVM, or LVQ, which we consider in our work.

For such architectures, features play a key role in the analysis, as one aims to
understand how they correlate with each other but also how their values affect the
similarity of, and, ultimately, the labels assigned to samples. For these ends, specific
techniques have been designed. Confusion matrices are used to compare the perfor-
mance of different classifiers [53]. DR methods can be modified to implicitly label
unsupervised clusters with the identities of their most discriminative features [49].
More involved toolsets aim to cover several of the classifier engineering steps. Early
on, RadViz [14] proposed a DR technique where one can see both the data struc-
ture (clusters) and how all features affect their appearance. Atop of this, clustering
techniques are provided to explicitly segment D into sets of similar observations;
feature scoring, based on the t statistic, which rank how important a feature f j is to
samples having a given class li as opposed to samples of all other classes lk 6=i, al-
low users to eliminate features which do not strongly help classification. However,
RadViz has several limitations: (1) its DR method preserves sample similarity far
less than state-of-the-art techniques such as LAMP or t-SNE; (2) feature scoring is
used only to order features, yielding different scatterplots of the input data; mech-
anisms for actual feature selection are not provided; (3) visual data exploration is
not integrated with actual classifier construction, training, and testing, which breaks
end-to-end support for classifier engineering (Sec. 1). RadViz’s limitation (1) above
was alleviated by the VizRank [25] and FreeViz [17] tools which added the ability to
select DR scatterplots which best visually discriminate between classes. However,
limitations (2) and especially (3) are still present in these tools.

The above limitations of RadViz and its followers are alleviated by a recent
toolset for classifier engineering proposed by Rauber et al. [46]. The Least Square
Projection (LSP) method [40] is used for constructing DR scatterplots, which gives
a better data structure preservation than the earlier techniques used in [14, 17, 25].
Instead RadViz’s simple t test, more advanced feature scoring techniques including
univariate ones (χ2, one-way ANOVA), multivariate ones (IRelief [52]), and clas-
sifier wrappers (ensembles of randomized decision trees [9], randomized logistic
regression [34], and recursive feature elimination [11]) are used. These allow users

Visual Analytics for Classifier Construction and Evaluation for Medical Data 5

to interactively select features which characterize well specific sample clusters. As
demonstrated in [46], this toolset effectively supports reducing the dimensionality
of an input dataset (by feature elimination) before training a classifier on it.

feature selector observation view

group view

observation map feature map

feature score view

lowest
scoring
feature

highest
scoring
feature

sc
or

e

Fig. 1 featured toolset for classifier engineering using visual analytics (Sec. 3.1).

3 Part 1: Visual Analytics Toolset and Workflow

We next describe the original toolset of Rauber et al. [46] and our implemented
extensions (Sec. 3.1) and outline the workflows supporting classifier engineering
that our extended toolset, called featured, supports (Sec. 3.2).

3.1 featured Toolset

Original tool: The tool in [46] provides several interactive views for data explo-
ration and analysis – see all views in Fig. 1 except the Feature view, which we added
in this work. These work as follows. The tool reads as input a sample dataset D
stored in simple CSV matrix format (samples di are rows, features f j are columns).
Upon loading D, the observations di are displayed in the Observation view as text
items, or, if image tags are provided for these, as thumbnails, and the names of the
features f j are listed in the Feature selector view. Both these views allow selecting
a subset of samples SD ⊂ D or of features SF ⊂ F to work with next. The Obser-
vation map displays all selected samples SD as a 2D scatterplot, using PCA or LSP
as projection technique. Samples can be colored by the value of a selected feature
f j, or class label. This allows seeing whether there is apparent structure in D, e.g.
in terms of clusters or outliers. To explain which features determine such structure,
one can next select SD in the Observation view (see the dark red points in Fig. 1) and

6 Jacek Kustra and Alexandru Telea

invoke the Feature scoring view, which displays, for all features f j ∈ F , a score in-
dicating how much each f j contributes to the separation between S and D\S. Scores
are computed by various scoring techniques, as explained in Sec. 2. Features shown
in the Feature scoring view as bars scaled and sorted by score, and colored by the
frequency of samples over the entire range of a given feature using a green (low) to
yellow (high) colormap. For instance, in Fig. 1 we see that the highest scoring fea-
ture (rightmost bar) has mostly low and mid-range values (yellow at the bottom and
halfway that bar, green for the rest of the bar). The Feature scoring view also allows
selecting a subset of features SF to work with next, upon which the Observation
view updates to project D only considering these features. Finally, the Group view
allows saving selected sample subsets SD under given names, for further analysis.

Tool extensions: Overall, the original tool [46] allows a flexible way to explore
the structure of a high-dimensional dataset D in terms of finding sample clusters
or outlier samples, and explain these by means of relevant features and/or feature
values. While useful, however, such actions do not fully support the end-to-end
classifier engineering pipeline. To this end, we extended the tool in the following
three main directions:

• Classifiers: We integrated five types of classifier techniques in the tool: KNN,
RFC, SVM with linear and radial basis functions (SVM-L, SVM-R), logistic
regression (LR), and two LVQ variants. To use any of these, the user can inter-
actively select the training and test sets in the tool’s various views, run k-fold
cross validation, examine the misclassifications in the Observation view, and ex-
amine the overall accuracy and AUROC metrics. For small datasets (up to 20000
observations, 10..20 dimensions), the current implementation performs such op-
erations in under ten seconds on a modern PC. All classifiers accept data which
can be normalized either by scaling or standardization (see next Sec. 4.5), and can
use various similarity metrics – Euclidean, cosine, or learned distances (LVQ).

• Projections: We extended the original tool by adding IDMAP [35] Sammon
mapping [47], LAMP [18], and t-SNE [31] as projection techniques. This is
important, since, as known in projection literature, no single projection tech-
nique performs well (in terms of preserving the data structure) on any type of
dataset [4, 32, 50]. In particular, t-SNE has shown to be a very effective predictor
of the ease of classifying data [30].

• Feature map: To better understand how different features correlate with each
other and contribute to the data structure, we provide a new Feature map view
(see Fig. 1. Every point in here is a feature vector f j ∈ F . The points are placed
based on a 2D projection of the set F , using as similarity metric the Pearson cor-
relation or Spearman’s rank between these feature vectors. Hence, close points
in this plot indicate strongly similar features over the entire sample set D, while
far away points indicate independent features. Separately, points are colored to
depict the scoring of all features for the discrimination between a selected sam-
ple set SD and the remaining samples D\SD. In other words, this view enhances
the Feature scoring view by showing not only which features discriminate most

Visual Analytics for Classifier Construction and Evaluation for Medical Data 7

between SD and D\SD, but also how these features are correlated. We show next
how this information is helpful in classifier engineering.

3.2 Visual Analytics Workflow

Explaining a VA workflow is, in general, hard [22, 21]. Yet, in our classifier engi-
neering context, the key elements of our VA approach are as follows:

• Show the data at hand (D) and its classes L and how, where, and why these do or
do not correlate;

• Show which features f j of our dataset D are most responsible for correlations of
observations with label values;

• Show how feature engineering effectively influences classification accuracy;

The way in which VA supports all above tasks, and is therefore instrumental in
helping classifier engineering, is illustrated next via a concrete, real-world, applica-
tion.

4 Part 2: Application in Predicting Biochemical Recurrence
After Prostate Cancer Treatment

4.1 Motivation

Predicting the evolution of medical conditions in terms of different metrics such
as relapse, survival, or quality of life following a given treatment can provide vi-
tal information to select the optimal treatment for a particular patient. Having this
prediction available for several treatment options can provide insights into which
treatment is optimal for the specific patient. In particular, for a given treatment, be-
ing able to infer the progression of a certain disease based on the patient’s clinical
and disease-specific diagnostic information can save large amounts of effort, cost,
and patient well-being especially in the early stages of the disease’s evolution. Such
is the case for prostate cancer. After patients diagnosed with this cancer type are
treated, a treatment (or lack of it, by assigning it with active surveillance) plan is
defined for the patient taking into account the available medical information and
patient preferences. Treatment options typically involve surgery (prostatectomy),
chemotherapy, radiation therapy, or a combination therapy involving two or more of
the above options. Following treatment, the increase in concentration of a prostate-
specific antigen (PSA), a phenomenon called biochemical recurrence (BCR), is a
good indicator for potential cancer recurrence, either in the prostate or other parts
of the body. Since BCR typically appears earlier than other signals that diagnose
cancer relapse by several years, predicting its appearance can save precious time for

8 Jacek Kustra and Alexandru Telea

controlling, or preventing, the evolution of the disease [51, 39]. Therefore, the mea-
surement of BCR typically happens at discrete points in time following treatment.
Since BCR is a time dependent outcome, for the purpose of this study, we define
two classes: 0 - no recorded relapse after treatment, or 1 - relapse recorded after 5
years following treatment.

Given the influence a prediction of BCR can have on the medical decision for a
patient based on the information present prior to treatment, several research ques-
tions emerge:

• Is it possible to reliably predict BCR values from the above measurements?
• Which of the above measurements are the most discriminative in predicting spe-

cific BCR values?

If answered positively, the first question indicates that ‘standardized’ decision-
support systems can be offered to physicians so that they profit from the knowledge
captured by such systems which, in general, can be wider and/or more diverse than
their personal experience. Separately, if we have ways to objectively and intuitively
answer the second question, this will increase the confidence (and ultimately the
adoption rate) of such automated decision-support systems by medical specialists.
All in all, this has the potential to increase the efficiency and/or effectiveness of di-
agnosis and treatment of prostate cancer, with important cost savings and/or quality
improvement as outcomes.

In this section, we detail the engineering of a set of classifier systems for predict-
ing BCR values from clinical measurements for prostate cancer. Key to this is our
use, during the whole process, of the visual analytics (VA) techniques provided by
the featured toolset introduced in Sec. 3 for data exploration and classifier construc-
tion, testing, and improvement. We next describe these steps, as well as our obtained
results. For each step, we outline the relevant questions to be solved, and how VA
assisted in answering these to lead to the next step.

4.2 Data

The input data (used next for training and testing the classifier) consists of a set
D of prostate cancer patients where for each patient, a total of mtotal = 50 features
are measured. The actual clinical measurements took place over different periods in
time, and were performed by an unknown number of different medical specialists.
From these m = 50 values, we next manually selected a small subset of m = 9 fea-
tures (see Tab. 1) to use next in predicting the presence of biochemical recurrence
(BCR) within a period of 5 years from the measurement moment. The selection was
based on the type of features which are, to our knowledge, widest available and eas-
iest to measure in medical practice. Hence, ground truth is available for the data in
terms of two class labels – patients showing, respectively not showing, BCR within
5 years from measuring the nine features. Given this data, we want to construct a
classifier able to accurately predict these two classes.

Visual Analytics for Classifier Construction and Evaluation for Medical Data 9

Table 1 Input data for prostate cancer prediction (Sec. 4.2).

Feature name Feature type Feature range
Age at surgery quantitative [37.6,77]
Prostate volume quantitative [9,365]
Preoperative PSA level quantitative [0.11,106.5]
Number of biopsy cores integral [1 . . . 28]
Number of positive biopsy cores integral [1 . . . 10]
Positive biopsy cores (%) quantitative [3.57,100]
Primary biopsy Gleason score integral [2 . . . 5]
Secondary biopsy Gleason score integral [2 . . . 5]
Clinical stage ordinal {T1, T1a, T1b, T1c, T2, T2, T2b, T2c T3, T3a, T3b, T3c}

4.3 Preprocessing

To make the data directly usable, we first eliminate all samples (rows in D) where at
least one of the nine columns of interest (eight features plus class label) miss values.
The second step regards the treatment of the clinical stage feature. As shown in
Tab. 1, this is an ordinal variable taking values over the three stages T1, T2, T3; the
sub-labels (a,b,c) indicate gradations within each major stage; values having no sub-
label, e.g. T1, indicate that for that patient no finer-grained information is available.
We convert these ordinal values into quantitative ones by using

Ti j = α(i−1)+βval(j), (1)

where val(a) = 1, val(b) = 2, val(c) = 3, and val(empty) = 0, where empty desig-
nates entries for which we have no sub-label value, e.g., T1. The parameters α > 0
and β > 0, with α > β control the relation between the importances of the major
stages (T1, T2, T3) to that of the importances of the sub-stages (a,b,c). We set by
default α = 10 and β = 1. The effect of these two parameters is discussed in de-
tail next in Sec. 4.6. With this conversion, we have now a fully quantitative dataset
which we can use for classifier engineering, as described next.

4.4 First exploration: How hard is the classification problem?

Before actually aiming to build (train) a classifier, we want to assess how hard the
classification problem may be, and how the available eight features contribute to the
separation of the two classes. For this, we project all the available samples using
t-SNE, as it is known that this method achieves a quite good separation of existing
data clusters [31], and color the projected samples by their two class labels (Fig. 2a).
We see that there is no clear separation between the blue (no BCR within 5 years)
and orange (BCR within 5 years) samples. This already indicates a hard classifi-
cation problem ahead of us. Next, we select all points of one class and construct
the feature map using as feature-similarity the Pearson correlation and as feature

10 Jacek Kustra and Alexandru Telea

a) observation view b) feature map

c) feature score view

primary Gleason
score

positive biopsy
cores

positive biopsy
cores (%)

clinical
stage

no BCA < 5 years
BCA < 5 years

pr
eo

pe
ra

tiv
e

P
S

A

ag
e

at
 s

ur
ge

ry

pr
os

ta
te

 v
ol

um
e

pr
im

ar
y

bi
op

sy
 G

le
as

on

po
si

tiv
e

bi
op

sy
 c

or
es

 (
%

)

po
si

tiv
e

bi
op

sy
 c

or
es

cl
in

ic
al

 s
ta

ge

bi
op

sy
 c

or
es

se
co

nd
ar

y
bi

op
sy

 G
le

as
on low high

score

Fig. 2 First visual exploration of the input data (Sec. 4.4).

scoring technique the χ2 test, respectively (Sec. 3.1). The resulting image (Fig. 2b)
shows us three insights: (1) We see that there are no strongly correlated features,
except the total number and percentage of positive biopsy cores, whose respective
points are relatively close in the map. This indicates that, within our eight feature-
set, there are no obviously redundant features. (2) The number of samples is quite
unbalanced – there are many more blue than orange ones. This will need to be con-
sidered when engineering the classifier. (3) We next see that only a subset of features
have high scores (dark red points in the map). This suggests that we could drop the
other features (brighter-color points) from our dataset without reducing the chances
of building an accurate classifier. However, we need to further check this hypothesis.
For this, we use the feature scoring view, with ensembles of randomized decision
trees [9] as scoring technique (Fig. 2c). As visible, the relative scores of the most
discriminating features are now very different as compared to the χ2 scoring tech-
nique used earlier. This indicates that we cannot, so far, drop any of the available
eight features for being not useful for classification. Separately, this indicates that
the type of considered scoring function, thus implicitly the distance metric used to
compare samples, is very important. We will revisit this insight later on.

4.5 Classifier design: First experiments

Based on the insights learned during the first visual exploration (Sec. 4.4), we next
proceed to the actual training and testing a classifier, as follows. We first extract a
balanced dataset from the input data, based on insight (2) found earlier, using ran-
dom sample selection from the larger class. With this dataset, we next train and

Visual Analytics for Classifier Construction and Evaluation for Medical Data 11

test four different classifiers (KNN, RFC, SVM-R, SVM-L), and we also consider
a dummy classifier, for sanity checking. Optimal classifier parameters are found by
grid search using the classifier accuracy acc (number of correctly classified sam-
ples divided by total sample count) as optimization criterion. For testing, we use
5-fold stratified cross-validation with a split of 66% to 33% between training and
test data. For normalization of the different features (columns), we use both scaling
and standardization.

Table 2 Classifier accuracy for first design (Sec. 4.5).

Standardization normalization Scaling normalization
Classifier technique accuracy Classifier technique accuracy
KNN 69.853 KNN 69.345
RFC 66.878 RFC 66.369
SVM-R 66.666 SVM-R 66.634
SVM-L 65.423 SVM-L 65.201
Dummy 50.000 Dummy 50.000

Table 2 shows the obtained accuracy results from this first experiment. As visible,
the standardization normalization is slightly but consistently better than the scaling
normalization. As such, we use this next as default in our designs. As expected,
the dummy classifier returns an accuracy of 50%, which tells us that our testing
pipeline is correctly set up. Most importantly, we see that the classification accuracy
is quite independent on the classifier method, and also relatively low. Hence, we ask
ourselves next which steps can be taken to improve this accuracy.

no BCR < 5 years
BCR < 5 years low high

clinical stage

a) b) c)

correctly classified
misclassification

Fig. 3 Understanding the distribution of the engineered clinical stage feature (Sec. 4.6).

12 Jacek Kustra and Alexandru Telea

4.6 Classifier refinement: What can we do better?

To improve our accuracy results, several directions can be considered. A first and
quite obvious one relates to our initial decision of converting the categorical clini-
cal stage values into quantitative ones (Eqn. 1). Before actually trying to find better
values for the α and β parameters, let us see how the engineered quantitative clin-
ical stage feature given by Eqn. 1 correlates with the class labels and classification
results. For this, we use the observation view to project our balanced dataset us-
ing again t-SNE, and color the samples by classification correctness (Fig. 3a), next
by the ground-truth labels (Fig. 3b), and finally by the values of the clinical stage
feature computed with the defaults α = 10 and β = 1 (Fig. 3c). We find several in-
sights by studying these plots. First, we see that the data appears to be separated in
three large clusters Γ1..Γ3, each consisting of two smaller sub-clusters (see outlines
in Fig. 3a). However, these clusters do not correlate in any way with the class labels
(Fig. 3b). Moreover, the classification errors are equally spread over these clusters
(Fig. 3a). Yet, the clusters correlate quite well with the value of the clinical stage
feature – high values in the two top clusters Γ1 and Γ2, low values in the bottom one
Γ3 (Fig. 3c). This suggests that the engineered feature may influence the data struc-
ture in a too strong, and actually undesired, way that does not help the classification.

no BCR < 5 years
BCR < 5 yearsBCR < 5 yearsy

a) b) c) d) e)
α = 100, β = 1

Tij ∈ [0,1,2,3,100,110,120,

 130,200,210,220,230]

acc = 63.048%

α = 10, β = 1

Tij ∈ [0,1,2,3,10,11,12,

 13,20,21,22,23]

acc = 63.048%

α = 3, β = 1

Tij ∈ [0,1,2,3,4,5,6,7,

 8,9,10,11]

acc = 63.147%

α = 1, β = 0

Tij ∈ [0,0,0,0,1,1,1,1,

 2,2,2,2]

acc = 62.351%

α = 0, β = 0

Tij ∈ [0,0,0,0,0,0,0,0,

 0,0,0,0]

acc = 62.849%

Fig. 4 Understanding the parameters α and β of the engineered clinical stage feature (Sec. 4.6).

To further understand this, we test and train our classifiers using different val-
ues for α and β in Eqn. 1. As we aim to visually explore these results at near-
interactive rates, we do not perform now the more costly 5-fold cross-validation
used earlier (Sec. 4.5), but run a single test-train experiment, which takes only a few
seconds. Figure 4 shows the observation views for five (α,β) combinations, for the
RFC classifier, ranging between very strong differences considered between the ma-
jor clinical stages T1, T2, and T3 (α = 100,β = 1), through moderate differences
(α ∈ {3,10},β = 1), no differentiation between sub-stages (α = 1,β = 0) and com-
pletely dropping this feature (α = 0,β = 0). Similar results to Fig. 4 are obtained for
the other considered classifiers (omitted here for brevity). These images give us ad-
ditional insights, as follows. First, we see that the obtained accuracy values are lower

Visual Analytics for Classifier Construction and Evaluation for Medical Data 13

– roughly 63 vs 66..69% – than those obtained when using the more exhaustive
evaluation discussed in Sec. 4.5. This is expected, given the rapid training-testing
procedure explained above. More interestingly, we see that the α and β settings ap-
pear to not significantly affect the class separation, nor the classification accuracy.
This suggests that the clinical stage feature is completely non-discriminative for the
two considered classes. However, we have seen that this feature scores quite high
discrimination-wise (χ2 test, Fig. 2b). Putting these two insights together, we for-
mulate the hypothesis that the problem (of relative insensitivity of the RFC classifier
to the clinical stage feature) is due not so much to the engineering of this feature (α
and β values), but to the distance metric that this feature is next used with inside the
classifier.

correctly classified

misclassification

correctly classified

misclassificationlow high
clinical stage

a) b) c) d)

low high
clinical stage

select and
remove

all data: acc=63.546% find high T-value samples remove these samples remaining data: acc=65.379%

Fig. 5 Understanding how different ranges of the engineered clinical stage feature affect classifi-
cation accuracy for the RFC classifier (Sec. 4.6).

To test this hypothesis, we next examine how the range of the Ti j values is cor-
related to the classification accuracy. As we have seen in Fig. 3, the samples can
be split into three groups Γ1..Γ3, where only Γ1 has high T-value samples – more
precisely, Ti j equal to values in the T2 and T3 stages. Let us now select all samples
in Γ1 having such high T-values (Fig. 5b) and remove these from the dataset, by
interactively selecting the dark-colored points in the observation view in featured.
The remaining points are shown in Fig. 5c. We now run the same classification pro-
cedure on this subset of points, and obtain a larger accuracy (acc = 65.379% vs
acc = 63.546%. Interestingly, the misclassifications are not correlated with the T-
value distribution in neither the initial dataset nor the dataset with removals – see
the uniform spread of blue and red points in both Figs. 5a and 5c. We have now a
number of interesting findings: (1) The analysis in Sec. 4.4 showed us that clinical
stage can be highly discriminative between our two classes, depending on the con-
sidered distance function. (2) The current analysis showed us that samples with high
T-values confuse the classifier.

Taken together, we formulate the hypothesis that one issue with the current set-
up is a suboptimal distance function used internally by the considered classifiers. So
far, we have used the Euclidean m-dimensional distance metric (on the standardized
data values), which is the default in featured. We next run the same classification

14 Jacek Kustra and Alexandru Telea

experiment as in Fig. 5a, but using the cosine distance metric, and use all available
classifiers in our tool. We obtain the following accuracy values: 66.932% (KNN),
68.147% (RFC), 68.526% (SVM-R), 68.825% (SVM-L). These are all (slightly)
higher than the accuracy obtained by using the Euclidean metric (63.546%, RFC).
Hence, we validate the hypothesis that the distance metric used has a clear effect on
classification accuracy.

This finding leads us to the final refinement in our classifier design: We consider
using Generalized Matrix Learning Vector Quantization (GMLVQ) [13], a variant
of the classical LVQ classifier [24] which is able to learn the distance function from
the training set. GMLVQ works as follows (for full details, we refer to [13]): We
first define a set of so-called prototypes wi ∈Rm. Secondly, we associate a (typically
equal) number of prototypes with each class. Thirdly, during training, prototypes are
moved in Rm so that their nearest-neighbors from the training set match their class
labels, using a gradient descent optimization process. Atop this process offered by
LVQ, GMLVQ also allows learning the distance metric d(x j,wi) used to compare a
training sample x j with a prototype wi, defined as

d(x j,wi) = (x j−wi)
T A(x j−wi), (2)

where A is a m-bym real-valued distance matrix whose entries are learned during
the aforementioned optimization process. If A is a diagonal matrix (as in classi-
cal LVQ), we obtain the classical Euclidean distance metric. Other values for A
model distances where different features have different weights. Intuitively put,
GMLVQ resembles a KNN classifier where the prototypes are the centers of sev-
eral m-dimensional Voronoi cells, and all samples within a cell get the label of the
cell’s prototype. Given that A is not an identity matrix in GMLVQ, the boundaries
of these cells can take complex shapes, therefore are able to approximate decision
boundaries better than the linear boundaries of LVQ. GMLVQ was shown in the past
to yield good results for problems (datasets) where other classifiers did not perform
well [13].

a) b) c) d)total training error per-class training error area under ROC (AUROC) final ROC

BCR < 5 years
no BCR < 5 yr

acc=75.2%
(θ=0)

AUROC=0.76243
false positive rate

tr
u
e
 p

o
s
it
iv

e
 r

a
te

Fig. 6 GMLVQ training errors for balanced dataset.

To assess the effectiveness of GMLVQ, we use again our balanced dataset that we
considered so far. We train GMLVQ using two protptypes, one for each class. After
training, we use the same dataset for testing, to assess the training errors. Moreover,
we now perform a more detailed analysis of the quality of the classification, con-

Visual Analytics for Classifier Construction and Evaluation for Medical Data 15

sidering not only the aggregated accuracy, but the finer-grained Receiver Operator
Curve (ROC). Figure 6 shows the obtained results. The first three images (a-c) show
the evolution of the total training error, training error for the two classes, and area
under the ROC (AUROC) as a function of the gradient-descent optimization itera-
tions performed by GMLVQ, for 50 iterations. To construct the ROC, during the test
phase, we consider that, for a GMLVQ classifier using two prototypes (w1 for class
1 and w2 for class 2), a test sample x is assigned to class 1 if

d(x,w1)≤ d(x,w2)−θ , (3)

and else to class 2. Here, θ represents the bias given to class 1, and d is given
by Eqn. 2. The fourth image (d) shows the final ROC obtained. We see how all
error metrics converge quickly after roughly 30 iterations. We obtain an average
error rate of 35% for the BCR within 5 years class, respectively 25% for the no
BCR within 5 years class (Fig. 6), yielding an aggregate average error of 30% for
both classes (Fig. 6a). The corresponding AUROC value reached by optimization is
0.7624 (Fig. 6c). We evaluate the accuracy acc by selecting the point on the ROC
corresponding to a bias θ = 0 (Eqn. 3), i.e., for which GMLVQ assigns to a sample
the label of the closest prototype (Fig. 6d, point marked θ = 0). We obtain acc =
75.2%. This is 10% higher than what we could obtain with all the earlier classifiers
which used the Euclidean or cosine distances.

a) b)

c) e)

total training and test errors per-class training errors

AUROC, training and test sets final ROC (average, all folds)d) per-class training errors

training testing

training testing

BCR < 5 years
no BCR < 5 yr

BCR < 5 years
no BCR < 5 yr

AUROC=0.75557

acc=75.2%
(θ=0)

false positive rate

tr
u

e
 p

o
s
it
iv

e
 r

a
te

Fig. 7 GMLVQ training and testing errors for balanced dataset, 10-fold cross validation.

As these findings are encouraging, we aim to strengthen them by a deeper analy-
sis. For this, we use again the balanced dataset, but perform now 10 folds of training
and testing, with a 66% vs 33% training vs testing data split. Figure 7 shows the
results. As visible, these are very similar to the training error analysis: GMLVQ
converges again quite quickly (25 iterations), and delivers an average error of 30%
for both the training and test set. As before, the per-class errors (training and testing)
are higher for the BCR within 5 years class (roughly 35% vs 25% respectively). The
AUROC values for training and testing are both 75.5%. Choosing again the point on
the ROC in Fig. 7 for θ = 0 (Eqn. 3), we obtain a classification accuracy of 75.2%.

16 Jacek Kustra and Alexandru Telea

a) b)

c) e)

total training and test errors per-class training errors

AUROC, training and test sets final ROC (average, all folds)d) per-class training errors

training testing

training testing

BCR < 5 years
no BCR < 5 yr

BCR < 5 years
no BCR < 5 yr

AUROC=0.74053

acc=77.1%
(θ=0)

false positive rate

tr
u

e
 p

o
s
it
iv

e
 r

a
te

Fig. 8 GMLVQ training and testing errors for unbalanced (full) dataset, 10-fold cross validation.

To further confirm these good results, we finally consider the entire unbalanced
dataset (see Sec. 4.4). We perform again 10 folds of training and testing, this time
with a 33% vs 66% training vs testing data split. The training set is always balanced,
randomly picked from the full dataset. In contrast to the previous experiments, we
now use 4 prototypes for each of the two classes, in order to assess whether the per-
formance of GMLVQ is affected by this choice. Figure 8 shows the results. Com-
paring these with Fig. 7, we find a slightly slower convergence requiring about 40
of the 50 iterations used. The average error (over both classes) is the same, roughly
30%, with a slightly different balance between the BCR within 5 years class (35%)
and the no BCR within 5 years class (5%). This is explained by the way in which
the dataset is unbalanced. The average AUROC, however, is still quite good (0.74).
For the chosen point on the AUC (Fig. 8e, θ = 0), we obtain an accuracy of 77.1%,
which is quite consistent (actually, sightly higher) than the value of 75.2% obtained
for the previously considered balanced dataset.

In conclusion, the GMLVQ delivers the best results (accuracy of just over 77%)
from all studied methods.

5 Discussion

We discuss next several relevant points related to our proposal of using visual ana-
lytics (VA) for classifier engineering.

Added value of VA: A very important question to answer is: What has been pre-
cisely the main added value of using VA in the process of classifier engineering for
our application? The answer to this question is twofold. First, VA provides to classi-
fier designers insights on the consequences of all considered design choices (feature
engineering, feature selection, and classifier design, training, and testing). This al-
lows forming and testing hypotheses as to the optimality of a certain decision. When
such decisions test positively, the respective design choices can be frozen and the

Visual Analytics for Classifier Construction and Evaluation for Medical Data 17

design process advances to the next step. In the opposite case, the designer literally
sees which are the undesired consequences of a design decision, and can formulate
hypotheses (new design choices) to next test. This way, VA ‘drives’ the design pro-
cess in a simpler and more controlled way than if one had to blindly chose directions
for exploring the design space. Secondly, VA provides a way for actual end users
of a classification system to visually understand how the system arrived at a given
decision (label assignment) for a given observation. This can help the acceptance of
such a system in decision-support contexts, especially when the end users are not
machine learning experts.

Practically, using VA during our classifier engineering, we have been able to
solve the problems of converting the clinical stage values and choosing the distance
metric (and implicitly, classifiers that can handle this). Practically, all the experi-
mental work described in this paper has spanned under 10 hours. This is far less
than typically needed for refining classifier pipelines for similar contexts [10].

Limitations: While useful, our VA proposal and its support in the featured toolset
has several limitations, as follows. First and foremost, we do not explore in detail
the entire space of design possibilities spanned by the normalization and selection
of input features, possible distance metrics, classification techniques, and hyperpa-
rameters. This is, we believe, unavoidable, since this space is simply too large to
densely sample along all its dimensions in an effective way. Nevertheless, we argue
that the visual feedback provided by VA, via the different views of featured (obser-
vation, scoring, and features), coupled with the user’s ability of directly controlling
all aspects of the classification pipeline from within the tool, provides insights that
allow the designer to use his/her intuition to limit the search effort towards finding
a good design. We follow here the same rationale used earlier when coupling sci-
entific visualization with numerical computation in so-called computational steer-
ing approaches [37]. Secondly, the ability of projections to accurately expose high-
dimensional data structure is well known to be imperfect [33]. However, we do not
use projections to predict actual classifier accuracy, but only to gain insights on
general trends, such as the correlation of clusters with specific features and feature
values, which next help or classifier engineering decisions.

Implementation: featured is implemented mainly in Python, using Qt for the graph-
ics interface. Classifiers, feature scoring techniques, and the t-SNE projection are
provided via the scipy, scikit-learn, and mlpy Python packages [20, 42, 2]. Third-
party projection techniques such as LAMP, IDMAP, and Sammon mapping, and
LSP, are provided by the Java-based Projection Explorer framework [41] via Python
wrapping. For GMLVQ, we based our implementation on the open-source code
available at [6].

18 Jacek Kustra and Alexandru Telea

6 Conclusions

We foresee two types of effective extensions of this work, as follows. On the tech-
nical side, we aim to extend featured with mechanisms that provide a consensus
outcome for its key dimensions (projections, feature scoring metrics, and classifica-
tion techniques). This way, users can decide much easier on the importance of an
obtained insight, e.g. based on a voting scheme. On the application side, we aim
to perform a more in-depth study of the prediction accuracy of prostate cancer re-
lapse, based on more samples (patients), considering more dimensions (features),
and studying how the machine predictions match predictions performed by actual
medical specialists.

References

1. Abernethy, A.P., Etheredge, L.M., Ganz, P.A., Wallace, P., German, R.R., Neti, C., Bach,
P.B., Murphy, S.B.: Rapid-learning system for cancer care. Journal of Clinical Oncology
28(27), 4268–4274 (2010). DOI 10.1200/JCO.2010.28.5478. URL https://doi.org/
10.1200/JCO.2010.28.5478. PMID: 20585094

2. Albanese, D., Visintainer, R., Merler, S.: mlpy: Machine learning Python (2012).
ArXiv:1202.6548, http://mlpy.sourceforge.net

3. Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. Amer-
ican Statistician 46(3), 175–185 (1992)

4. Bartenhagen, C., Klein, H.U., Ruckert, C., Jiang, X., Dugas, M.: Comparative study of unsu-
pervised dimension reduction techniques for the visualization of microarray gene expression
data. BMC Bioinformatics 11 (2010). DOI 10.1186/1471-2105-11-567

5. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In:
Neural Networks: Tricks of the Trade, pp. 437–478. Springer (2012)

6. Biehl, M.: GMLVQ source code (2017). http://www.cs.rug.nl/˜biehl/gmlvq
7. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proc.

5th Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)
8. Domingos, P.: A few useful things to know about machine learning. Comm. ACM 10(55),

78–87 (2012)
9. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach Learn 63(1), 3–42

(2006)
10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR 3, 1157–1182

(2003)
11. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using

support vector machines. Machine Learning 46(1-3), 389–422 (2002)
12. Hajian-Tilaki, K.: Receiver Operating Characteristic (ROC) Curve Analysis for Medical Di-

agnostic Test Evaluation. Caspian Journal of Internal Medicine 4(2), 627–635 (2013). URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/

13. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Net-
works 15, 1059–1068 (2002)

14. Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E.: DNA visual and analytic data
mining. In: Proc. IEEE Visualization, pp. 437–445 (1997)

15. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning: An inter-
rogative survey for the next frontiers (2018). ArXiv:1801.06889 [cs.HC]

16. Hua, K.L., Hsu, C.H., Hidayati, S.C., Cheng, W.H., Chen, Y.J.: Computer-aided classification
of lung nodules on computed tomography images via deep learning technique. OncoTargets

Visual Analytics for Classifier Construction and Evaluation for Medical Data 19

and therapy 8, 2015–2022 (2015). DOI 10.2147/OTT.S80733. URL https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4531007/

17. J, J.D., Leban, G., B, B.Z.: FreeViz – an intelligent multivariate visualization approach to
explorative analysis of biomedical data. J Biomed Inform 40(6), 661–671 (2007)

18. Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimen-
sional projection. IEEE TVCG 17(12), 2563–2571 (2011)

19. Jolliffe, I.T.: Principal Component Analysis. Springer (2002)
20. Jones, E., Oliphant, T., P, P.P.: SciPy: Open source scientific tools for Python (2017). http:

//www.scipy.org
21. Keim, D., Andrienko, G., Fekete, J.D., Görg, C., Kohlhammer, J., Melan con, G.: Visual ana-

lytics: Definition, process, and challenges. In: Information Visualization – Human-Centered
Issues and Perspectives, pp. 154–175. Springer (2008)

22. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope
and challenges. In: Visual Data Mining, pp. 76–90. Springer (2008)

23. Kimelfeld, B., Ré, C.: A relational framework for classifier engineering. In: Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
’17, pp. 5–20. ACM, New York, NY, USA (2017). DOI 10.1145/3034786.3034797. URL
http://doi.acm.org/10.1145/3034786.3034797

24. Kohonen, T.: Learning vector quantization. In: M. Arbib (ed.) The Handbook of Brain Theory
and Neural Networks, pp. 537–540. MIT Press (1995)

25. Leban, G., Zupan, B., Vidmar, G., Bratko, I.: VizRank: Data visualization guided by machine
learning. Data Mining and Knowledge Discovery 13(2), 119–136 (2006)

26. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue clas-
sification of mr images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908
(1999). DOI 10.1109/42.811270

27. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z., Langer,
D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D.M., Teichman, A., Werling, M.,
Thrun, S.: Towards fully autonomous driving: Systems and algorithms. In: Intelligent Vehicles
Symposium, pp. 163–168. IEEE (2011)

28. Liu, S., Bremer, P.T., Pascucci, V.: Distortion-guided structure-driven interactive exploration
of high-dimensional data. Computer Graphics Forum 33(3), 101–110 (2014)

29. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data:
Advances in the past decade. IEEE TVCG 23(3), 1249–1268 (2017)

30. van der Maaten, L.: Learning a parametric embedding by preserving local structure. In: Proc.
12th Intl. Conf. on Artificial Intelligence and Statistics (AISTATS) (2009)

31. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning
Research 9, 2431–2456 (2008)

32. van der Maaten, L., Postma, E., van den Herik, H.: Dimensionality reduction: a
comparative review. J Mach Learn Res 10(1), 66–71 (2009). Extended version
at http://www.iai.uni-bonn.de/˜jz/dimensionality_reduction_a\
_comparative_review.pdf

33. Martins, R., Coimbra, D., Minghim, R., Telea, A.: Visual analysis of dimensionality reduction
quality for parameterized projections. Computers & Graphics 41, 26–42 (2014)

34. Meinshausen, N., Bühlmann, P.: Stability selection. J Royal Stat Soc 72(4), 417–473 (2010)
35. Minghim, R., Paulovich, F.V., Lopes, A.A.: Content-based text mapping using multi-

dimensional projections for exploration of document collections. In: Visualization and Data
Analysis (Proc. SPIE-IS&T Electronic Imaging), vol. 60, pp. 606–615 (2006)

36. Mühlbacher, T., Piringer, H., Gratzl, S., Sedlmair, M., Streit, M.: Opening the black box:
Strategies for increased user involvement in existing algorithm implementations. IEEE TVCG
20(12), 1643–1652 (2014)

37. Mulder, J., van Wijk, J.J., van Liere, R.: A survey of computational steering environments.
Future Generation Computer Systems 15(1), 119–129 (1999)

38. Niknazar, P., Bourgault, M.: In the eye of the beholder: Opening the black box of the classifi-
cation process and demystifying classification criteria selection. Intl. J. Managing Projects in
Business 10(2), 346–369 (2017)

20 Jacek Kustra and Alexandru Telea

39. Paller, C.J., Antonarakis, E.S.: Management of biochemically recurrent prostate cancer after
local therapy: Evolving standards of care and new directions. Clin Adv Hematol Oncol. 11(1),
14–23 (2013)

40. Paulovich, F., Nonato, L., Minghim, R., Levkowitz, H.: Least square projection: A fast high-
precision multidimensional projection technique and its application to document mapping.
IEEE TVCG 14(3), 564–575 (2008)

41. Paulovich, F., Oliveira, M.C.F., Minghim, R.: The projection explorer: A flexible tool for
projection-based multidimensional visualization. In: Proc. SIBGRAPI, pp. 27–36 (2007)

42. Pedregosa, F., Varoquaux, G., A, A.G.: Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, 2825–2830 (2011). http://scikit-learn.org

43. Pennacchiotti, M., Popescu, A.M.: A machine learning approach to twitter user classification.
ICWSM 11, 281–288 (2011)

44. Pezzotti, N., Höllt, T., van Gemert, J., Lelieveldt, B.P., Eisemann, E., Vilanova, A.: DeepEyes:
Progressive visual analytics for designing deep neural networks. IEEE TVCG 24(1) (2018)

45. Rauber, P., Fadel, S., Falcão, A., Telea, A.: Visualizing the hidden activity of artificial neural
networks. IEEE TVCG 23(1), 101–110 (2017)

46. Rauber, P., da Silva, R., Feringa, S., Celebi, M., Falcão, A., Telea, A.: Interactive image fea-
ture selection aided by dimensionality reduction. In: Proc. EuroVA, pp. 46–51. Eurographics
(2015)

47. Sammon, J.W.: A non-linear mapping for data structure analysis. IEEE Trans Comp C-18,
401–409 (1964)

48. Shen, D., Wu, G., Suk, H.I.: Deep Learning in Medical Image Analysis.
Annual Review of Biomedical Engineering 19(1), 221–248 (2017). DOI
10.1146/annurev-bioeng-071516-044442. URL http://dx.doi.org/10.1146/
annurev-bioeng-071516-044442

49. da Silva, R.R.O., Rauber, P., Martins, R.M., Minghim, R., Telea, A.: Attribute-based visual
explanation of multidimensional projections. In: Proc. EuroVis Workshop on Visual Analytics
(EuroVA), pp. 137–142 (2015)

50. Sorzano, C., Vargas, J., Pascual-Montano, A.: A survey of dimensionality reduction techniques
(2014). http://arxiv.org/pdf/1403.2877

51. Stephenson, A.J., Kattan, M.W., Eastham, J.A., Dotan, Z.A., Bianco, F.J., Lilja, H., Scardino,
P.T.: Defining biochemical recurrence of prostate cancer after radical prostatectomy: a pro-
posal for a standardized definition. J Clin Oncol. 24(24), 3973–8 (2006)

52. Sun, Y.: Iterative relief for feature weighting: Algorithms, theories, and applications. IEEE
TPAMI 29(6), 1035–1051 (2007)

53. Talbot, J., Lee, B., Kapoor, A., Tan, D.: EnsembleMatrix: Interactive visualization to support
machine learning with multiple classifiers. In: Proc. ACM CHI, pp. 1283–1292 (2009)

54. Tamagnini, P., Krause, J., Dasgupta, A., Bertini, E.: Interpreting black-box classifiers using
instance-level visual explanations. In: Proc. ACM HILDA (2017)

55. Zhang, J., Gruenwald, L.: Opening the black box of feature extraction: Incorporating visu-
alization into high-dimensional data mining processes. In: Proc. IEEE Intl. Conf. on Data
Mining (ICDM) (2006)

