
Temporal Multivariate Networks

James Abello1, Daniel Archambault2, Jessie Kennedy3, Stephen Kobourov4,
Kwan Liu Ma5, Silvia Miksch6, Chris Muelder5, and Alexandru Telea7

1 Rutgers University abello@dimacs.rutgers.edu
2 Swansea University d.w.archambault@swansea.ac.uk
3 Edinburgh Napier University j.kennedy@napier.ac.uk

4 University of Arizona kobourov@cs.arizona.edu
5 University of California at Davis {ma, cwmuelder}@ucdavis.edu

6 Vienna University of Technology miksch@ifs.tuwien.ac.at
7 University of Groningen a.c.telea@rug.nl

Abstract. Networks that evolve over time, or dynamic graphs, have
been of interest to the areas of information visualization and graph draw-
ing for many years. Typically, its the structure of the dynamic graph that
evolves as vertices and edges are added or removed from the graph. In
a multivariate scenario, however, attributes play an important role and
can also evolve over time. In this chapter, we characterize and survey
methods for visualizing temporal multivariate networks. We also explore
future applications and directions for this emerging area in the fields of
information visualization and graph drawing.

1 Introduction

In previous chapters, this book has primarily concerned itself with visualization
methods for static, multivariate graphs. In a static scenario, the network has a
number of attributes associated with its elements. These attribute values remain
fixed and the challenge is to visualize the interactions between the network(s)
and these attributes. Static multivariate graphs could be viewed as graphs with
an associated high dimensional data set linked to its elements.

Time is simply another dimension in this multivariate data set that can
interact with the vertices, edges, and attribute values of the network. However,
humans perceive time differently as we know from our everyday interactions with
the physical world. Thus, intuitively, this dimension is often handled differently
when supporting the presentation of data that changes over time. Visualization
applications and techniques have, and probably should, continue to exploit this
fact, allowing for effective visualization methods of temporal multivariate graphs.

In this chapter, we define, characterize, and summarize the data and visual-
ization techniques relating to temporal multivariate networks. Section 2 provides
definitions and examples that characterize the networks we address in this chap-
ter. We further refine our definitions of time in section 3. In section 4, we survey
representations for dynamic multivariate networks and provide a survey of vi-
sualization techniques. We describe the visualization of temporal multivariate



2

networks in the domain of software engineering in section 5. Finally, section 6
describes open problems in this area.

2 Definitions

In a variety of applications, time varying multivariate data can be viewed as
evolving information networks whose structure is derived from data attributes
(i.e. via similarity measures), or it is specified a priory (i.e. the flow of infor-
mation over an underlying network), or it is the result of tracking behavioral
statistics (i.e. network traces). The network and attributes can be:

– inherent to the fundamental data elements that are taken to be the network
vertices (name, age, gender, income, profession, interests . . . )

– indicators of the type of relation between the network vertices (professor of,
father of, boss of, colleague of . . . )

– attribute derived data (time varying computational mappings from vertex
attributes to edge attributes such as “pairs of stocks in markets whose per-
formance has been above a given threshold during a time period”)

– structural derived statistics (vertex ranks, network centrality, clustering mea-
sures . . . )

– specified contexts in which the data occurs (Tweets related to a given set of
key words for a specified time period)

In the next subsection, we adapt a model used in software engineering for the
purposes of characterizing the types of dynamic, multivariate networks that can
be visualized. Then, we propose mathematical formalizations of time varying
multivariate networks.

2.1 Structure, Behavior, and Evolution

In a static multivariate network analysis scenario, we have a network struc-
ture, consisting of vertices and edges, as well as attributes associated with these
vertices and edges. In a time varying scenario, both the graph structure and
attribute values can evolve over time. In most cases, we can assume that the
network structure at a given moment in time can influence how the attribute
values evolve and vice versa. These interactions are in some respects very similar
to those considered in some software engineering contexts [28]. Thus, we exam-
ine time varying multivariate networks appearing in biology and social networks
under the lenses of structure, behavior and evolution.

– Structure: Pairings between parts or elements of a complex system. Struc-
ture mostly relates to the topology of the underlying network at a given time
t.

– Behavior: Observable activity. Action or reaction of system elements under
a given set of stimuli. Behavior mostly refers to the attributes associated
with the underlying network elements and how they change over time.



3

Biology Software Engineering Social Networks

Structure Biological entities Modules and A Twitter community
genes and interactions couplings network

Behavior Gene expression levels Program trace retweet, mention
on the graph and follower activity

Evolution Organism development Changes to the code Changes to community
Experimental conditions structure

Table 1. Examples of structure, behavior and evolution in the domains of biology,
software engineering, and social networks.

– Evolution: Gradual development of a configuration or pattern over time.
Evolution mostly relates to the structural changes of the overall underlying
network over time.

To illustrate these concepts, we provide examples in Table 1 drawn from
the application areas considered in this book: biology, software engineering, and
social networks. As an analogy to understand the overarching idea, consider a
physical space, such as a building. The structure of the building is the construc-
tion at a given time. Its behavior is how people use the building and its rooms
or interact with the physical structure. Its evolution may involve bringing in a
construction crew to knock down walls and build new ones, modifying the struc-
ture of the building as a result of observable decay in the physical infrastructure
or as a response to ergonomical complaints of its occupants.

Note that in a time varying multivariate network scenario, both behavior
and evolution can operate on each other. This generalization of the dynamics
differs from the original software engineering approach where evolution could
only influence behavior. An example of evolution influencing behavior in a biology
scenario is when an experimental condition causes network structure to change
or evolve, affecting in turn gene expression levels (i.e. behavior). An example of
behavior influencing evolution in a social network scenario is when the interaction
between actors in a social network (i.e. their behavior) causes ties to break or
form, thus, evolving the network.

2.2 Formal Definitions of Temporal Multivariate Networks

To incorporate some of the main characteristics of time varying multivariate
data we propose the following mathematical formalization of a time varying
information data set [1].

The implicit assumption is that ”time” is a universal reference ”axis” with
respect to which the data is being tracked. For now we assume that ”time”
is a totally ordered set, but as we will discuss later, it can also be taken to
be a partially ordered set. A time varying information data set GV,t on a set of
vertices V consists of a sequence {F (Gt)}t>=0 where F is a multivariate function
F : Rh × Rh × R → Rk and at each time t, Gt denotes the following collection
of 4-tuples:



4

Gt = {< V(x,y), Vx, Vy, t >: V(x,y) = F (Vx, Vy, t)} (1)

Vx , Vy , and V(x,y) are vectors in Rh and Rk respectively and (x, y) is a pair
of vertices in V . The underlying information network structure is determined by
those pairs of vertices (x, y) in V × V for which there exists a four tuple

< V(x,y), Vx, Vy, t >

in some Gt.
The F cumulative behavior of GV,t up to and including t is the entry wise

sum:

F<=t(GV ) =<

t∑
j=0

(V(x,y)),

t∑
j=0

(Vx),

t∑
j=0

(Vy) >

where the sum is taken over all the quadruples < V(x,y), Vx, Vy, j > in Gj for
j <= t.

A time varying information data set GV,t evolves towards a network G, if
there exists a time t > 0 such that the underlying network of the union of Gj for
j >= t is isomorphic to G.

3 Refining Our Models and Definitions for Time

Time itself is an inherent data dimension that is central to the tasks of revealing
trends and identifying patterns and relationships in the data. Time and time-
oriented data have distinct characteristics that make it worthwhile to treat such
data as a separate data type [2, 3]. Due to the importance of time-oriented data,
its structure has been studied in numerous scientific publications (e.g., [2, 11,
41]). As proposed by Aigner et al. [3], we divide the aspects of time-oriented
data into general aspects required to adequately model the time domain as well
as hierarchical organization of time and definition of concrete time elements, also
called human-made abstractions.

The general aspects are scale, scope, arrangement, and viewpoints.
1. Scale: ordinal vs. discrete vs. continuous. As a first perspective, we look at

time from the scale along which elements of the model are given. In an ordinal
time domain, only relative order relations are present (e.g., before, after). In
discrete domains temporal distances can also be considered. Time values can
be mapped to a set of integers which enables quantitative modelling of time
values (e.g., quantifiable temporal distances). Discrete time domains are based
on a smallest possible unit and they are the most commonly used time model
in information systems. Continuous time models are characterized by a possible
mapping to real numbers, i.e., between any two points in time, another point in
time exists (also known as dense time).

2. Scope: point-based vs. interval-based. Secondly, we consider the scope of
the basic elements that constitute the structure of the time domain. Point-based



5

time domains can be seen in analogy to discrete Euclidean points in space, i.e.,
having a temporal extent equal to zero. Thus, no information is given about
the region between two points in time. In contrast to that, interval-based time
domains relate to subsections of time having a temporal extent greater than
zero. This aspect is also closely related to the notion of granularity, which will
be discussed later.

3. Arrangement: linear vs. cyclic. As the third design aspect, we look at
the arrangement of the time domain. Corresponding to our natural perception
of time, we mostly consider time as proceeding linearly from the past to the
future, i.e., each time value has a unique predecessor and successor. In a cyclic
organization of time, the domain is composed of a set of recurring time values
(e.g., the seasons of the year). Hence, any time value A is preceded and succeeded
at the same time by any other time value B (e.g., winter comes before summer,
but winter also succeeds summer).

4. Viewpoint: ordered vs. branching vs. multiple perspectives. The fourth sub-
division is concerned with the views of time that are modelled. Ordered time
domains consider things that happen one after the other. On a more detailed
level, we might also distinguish between totally ordered and partially ordered
domains. In a totally ordered domain only one thing can happen at a time. In
contrast to this, simultaneous or overlapping events are allowed in partially or-
dered domains, i.e., multiple time primitives at a single point or overlapping in
time. A more complex form of time domain organization is the so-called branch-
ing time. Here, multiple strands of time branch out and allow the description
and comparison of alternative scenarios (e.g., in project planning). In contrast to
branching time where only one path through time will actually happen, multiple
perspectives facilitate simultaneous (even contrary) views of time.

The human-made abstractions are granularities, time primitives, and de-
terminacy.

1. Granularity and calendars: none vs. single vs. multiple. To tackle the com-
plexity of time and to provide different levels of granularity, useful abstractions
can be employed. Basically, granularities can be thought of as (human-made)
abstractions of time in order to make it easier to deal with time in every-day
life (like minutes, hours, days, weeks, months). More generally, granularities de-
scribe mappings from time values to larger or smaller conceptual units. If a
granularity and calendar system is supported by the time model, we character-
ize it as multiple granularities. Besides this complex variant, there might be a
single granularity only (e.g., every time value is given in terms of milliseconds)
or none of these abstractions are supported (e.g., abstract ticks).

2. Time primitives: instant vs. interval vs. span. These time primitives can
be seen as an intermediary layer between data elements and the time domain.
Basically, time primitives can be divided into anchored (absolute) and unan-
chored (relative) primitives. Instant and interval are primitives that belong to
the first group, i.e., they are located on a fixed position along the time domain.
In contrast to that, a span is a relative primitive, i.e., it has no absolute posi-
tion in time. Instants are a model for single points in time, intervals for ranges



6

between two points in time, and spans a duration (of intervals) without a fixed
position.

3. Determinacy: determinate vs. indeterminate. Uncertainty is another im-
portant aspect when considering time-oriented data. If there is no complete or
exact information about time specifications or if time primitives are converted
from one granularity to another, uncertainties are introduced and have to be
dealt with. Therefore, the determinacy of the given time specification needs to
be considered. A determinate specification is present when there is complete
knowledge of all temporal aspects.

4 Survey of Representations and Algorithms

While static graphs arise in many applications, dynamic processes naturally give
rise to graphs that evolve through time. Such dynamic processes can be found
in software engineering, telecommunications traffic, computational biology, and
social networks, among others. Dynamic graph drawing addresses the problem
of effectively presenting such relationships as they change over time.

Static graph visualization has a long and venerable history, while dynamic
graph visualization is a relatively newer field. But even though temporal graph
representations are more recent, the variety of representations is still large, and
there are a number of studies concerning the drawing of dynamic graphs [20, 5,
16]. As a dynamic graph can be thought of as a sequence of edge sets on the
same set of vertices, it can be treated similarly to visualizing multiple relation-
ships on the same data set. There are nearly as many ways to represent dynamic
or multivariate networks as there are graph representations: simple node-link
diagrams, directed graphs, clustered graphs, hierarchical and multi-level repre-
sentations, matrix representations, spatialized (map-like) representations, etc.
Dynamic graphs can be visualized with global views, where all the graphs are
displayed at once, merged views, where all the graphs are agglomerated together,
and with sequenced views, where timesteps are plotted individually, and either
small multiples or animated morphing (fading in/out vertices and edges that
appear/disappear) are used to compare timesteps.

It is worth noting here that it makes a difference whether the temporal vi-
sualization aims to show individual timesteps (e.g., collaboration between re-
searchers in each individual year) or cumulative (e.g., new collaborations from
current year are added to the already accumulated collaboration graph). Simi-
larly, there is a difference between offline and online temporal visualization. In
the offline setting, we are given all data in advance, whereas in the online setting
the changes are happening on the fly. Most existing algorithms address the prob-
lem of offline dynamic graph drawing, where the entire sequence of graphs to be
drawn is known in advance. This gives the layout algorithm information about
future changes in the graph, which makes it possible to optimize the layouts
generated across the entire sequence (e.g., the algorithm can leave enough space
in anticipation of placing vertices that appear later in the sequence). Less work



7

Fig. 1. A dynamic graph can be interpreted as a larger graph made of connecting
graphs in adjacent timesteps [34].

has been done in the online setting, where the graph sequence to be laid out is
not known in advance.

By far the most common method for visualizing dynamic graphs is to view
the graph as a series of node-link diagrams whether as a sequence or all at once;
see Fig. 1 and Fig. 2. Thus many dynamic graph layouts are based on static
graph layout algorithms, which are used to lay out each timestep. Efforts to
improve the quality and stability of the layouts lead to the development of full-
fledged dynamic graph layout algorithms. Some visualization approaches eschew
the node-link representation to better show temporal evolution, as in streamline
representations and dynamic maps. There has also been work in summarizing
the temporal evolution of dynamic graphs in more static representations. And
finally, there are a number of analytic algorithms and approaches that have been
extended to dynamic network visualization.

4.1 Static Graph Layouts

Force-directed layouts (e.g., Fruchterman-Reingold [44], LinLog [77], Kamada-
Kawai [62]) arrange graphs by iteratively refining the positions of vertices to in-
crementally reduce an energy function. This function varies between algorithms,
but generally has the property that it is a function of the distances between
vertices and the weights of the edges between them. These layouts are simple,
and generally considered aesthetic, but they do not generally scale well to large
or dense graphs.



8

Fig. 2. Snapshots of the call-graph of a program as it evolves through time, extracted
from CVS logs. Vertices start out red. As time passes and a vertex does not change
it turns purple and finally blue. When another change is affected, the vertex again
becomes red. Note the number of changes between the two large clusters and the break
in the build on the last image [24].

More efficient layout algorithms use a multi-scale approach, such as the work
of Cohen [23], the Fast Multipole Multilevel Method (FM3) [52], and the Graph
dRawing with Intelligent Placement (GRIP) algorithm [46]. These algorithms
start by laying out a small approximation of a graph, then progressively laying
out finer approximations of the graph, until the entire original graph is laid out.
These algorithms generally use far fewer iterations, and thus perform far better
than traditional force-directed approaches, while still producing similar results.

Even faster graph layout algorithms are available in the form of algebraic
layouts, such as Algebraic Multigrid Computation of Eigenvectors (ACE) [64],
High Dimensional Embedding (HDE) [53], the work of Brandes and Pich [18],
or the Maxent method [48]. These calculate layouts directly using linear algebra
techniques rather than using iterative force calculations. This generally makes
them very fast. Clustering-based layouts have also been shown to be fast, as
in the case of the treemap layout [74] or space-filling curve layout [73]. These
methods work by clustering the graph in a preprocessing step and then mapping
the clustering to the screen to define the layout itself.

4.2 Dynamic Graph Layouts

In dynamic graph drawing the goal is to maintain a nice layout of a graph that is
modified via operations such as inserting/deleting edges and inserting/deleting
vertices. A key property of in many real-world applications, where dynamic
graphs naturally arise, is that the difference between any two timesteps is gen-
erally assumed to be incremental: that is, a small change relative to the size of
the graph. If the change between timesteps is too large, then it is often more
effective to treat them as separate, static networks. When visualizing evolving
and dynamic graphs, two of the most important criteria to consider are:

1. readability, or quality of the individual layouts, which depends on aesthetic
criteria such as display of symmetries, uniform edge lengths, and minimal
number of crossings; and



9

Fig. 3. Mental map preservation has been a forefront topic in dynamic graph layout.
The level of layout stability can vary between approaches. Incremental approaches can
range from having no correlation between timesteps to using the previous timestep as
initialization to anchoring or tethering some vertices to previous positions. The most
stable layouts agglomerate all timesteps together, but these could result in poor layouts
at each timestep.

2. mental map preservation, or stability in the series of layouts, which can be
achieved by ensuring that vertices and edges that appear in consecutive
graphs in the series, remain in the same location.

There is an inherent trade-off between the stability and quality of any dynamic
graph layout, as restricting the movement of vertices could make it impossible to
achieve high quality layout of the individual timesteps. In fact, these two criteria
are often contradictory and many dynamic graph layout approaches explore
different ways of balancing stability and quality; see Fig. 3. At one end are
quality optimizing layouts with little to no correlation between timesteps, and
at the other are fixed layouts where the vertices never move, even if the layout
is not ideal for any given timestep. Anchored layouts lie somewhere between the
two extremes, where some vertices are fixed while others are allowed to move;
see survey of Brandes et al. [16].

The input to this problem is a series of graphs defined on the same underlying
set of vertices. As a consequence, nearly all existing approaches to visualization
of evolving and dynamic graphs are based on extensions of static graph layouts,
usually based on a force-directed method. The simplest methods just initialize a
force directed layout with the previous layout of the timestep, as in [10, 37], but
this offers little guarantees for stability as nothing actually constrains the motion
of vertices. Early examples of this can be dated back to North’s DynaDAG [78],
where the graph is not given all at once, but incrementally. Most of these early
approaches, however, are limited to special classes of graphs and usually do not



10

scale to graphs over a few hundred vertices. TGRIP could handle the larger graphs
that appear in the real-world. It was developed as part of a system that keeps
track of the evolution of software by extracting information about the program
stored within a CVS version control system [24]. Such tools allow programmers to
understand the evolution of a legacy program: Why is the program structured the
way it is? Which programmers were responsible for which parts of the program
during which time periods? Which parts of the program appear unstable over
long periods of time? TGRIP was used to visualize inheritance graphs, program
call-graphs, and control-flow graphs, as they evolve over time; see Fig. 2.

Aggregate layouts such as in [70], are among the approaches that guarantee
good stability by computing one layout for an aggregate graph made up of the
union of all timesteps. Brandes and Corman [14] describe a system for visualizing
network evolution in which both fixes vertices in constant locations, and uses a
3D super-graph, by showing each modification in a separate layer of a 3D repre-
sentation with vertices common to two layers represented as columns connecting
the layers. Thus, mental map preservation is achieved by pre-computing good lo-
cations for the vertices and fixing the position throughout the layers. An explicit
tradeoff between quality and stability can also be provided as in the GraphAEL
system [35]. There a super-graph of all timesteps is created and links between
occurrences of the vertices in neighboring timesteps are added; see Fig. 1. By
changing the weights of these inter-timestep edges one can emphasize stabil-
ity (make inter-timestep edges very strong) or readability (make inter-timestep
edges very weak). Such approaches [35, 36, 32, 39] generally use modified versions
of traditional static layout algorithms directly, but often induce high memory
usage and complexity because all timesteps are loaded at once. They are also
only applicable to offline graph drawing, as the entire data range is needed at
the beginning.

However, the most popular approach in recent years is to compute time
varying network layouts by adding additional constraints that anchor vertices
to their positions in the previous timestep [67, 42, 43]. These techniques work by
adding some additional forces to the force direction calculation, but provide a
good balance of cost, layout quality, and stability, and can be tuned by adjusting
the anchor weights. These algorithms can also address the online dynamic graph
drawing problem, as it is not necessary that the graph sequence is not known
in advance. Brandes and Wagner adapt the force-directed model to dynamic
graphs using a Bayesian framework [19]. An algorithm for visualizing dynamic
social networks is discussed in [70]. Frishman and Tal consider dynamic drawing
of clustered graphs [42] and of general graphs [43]. Brandes et al. have also
performed a quantitative evaluation of the tradeoffs between layout quality and
stability for these different classes of layouts [17].

There are also dynamic graph visualization approaches based on clustering.
Kumar and Garland describe a method of animating clusters through time [65].
In this approach, a stratified, abstracted version of the graph is used, where the
vertices are topologically sorted into a treelike structure (before layout) in order
to expose interesting features.



11

Sallaberry et al. [94] cluster every timestep individually, associate the clusters
across time, and use the space-filling curve approach to render each timestep; see
Fig. 4. Pre-computing the clusters is computationally expensive. Hu et al. [58]
propose a method based on a geographical metaphor to visualize a summary of
clustered dynamic graphs. It also relies on clustering and aims to keep clusters
stable over time.

(a) 2002-10-27 (b) 2005-09-18 (c) 2009-08-02

Fig. 4. Large networks add additional challenges in computational cost and perceptual
limits (images from [94])

4.3 Animation Versus Small Multiples

Often, dynamic graph visualizations animate the transitions between node-link
diagrams of timesteps [78, 29, 35, 49, 13, 43]. In these animations, vertices dynam-
ically appear, disappear and move to produce readable layouts at each timestep.
Diehl and Görg [29] and Görg et al. [49] consider graphs in a sequence to create
smoother transitions. Animations as a means to convey an evolving underlying
graph have also been used in the context of software evolution [24] and scientific
literature visualization [35]. Creating smooth animation between changing se-
quences of graphs is addressed using spectral graph visualization in [15]. When
using the animation/morphing approach, it is possible to change the balance be-
tween readability of individual graphs and the overall mental map preservation,
as in the system for Graph Animations with Evolving Layouts, GraphAEL [35,
40]. Applications of this framework include visualizing software evolution [24],
social networks analysis [9], and the behavior of dynamically modifiable code [30].

Robertson et al. [89] evaluate the effectiveness of three trend visualization
techniques. The results indicate that animation, often enjoyable and exciting,
is not always well suited to data analysis. The other common alternative for
visualizing multiple timesteps is to statically place them next to each other as
small multiples [101]. This eases the comparison of distant timesteps but only a
small area can be devoted to each timestep, which reduces the readability of each
graph. Cerebral [8] is a system that uses a biologically guided graph layout and



12

incorporates experimental data directly into the graph display. Small multiple
views of different experimental conditions and a data-driven parallel coordinates
view enable correlations between experimental conditions to be analyzed at the
same time that the data is viewed in the graph context. This combination of
coordinated views allows the biologist to view the data from many different
perspectives simultaneously.

Empirical studies to compare the advantages and drawbacks of these ap-
proaches (“Animation” vs. “Small Multiples”) have been performed by Archam-
bault et al. [7] as well as Farrugia and Quigley [38]. And even more recently,
Rufiange et al. have developed a hybrid approach that lets the user interactively
combine or switch between animations, small multiples, and plots that explicitly
indicate what has changed [90].

4.4 Mental Map Preservation

Preserving the mental map, or layout stability, is a major focus in many dy-
namic node-link representations approaches [17, 43, 58, 65, 92]. Even though sev-
eral experiments have been performed to examine the effect of preserving the
mental map in dynamic graphs visualization the results are mixed. The results
of [87] were quite surprising. The experiment found that the most effective vi-
sualizations were the extreme ones, i.e., the ones with very low or high mental
map preservation, while visualizations with medium preservation were less effec-
tive [87]. With large networks, stability becomes even more important, but so
does “motion coherency”. Even small motions on each vertex are too much to
perceive if they are chaotic, but if vertices move coherently, they can be perceived
as a single group [94]. In a series of papers Archambault and Purchase evaluate
various approaches for dynamic graph visualization and consider how they affect
mental map preservation [7, 4, 6], also summarized in a recent survey [5].

4.5 Alternative Representations

Using maps to visualize non-cartographic data has been considered in the context
of spatialization [97]. Map-like visualization using layers and terrains to represent
text document corpora dates back to 1995 [103]. The problem of effectively
conveying change over time using a map-based visualization was studied by
Harrower [54]. More recently, Mashima et al. [68] use the GMap framework [57]
to visualize dynamic graphs with the geographic map metaphor; see Fig. 5.

Also related is work on visualizing subsets of a set of items. Areas of inter-
est in a UML diagram can be highlighted using a deformed convex hull [22].
Isocontours-based bubblesets can be used to depict multiple relations defined
on a set of items [25]. Automatic Euler diagrams, which show the grouping of
subsets of items by drawing contiguous regions around them have also been con-
sidered [96]. Apart from differences in the algorithms used to generate regions,
all of these approaches create regions that overlap with each other (unlike the
strict map metaphor where regions do not overlap).



13

(a) (b) (c)

Fig. 5. Evolution in the top 250 most popular bands on Last.fm: showing three con-
secutive snapshots from an animation, focusing on area that corresponds to Rock.
An animated version is also available online at http://www2.research.att.com/ yi-
fanhu/TrendMap/. (a) Highlighting in blue areas where artists are about to disap-
pear: Bon Jovi, Deep Purple, Elvis, Simon & Garfunkel, CCR, and Eric Clapton. (b)
Highlighting in yellow the areas where new artists are about to appear. (c) An image
after new artists appear, showing the newcomers: Bruce Springsteen, Neil Young, The
Kinks, and The Beach Boys.

Bezerianos et al. [12] describe a multivariate network visualization system,
GraphDice, which uses a plot matrix to navigate multivariate graphs.

4.6 Static Temporal Plots

One visualization approach for summarizing dynamic large graphs is to directly
represent time as an axis. The most direct way to do this is to take 2D node-link
diagrams and extend them to 3D with time as the third dimension; see Fig. 1).
However, 3D can be cluttered, and has occlusion and other perceptual limita-
tions. An interesting 2D approach based on parallel coordinates was proposed
by Burch et al. [21], where vertices are ordered and positioned on several vertical
parallel lines, and directed edges connect these vertices from left to right. The
graph of each timestep is thus displayed between two consecutive vertical axes.

Such representations can get quite cluttered for larger graphs. Rather than
depicting the entire network over time, another approach is to abstract the net-
work into clusters and to show how they evolve. WilmaScope [31] does this in 3D
by representing the clusters as tubes. An increasingly popular way to visualize
the evolution dynamic clusters is the use of storylines [27, 63, 76, 79, 88, 98]. Most
of these works reference hand-drawn diagrams such as XKCD’s movie narrative
charts [76] as inspiration, in which entities are represented as lines which move
together when in the same group and separate when they are not. Plotweaver
[80] is a tool to aid in semi-automatic generation of storyline plots, but it still
requires significant user interaction. The works of Ogawa et al. [79] and Tana-
hashi et el. [98] aim to automate the process; see Fig. 6. However, producing



14

Fig. 6. Storylines can succinctly summarize the evolution of a dynamic graph (from
[98]).

good results with these algorithms is computationally expensive, as they do not
scale well to large data sets. To apply storyline techniques to dynamic graphs,
an intermediary step of dynamic clustering must be derived [88, 94].

4.7 Dynamic Graph Analytics

Another relevant avenue of research has been the extension of analytic algorithms
to dynamic graphs. Finding a partition of the vertices of a static graph according
to its structure is a well studied problem; see survey by Schaeffer [95]. But
clustering a dynamic graph is a less studied problem. One possibility is to use
a global clustering, which is computed by applying a static clustering to an
aggregate combination of all the timesteps in the dynamic graph. This creates
a clustering which is on average good, but which can not capture the evolution
of the network. Others have developed dynamic graph clustering algorithms
in the context of visualization applications that track clusters across timesteps,
allowing their memberships to evolve over time. Several approaches try to modify
the clustering incrementally as the network changes [51, 50, 93]. Hu et al. [58] use
a similar approach, but apply a heuristic to accelerate this process. Sallaberry et
al. [94], on the other hand, cluster each timestep separately and then use Jaccard
index to track the clusters across time.

Different from top-down methods above, there are also several bottom-up
approaches that start with a single vertex and its immediate context. Addi-
tional relevant vertices and connections are revealed only on demand, based
on graph structure or specialized degree-of-interest functions that can incorpo-
rate semantic importance or users’ interaction histories [72, 55, 33, 45, 102, 26].
Recently, such approaches have been extended to dynamic graphs by incorpo-
rating temporal histories, and applying relevancy filtering to a storyline-based
representation [75].

5 Applications to Software Engineering

Temporal multivariate networks play a key role in many aspects of software
engineering (SE). To understand the related challenges, we need to understand

1. the tasks that they support in software engineering;
2. the characteristics of SE data leading to such graphs.



15

This section covers the above two points. For a full overview of applications
of multivariate dynamic graphs in SE, we refer to Chapter ??. Our focus here is
more technical. Specifically, we aim to characterize SE graphs from the perspec-
tive of time modeling (Section 3), and the variability axes (of types) (Section 4).
This in turn better explains the rationale behind the visual designs presented
in Chapter ??, and also why it is challenging to use visualization techniques
developed for other types of temporal multivariate graphs to handle SE graphs.

Tasks Software engineering activities cover the entire software product lifetime,
starting with requirement gathering, followed by architecting, design, implemen-
tation (coding), testing, release, and ending with maintenance. Graphs are cre-
ated and used in all these stages, as shown in Table 2. As software systems change
during their lifecycle, all above graphs are by nature time-dependent. Moreover,
SE graphs involve elements and relations spanning several of the above activities.
For example, in reverse engineering, we encounter graphs that link software test
results with source code (and developers), class diagrams, and requirements.

Actions Examples of graphs

Requirements Requirements vs tasks vs stakeholders[60]
UML use-case diagrams[91]

Architecting System structure (layering, dataflows, component interactions)[100]

UML component and package diagrams[91]
Design UML class, activity diagrams[91]

Coding Call, inheritance, type-use, and include graphs[28]

Testing Type-instance graphs, control flow graphs[85]
Resource allocation graphs[71].

Release Deployment graphs[81], UML deployment diagrams[91]

Maintenance Developer networks, code duplication graphs[69]
Table 2. Examples of multivariate temporal graphs in SE.

Data characteristics Temporal multivariate SE graphs have several charac-
teristics which make their computation, efficient manipulation, and above all
understanding very challenging. Below we outline the main such aspects.

Size: Depending on their type, SE graphs range from a few tens of elements
(UML diagrams and developer networks) to hundreds of thousands (call graphs)
or even millions of elements (control-flow graphs of large programs). The static
call graph of the Mozilla Firefox browser (a medium-sized system as compared to
large telecom or banking software) has, for example, over 500K edges [56]. Cer-
tain topology constraints exist for some graphs, e.g. class hierarchies are, usually,
trees, and architecture dependencies form a directed acyclic graph. However, in
the general case, little can be said about the global properties of SE graphs.



16

For instance, a call graph can be cyclic (or not), and can have a widely varying
distribution of number of edges per vertex depending on application type.

Attributes: Each vertex and edge in a SE graph typically has several attributes.
These describe both static and dynamic properties of the entity encoded by that
vertex or edge. For instance, annotated semantic graphs (ASGs) for C++ pro-
grams have tens of such attributes [99]. Computing software quality metrics
easily adds tens of other metrics [66]. Attribute types span a wide spectrum:
numerical, categorical, text, and binary. Attribute types are key to effective pro-
gram understanding. For instance, the C++ ASG in [99] contains around two
hundred different vertex-attribute types that encode the different properties of
the annotated C++ grammar. Being able to visually distinguish between differ-
ent types is essential, e.g. for detecting the presence of specific design or execution
patterns. Missing values are possible e.g. due to limitations of program analysis
tools or due to incomplete program coverage for execution monitoring tools.

Dynamics: Graphs describing human aspects, such as developer activity, change
slowly, given the continuous nature of software evolution [69]. However, other SE
graphs exhibit different dynamics. For instance, in program execution graphs,
large changes can occur in short time periods and few changes in other longer
time periods. Dynamics is present both at the structure level (e.g. changes of a
call graph topology as the program is run for different inputs or as code changes
during maintenance), and also at the attribute level (e.g. different runtime met-
rics measured at static component level for different program executions).

Time modeling: Time is, formally, modeled as a discrete quantity, since both
execution and changes of software code occur at discrete, moments. Time has
a linear nature, describing the order of execution of program instructions or
the order of changes in a repository. However, time can be seen as fully or-
dered or branching (Section 2). The branching case occurs e.g. when considering
execution of multi-threaded programs or analyzing development activity of a
repository with multiple branches. Both point-based and interval-based models
are used, often interchangeaby, for the same analysis. For instance, a version in
a software repository can refer to the moment when it was committed, but also
to the time interval between this commit time and the next change of the same
artifact.

Scale: Software understanding occurs on multiple levels of detail and following
both a top-down and bottom-up process [85]. Hence, one needs to (visually)
analyze software at several levels of detail or scales. SE graphs offer several
natural scales, given their hierarchical, or compound, nature (Chapter ??), e.g.
function-class-file-folder or the structure given by a function call stack. Yet,
several aspects make constructing efficient and effective multiscale SE-graph
visualizations hard. Firstly, SE graphs are huge. The few above-mentioned levels
of detail do not offer enough granularity to automatically simplify large graphs to



17

levels where they can be displayed in an understandable manner. Automatically
computing additional levels of detail is hard – for instance, what should be the
meaning of an artifact larger than a file, but smaller than a folder? Secondly,
many program understanding tasks require showing both fine-grained detail and
coarse-scale structure in the same view. For instance, to debug a crash, we need
to see the entire call stack, from the finest-grained instruction which caused the
fault up to the coarse-level components which scope the fault. Finally, software
is by nature abstract. As such, finding effective visual metaphors (for both the
spatial graph embedding and attribute mapping) is challenging.

6 Open Problems

Although significant progress has been achieved in the design of visualization
methods and tools for exploring multivariate temporal networks, several impor-
tant open challenges remain. This section outlines a selection of challenges which
are relevant to a broad subset of applications involving such graphs. Throughout
the discussion, we use the notation introduced in Section 2.2.

6.1 Attribute dimensionality

As outlined in Section 5, SE graphs are high-variate, i.e., have many attributes
for each vertex or edge. Existing visualization techniques can simultaneously
show a few (up to 3) attributes per graph element, by mapping these to shape,
size, texture, color, and shading. However, this solution scales poorly for graphs
of hundreds of thousands of elements. Separately, even for small graphs (hun-
dreds of elements), showing tens of attributes per element is an open challenge.
Parallel coordinate plots partially address this quest [59]. An interesting adap-
tion hereof clusters graph vertices based on attribute values, and links the re-
sulting icicle plots to a table-lens-like visualization of the edge attributes, to
highlight attribute correlations [86]. Dimensionality reduction projects a set of
high-dimensional attributes into R2 or R3 so that similarities between the origi-
nal attributes are reflected in the low-dimensional distance [61, 82, 83]. Although
such approaches scale well computationally for large sample counts [84], it is hard
to visualize both attribute similarity and graph structure in the same embedding.
Other approaches use interactive brushing, attribute selection, and linked views.
However, none of the above methods fully enables users to correlate structure
with attributes, and attributes among themselves, for highly-variate graphs.

6.2 Capturing patterns

In many use-cases, showing a picture of the (changing) graph is not sufficient,
even when this picture is clutter and overlap-free. For instance, consider the task
of locating patterns in the graph. Patterns are specific configurations of vertices
and edges (topology) and attribute values which capture events of interest. Pat-
terns are typically problem-dependent, and have a certain variability in both



18

structure and attribute values. Consider finding a ‘multithreading refactoring
event’ in a software code base: This would involve finding similar code frag-
ments in a graph Gt, which describe serial code, and finding that they have been
replaced by functionally-identical multithreaded code in the following revision
Gt+1 of the code base. Even the simpler ‘design patterns’ [47], well known and
used in object-oriented software design, are hard to detect and visualize. The
underlying reasons are twofold. First, patterns involve, by definition, several
vertices, edges, and attribute values, so they correspond to portions of a graph
visualizations. However, existing graph visualization techniques have difficulties
in showing such data subsets in canonical ways, i.e., in ways that make their vi-
sual detection easy. Secondly, patterns have a certain variability. Besides making
automatic detection hard, this also implies that their graph visualizations will
exhibit a necessary variability, which makes their visual detection hard. Finally,
visually detecting dynamic patterns is very challenging – if animation is used,
this poses high demands on the user’s visual memory; if static visualizations are
used, inherently dynamic patterns may be hard to grasp.

6.3 Data size

Large dynamic graphs involve large sets of vertices and edges and/or many
sampling moments when the graph is captured. This implies many sample points
taken over the domain of function F (Equation 1). Large graphs are hard to
embed in a low-dimensional space (R2 or R3) so that the graph structure is
easy to discern. This basic graph-drawing problem becomes one or two orders
of magnitude larger for dynamic graphs. The data size problem becomes even
larger for high-variate graphs.

It is insightful to consider how data size relates to the other challenges. For-
mally, we could argue that dynamic multivariate graphs (and their patterns) can
be efficiently and effectively depicted using existing visualization methods, for
small graphs. Hence, we could use subsampling, like in scientific data visualiza-
tion, to reduce the graph size prior to visual exploration. To preserve features or
patterns of interest, data-adaptive subsampling could be used. The main obsta-
cle here is that we still lack a comprehensive theory for subsampling graphs and
categorical attributes. As such, existing solutions addressing data size currently
have to rely on aggregation and simplification algorithms and heuristics that are
problem, scale, and even dataset-specific.

7 Summary and Conclusions

In this chapter, we characterized temporal multivariate graphs in terms of struc-
ture and time. We presented common terminology for discussing temporal multi-
variate graphs, a survey of existing techniques, focusing on software engineering
applications, and a collection of open problems. We hope that this common ter-
minology, data characterization, and organization of existing and future work
will help foster further research in the emerging area of dynamic multivariate
graph visualization.



19

References

1. J. Abello, S. Hadlak, H. Schumann, and H. Schulz. A modular degree-of-interest
specification for the visual analysis of large dynamic networks. IEEE Transactions
on Visualization and Computer Graphics, 2014. in press.

2. W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization of Time-
Oriented Data. Springer, London, 2011.

3. N. Andrienko and G. Andrienko. Exploratory Analysis of Spatial and Temporal
Data: A Systematic Approach. Springer, Berlin, 2006.

4. D. Archambault and H. C. Purchase. The mental map and memorability in
dynamic graphs. In H. Hauser, S. G. Kobourov, and H. Qu, editors, Proc. of the
IEEE Pacific Visualization Symposium, pages 89–96. IEEE, 2012.

5. D. Archambault and H. C. Purchase. The “map” in the mental map: Experimental
results in dynamic graph drawing. International Journal of Human-Computer
Studies, 71(11):1044 – 1055, 2013.

6. D. Archambault and H. C. Purchase. Mental map preservation helps user orien-
tation in dynamic graphs. In Graph Drawing (GD’12), volume 7704 of LNCS,
pages 475–486, 2013.

7. D. Archambault, H. C. Purchase, and B. Pinaud. Animation, small multiples,
and the effect of mental map preservation in dynamic graphs. IEEE Transactions
on Visualization and Computer Graphics, 17(4):539–552, 2011.

8. A. Barsky, T. Munzner, J. Gardy, and R. Kincaid. Cerebral: Visualizing multiple
experimental conditions on a graph with biological context. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1253–1260, 2008.

9. M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open source software for ex-
ploring and manipulating networks. International AAAI Conference on Weblogs
and Social Media, pages 361–362, 2009.

10. S. Bender-deMoll and D. A. McFarland. The art and science of dynamic network
visualization. Journal of Social Structure, 7(2), 2006.

11. C. Bettini, S. Jajodia, and S. X. Wang. Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer, Berlin, 2000.

12. A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J.-D. Fekete.
Graphdice: A system for exploring multivariate social networks. Computer Graph-
ics Forum, 29(3):863–872, 2010.

13. K. Boitmanis, U. Brandes, and C. Pich. Visualizing internet evolution on the
autonomous systems level. In Graph Drawing (GD’07), volume 4875 of LNCS,
pages 365–376. Springer, 2008.

14. U. Brandes and S. R. Corman. Visual unrolling of network evolution and the
analysis of dynamic discourse. In Proc. of the IEEE Symposium on Information
Visualization, pages 145–151, 2002.

15. U. Brandes, D. Fleischer, and T. Puppe. Dynamic spectral layout with an appli-
cation to small worlds. Journal of Graph Algorithms and Applications, 11(2):325–
343, 2007.

16. U. Brandes, N. Indlekofer, and M. Mader. Visualization methods for longitudinal
social networks and stochastic actor-oriented modeling. Social Networks, pages
291–308, June 2011.

17. U. Brandes and M. Mader. A quantitative comparison of stress-minimization
approaches for offline dynamic graph drawing. In Graph Drawing (GD’11), volume
7034 of LNCS, pages 99–110. Springer, 2012.



20

18. U. Brandes and C. Pich. An experimental study on distance-based graph drawing.
In Graph Drawing, pages 218–229, 2008.

19. U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout. In
Graph Drawing (GD’97), pages 236–247, 1998.

20. J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner, editors,
Drawing Graphs, volume 2025 of Lecture Notes in Computer Science, pages 228–
246. Springer, 2001.

21. M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel edge splatting
for scalable dynamic graph visualization. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2344–2353, 2011.

22. H. Byelas and A. Telea. Visualization of areas of interest in software architecture
diagrams. In ACM SoftVis’06, pages 105–114, 2006.

23. J. D. Cohen. Drawing graphs to convey proximity: An incremental arrange-
ment method. ACM Transactions On Computer-Human Interaction, 4(3):197–
229, 1997.

24. C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for
graph-based visualization of the evolution of software. In ACM SoftVis’03, pages
77–86, 2003.

25. C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations with
isocontours over existing visualizations. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1009–1016, 2009.

26. T. Crnovrsanin, I. Liao, Y. Wuy, and K.-L. Ma. Visual recommendations for
network navigation. In Proc. of the 13th Eurographics / IEEE - VGTC confer-
ence on Visualization, EuroVis’11, pages 1081–1090, Aire-la-Ville, Switzerland,
Switzerland, 2011. Eurographics Association.

27. W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong. Textflow:
Towards better understanding of evolving topics in text. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2412–2421, 2011.

28. S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer, Berlin, 2010.

29. S. Diehl and C. Görg. Graphs, they are changing. In Graph Drawing (GD’02),
volume 2528 of LNCS, pages 23–30. Springer, 2003.

30. B. Dux, A. Iyer, S. K. Debray, D. Forrester, and S. G. Kobourov. Visualizing the
behavior of dynamically modifiable code. In IWPC, pages 337–340, 2005.

31. T. Dwyer. Extending the wilmascope 3d graph visualisation system — software
demonstration. In S.-H. Hong, editor, APVIS, volume 45 of CRPIT, pages 39–45.
Australian Computer Society, 2005.

32. T. Dwyer and D. R. Gallagher. Visualising changes in fund manager holdings in
two and a half-dimensions. Information Visualization, 3:227–244, 2004.

33. N. Elmqvist and J.-D. Fekete. Hierarchical Aggregation for Information Visu-
alization: Overview, Techniques, and Design Guidelines. IEEE Transactions on
Visualization and Computer Graphics, 16(3):439–454, 2009.

34. C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee. Exploring the
computing literature using temporal graph visualization. In Electronic Imaging
2004, pages 45–56, 2004.

35. C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. V. Yee. GraphAEL:
Graph animations with evolving layouts. In Graph Drawing (GD’03), volume 2912
of LNCS, pages 98–110. Springer, 2004.

36. C. Erten, S. Kobourov, V. Le, and A. Navabi. Simultaneous graph drawing:
layout algorithms and visualization schemes. Journal of Graph Algorithms and
Applications, 9(1):165–182, 2005.



21

37. M. Farrugia and A. Quigley. Cell phone mini challenge: Node-link animation
award animating multivariate dynamic social networks. In IEEE Visual Analytics
Science and Technology, pages 215 –216, oct. 2008.

38. M. Farrugia and A. Quigley. Effective temporal graph layout: A comparative
study of animation versus static display methods. Journal of Information Visu-
alization, 10(1):47–64, 2011.

39. K.-C. Feng, C. Wang, H.-W. Shen, and T.-Y. Lee. Coherent time-varying graph
drawing with multi-focus+context interaction. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2011.

40. D. Forrester, S. G. Kobourov, A. Navabi, K. Wampler, and G. V. Yee. Graphael:
A system for generalized force-directed layouts. In Graph Drawing (GD’03), pages
454–464, 2004.

41. A. U. Frank. Different Types of “Times” in GIS. In M. J. Egenhofer and R. G.
Golledge, editors, Spatial and Temporal Reasoning in Geographic Information Sys-
tems, pages 40–62. Oxford University Press, New York, NY, USA, 1998.

42. Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In Proc. of the
IEEE Symposium on Information Visualization, pages 191–198, Washington, DC,
USA, 2004. IEEE Computer Society.

43. Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE Transactions on
Visualization and Computer Graphics, 14:727–740, 2008.

44. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software - Practice and Experience, 21(11):1129–1164, 1991.

45. G. W. Furnas. Generalized fisheye views. In Human Factors in Computing Sys-
tems CHI, pages 16–23, 1986.

46. P. Gajer and S. G. Kobourov. GRIP: Graph drawing with intelligent placement.
In Graph Drawing (GD’00), pages 222–228, London, UK, 2001. Springer-Verlag.

47. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

48. E. R. Gansner, Y. Hu, and S. C. North. A maxent-stress model for graph layout.
In Proc. of the IEEE Pacific Visualization Symposium, pages 73–80, 2012.

49. C. Görg, P. Birke, M. Pohl, and S. Diehl. Dynamic graph drawing of sequences
of orthogonal and hierarchical graphs. In Graph Drawing (GD’04), volume 3383
of LNCS, pages 228–238. Springer, 2005.

50. R. Görke, P. Maillard, C. Staudt, and D. Wagner. Modularity-driven clustering
of dynamic graphs. In Proc. of the 9th international conference on Experimental
Algorithms, SEA’10, pages 436–448, Berlin, Heidelberg, 2010. Springer-Verlag.

51. R. Grke, T. Hartmann, and D. Wagner. Dynamic graph clustering using
minimum-cut trees. In F. Dehne, M. Gavrilova, J.-R. Sack, and C. Tth, edi-
tors, Algorithms and Data Structures, volume 5664 of Lecture Notes in Computer
Science, pages 339–350. Springer Berlin Heidelberg, 2009.

52. S. Hachul. A Potential-Field-Based Multilevel Algorithm for Drawing Large
Graphs. PhD thesis, Universitaet zu Koeln, 2002.

53. D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In Graph
Drawing (GD’02), pages 207–219. Springer-Verlag, 2003.

54. M. Harrower. Tips for designing effective animated maps. Cartographic Perspec-
tives, 44:63–65, 2003.

55. J. Heer and D. Boyd. Vizster: visualizing online social networks. In Proc. of the
IEEE Symposium on Information Visualization, pages 32–39, 2005.

56. H. Hoogendorp, O. Ersoy, D. Reniers, and A. Telea. Extraction and visualization
of call dependencies for large C/C++ code bases: A comparative study. In Proc.
ACM VISSOFT, pages 137–145, 2009.



22

57. Y. Hu, E. R. Gansner, and S. G. Kobourov. Visualizing graphs and clusters as
maps. IEEE Computer Graphics and Applications, 30(6):54–66, 2010.

58. Y. Hu, S. G. Kobourov, and S. Veeramoni. Embedding, clustering and coloring
for dynamic maps. In Proc. of the IEEE Pacific Visualization Symposium, pages
33–40, 2012.

59. A. Inselberg. Parallel Coordinates: Visual Multidimensional Geometry and Its
Applications. Springer, 2009.

60. C. Jaramillo, A. Gelbukh, and F. Isaza. Pre-conceptual schema: a conceptual-
graph-like knowledge representation for requirements elicitation. In Proc. MICAI,
pages 27–37, 2006.

61. P. Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato, and L. G. Nonato. Lo-
cal affine multidimensional projection. IEEE Transactions on Visualization and
Computer Graphics, 17:2563–2571, 2011.

62. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Inf. Process. Lett., 31(1):7–15, 1989.

63. N. W. Kim, S. K. Card, and J. Heer. Tracing genealogical data with timenets. In
Proc. of the International Conference on Advanced Visual Interfaces, (AVI ’10),
pages 241–248, New York, NY, USA, 2010. ACM.

64. Y. Koren, L. Carmel, and D. Harel. ACE: A fast multiscale eigenvectors compu-
tation for drawing huge graphs. Proc. of the IEEE Symposium on Information
Visualization, pages 137–145, 2002.

65. G. Kumar and M. Garland. Visual exploration of complex time-varying graphs.
IEEE Transactions on Visualization and Computer Graphics, 12(5):805–812,
2006.

66. M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice - Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer, 2006.

67. K. A. Lyons. Cluster busting in anchored graph drawing. In CASCON, pages
7–17, 1992.

68. D. Mashima, S. G. Kobourov, and Y. Hu. Visualizing dynamic data with maps.
IEEE Transactions on Visualization and Computer Graphics, 18(9):1424–1437,
2012.

69. T. Mens and S. Demeyer. Software Evolution. Springer, 2008.
70. J. Moody, D. McFarland, and S. BenderdeMoll. Dynamic network visualization.

American Journal of Sociology, 110(4):1206–1241, 2005.
71. S. Moreta and A. Telea. Multiscale visualization of dynamic software logs. In

Proc. Eurovis, pages 11–18, 2007.
72. T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D. Fekete. Topology-

Aware Navigation in Large Networks. In SIGCHI conference on Human Factors
in computing systems, pages 2319–2328, 2009.

73. C. Muelder and K.-L. Ma. Rapid graph layout using space filling curves. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1301–1308, 2008.

74. C. Muelder and K.-L. Ma. A treemap based method for rapid layout of large
graphs. In Proc. of the IEEE Pacific Visualization Symposium, pages 231–238,
2008.

75. C. W. Muelder, T. Crnovrsanin, and K.-L. Ma. Egocentric storylines for visual
analysis of large dynamic graphs. In Proc. of 1st IEEE Workshop on Big Data
Visualization (BigDataVis), pages 56–62, Oct 2013.

76. Xkcd #657: Movie narrative charts. http://xkcd.com/657, dec. 2009.
77. A. Noack. An energy model for visual graph clustering. Lecture Notes in Computer

Science, 2912:425–436, Mar. 2004.



23

78. S. C. North. Incremental layout in DynaDAG. In Graph Drawing (GD’95), volume
1027 of LNCS, pages 409–418. Springer, 1996.

79. M. Ogawa and K.-L. Ma. Software evolution storylines. In Proc. of the Inter-
national Symposium on Software Visualization, (SoftVis ’10), pages 35–42, New
York, NY, USA, 2010. ACM.

80. V. Ogievetsky. Plotweaver xkcd/657 creation tool, March 2009.
https://graphics.stanford.edu/wikis/cs448b-09-fall/FPOgievetskyVadim.

81. A. Orso, J. Jones, and M. J. Harrold. Visualization of program-execution data
for deployed software. In Proc. ACM SOFTVIS, pages 67–75, 2003.

82. F. Paulovich, D. Eler, J. Poco, C. Botha, R. Minghim, and L. G. Nonato. Piece
wise Laplacian-based projection for interactive data exploration and organization.
Computer Graphics Forum, 30(3):1091–1100, 2011.

83. F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least square pro-
jection: A fast high-precision multidimensional projection technique and its appli-
cation to document mapping. IEEE Transactions on Visualization and Computer
Graphics, 14(3):564–575, 2008.

84. F. V. Paulovich, C. Silva, and L. G. Nonato. Two-phase mapping for projecting
massive data sets. IEEE Transactions on Visualization and Computer Graphics,
16:1281–1290, 2010.

85. S. L. Pfleeger and J. M. Atlee. Software Engineering: Theory and Practice (4th

ed.). Prentice Hall, 2009.

86. A. Pretorius and J. van Wijk. Visual inspection of multivariate graphs. Computer
Graphics Forum, 27(3):967–974, 2008.

87. H. Purchase and A. Samra. Extremes are better: Investigating mental map preser-
vation in dynamic graphs. In Proc. of the 5th International Conference on Dia-
grammatic Representation and Inference (Diagrams 2008), volume 5223 of LNCS,
pages 60–73. Springer, 2008.

88. K. Reda, C. Tantipathananandh, A. Johnson, J. Leigh, and T. Berger-Wolf. Visu-
alizing the evolution of community structures in dynamic social networks. Com-
puter Graphics Forum, 30(3):1061–1070, 2011.

89. G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effectiveness
of animation in trend visualization. IEEE Transactions on Visualization and
Computer Graphics, 14:1325–1332, 2008.

90. S. Rufiange and M. J. McGuffin. DiffAni: Visualizing dynamic graphs with a
hybrid of difference maps and animation. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2556–2565, 2013.

91. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Ref-
erence Manual. Addison-Wesley, 2nd edition, 2004.

92. P. Saffrey and H. Purchase. The ”mental map” versus ”static aesthetic” com-
promise in dynamic graphs: A user study. In Proc. of the 9th Australasian User
Interface Conference (AUIC2008), pages 85–93, 2008.

93. B. Saha and P. Mitra. Dynamic algorithm for graph clustering using minimum
cut tree. In SDM, pages 581–586. SIAM, 2007.

94. A. Sallaberry, C. W. Muelder, and K.-L. Ma. Clustering, visualizing, and navigat-
ing for large dynamic graphs. In Graph Drawing (GD’12), LNCS, pages 487–498.
Springer, 2013.

95. S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

96. P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation of
overlapping sets. Computer Graphics Forum, 28(3):967–974, 2009.



24

97. A. Skupin and S. I. Fabrikant. Spatialization methods: a cartographic research
agenda for non-geographic information visualization. Cartography and Geographic
Information Science, 30:95–119, 2003.

98. Y. Tanahashi and K.-L. Ma. Design considerations for optimizing storyline
visualizations. IEEE Transactions on Visualization and Computer Graphics,
18(12):2679–2688, 2012.

99. A. Telea and L. Voinea. An interactive reverse engineering environment for large-
scale C++ code. In Proc. ACM SOFTVIS, pages 67–76, 2008.

100. A. Telea, L. Voinea, and H. Sassenburg. Visual tools for software architecture
understanding: A stakeholder perspective. IEEE Software, 27(6):46–53, 2010.

101. E. R. Tufte. Envisionning Information. Graphics Press, 1990.
102. F. van Ham and A. Perer. Search, Show Context, Expand on Demand: Sup-

porting Large Graph Exploration with Degree-of-Interest. IEEE Transactions on
Visualization and Computer Graphics, 15(6):953–960, 2009.

103. J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur, and
V. Crow. Visualizing the non-visual: spatial analysis and interaction with infor-
mation from text documents. In Proc. of the IEEE Symposium on Information
Visualization, pages 51–58, 1995.


