
A Framework for Interactive Visualization of Component-Based Software

Alexandru Telea, Lucian Voinea

Department of Mathematics and Computer Science, Eindhoven University of Technology,
Den Dolech 2, 5600 MB, The Netherlands

{a.telea|l.voinea}@tue.nl

Abstract

In this paper, we advocate the use of visual tooling for
the development and maintenance of component-based
software systems. Our contribution is twofold. First,
we demonstrate how an interactive visualization tool
effectively supports understanding large component
based software. Secondly, we show how to design such
a tool in order to make it applicable for a wide range
of component systems and investigation goals. We
demonstrate our approach by several visualization
scenarios for real-world systems.

1. Introduction

Component based software systems have recently
emerged as an alternative to traditional software
system construction methodologies. Component
systems attempt to accelerate software development
and, in the same time, diminish production costs by
assembling systems from existing software
components. In this way, complex applications can be
quickly built by maximizing the reuse of existing
functionality, which is provided in the form of
components. However promising, component based
development can be a complex task. First, the design,
development, and maintenance of reusable software
components may be considerably complicated by the
composability requirement, i.e. the ability of
components to operate properly and effectively in a
given composition context. Secondly, constructing
applications from predefined components such that the
resulting applications obey a number of functional
and/or non-functional requirements can be a
challenging task.

Most component architectures (e.g. COM [4], CORBA
[5], Koala [6], or Robocop [ref]) describe components
as a set of interrelated models. Such models describe
particular aspects of the components, such as the

execution, functionality, documentation, behaviour,
and resource consumption. As component-based
applications become increasingly complex, the
question of how to effectively understand both their
structure and behaviour becomes harder to answer.
Typical questions that frequently arise when
developing component-based systems are: How do
component models or their instances (i.e. the
applications) evolve in time? How can one check that a
given component instance matches a given component
model (or set of models)? How cleanly designed (e.g.
modular) is a given system? How can one find out
specific design problems in a given component
instance and/or model? Such questions can be partially
answered by applying several metrics on the systems at
hand, such as computing the coupling, fan-in, or fan-
out of a system of interconnected components to assert
the system’s modularity [3]. However, in most cases
one does not know beforehand which metrics to
compute. Understanding the computed metrics can be
hard even for a moderately sized system of a few tens
of components and becomes a challenge for systems of
hundreds of components or more. Finally, many
objectives, such as understanding a system’s evolution
in time, are not easily quantifiable in metrics, but
require a different type of insight.

We address the above questions by advocating an
interactive visualization approach using customizable
tooling. We propose a software framework for
interactive visualization and exploration of the
structure, properties, and behaviour of component-
based. Our framework implements several visual
metaphors, or tools, that can be used to understand
component-based architectures to up to hundreds of
components. Users can freely specify both the
component data to be examined (i.e. what they want to
visualize) and the visualization scenarios (i.e. how they
want to view the data). We achieve this high
customizability by using a component architecture for
our framework. We demonstrate our solution by

visualization scenarios using real-world component
architectures.

The remainder of this paper is as follows. In Sec. 2 we
describe how we model a problem, i.e. understanding a
component-based system, in our framework. Section 3
details the design of our framework, showing how it
effectively and efficiently supports the requirements
stated in Sec. 2. Section 4 demonstrates the use of our
framework on several real-world component systems.
Finally, Section 5 concludes the paper.

2. Problem Modeling

To be successful, our visualization framework should:
• Work on software systems based on different

(ideally, any) component architectures (R1)
• Support a wide range (ideally, any) type of queries

such as the ones sketched in Section 1 (R2)

Problem Model

Component Model

attribute 1
attribute 2
attribute 3
attribute n

Scenario Model

operation 1
operation 2
operation 3
operation n

Figure 1: Problem model

We model a problem in our visualization framework
by two elements: a component model (CM) and a
scenario model (SM) (see Fig. 1). Concerning the first
requirement (R1), one of the main respects in which
software architectures differ from each other is their
component model. So far, there is no ‘mainstream’
component model that easily integrates other models.
Moreover, component models evolve and/or are open
to extension. For the needs of our visualization
framework, we use a very simple, yet generic
component model: A component is a set of named
textual attributes. Every attribute describes some
property, such as the component’s number of lines of
code, required memory consumption, executable
platform, version number, or component inter-
dependencies, such as “provides”, “requires”, or
“contains” relations. Obviously, existing CMs easily
map into our description. For example, the executable
model of a component in the Robocop architecture
consists of several services that provide several
interfaces, or ports ([xxx]). A similar port concept
exists in the COM and CORBA component models too

[4,5]. In our simple CM, these ports would translate to
a set of named attributes. To keep our model simple,
we don’t strongly type our attributes in any way.

Whereas the component model describes what we wish
to visualize, the scenario model (SM) describes how
we want to construct the visualization. Specifically, the
SM consists of a set of operations. Each operation
describes an action that is part of the visualization. For
example, a typical visualization scenario consists of
the following operation sequence:
• read some component software description;
• select a subset of interest from the whole dataset;
• compute some metrics on the selected subset;
• represent visually the selected subset, with the

computed metrics;
• specify how the visualization reacts to the user

interaction.
Users with different concerns (questions) and/or
different component systems will require different
visualization scenarios consisting of different
operations. For example, the metric operations used for
Java-based component software may be different than
the ones used for one based on C or C++. In this sense,
the syntax and semantics of the operations in the
scenario model correspond to the syntax and semantics
of the CM respectively.

To be effective, our visualization framework must
support several scenario models implementing a wide
range of operations (R2). In the next section we
describe the classes of operations our framework
supports and explain the design choices we took to
ensure the requirements (R1) and (R2).

3. Visualization Framework Architecture

The architecture of our visualization framework
consists of two main elements: a data model (DM) and
an operation model (OM). The operations (part of
SMs, described in Sec. 2) communicate with each
other via the shared data model (Fig. 2). The data
model holds component instances of the CM described
in Sec. 2. The DM is implemented in C++ for
efficiency reasons. The OM is implemented partly in
C++, for efficiency, and partly in the interpreted Tcl
language for flexibility. We next describe both the DM
and OM.

3.1. Data Model

Data to be visualized consists of three elements:
structure, attribute values, and selections, as follows.

Structure and attribute values refer to the instantiation
of the relational, respective non-relational attributes in
the CM. We can see the structure as a graph whose
nodes are the component instances and arcs the
relations between these instances (Fig. 2). This graph
can have any topology, as there are no constraints on
the relations between components. The attribute values
represent concrete instances of the CM attributes. They
may take values of several basic types (int, float,
string, pointer, and arrays thereof). If desired, specific
problem models may place topological and/or value
constraints on the structure and attribute values
respectively and check them via operations in their SM
(see Sec. 3.2).

Figure 2: Framework architecture

Selections, defined as named sets of nodes and edges
(i.e. component and relation instances respectively),
are the last element of our framework’s data model.
Selections allow specifying the data elements on which
visualization operations are executed. To make our
framework flexible, we decouple the selection
specification (which are the data to operate on) from
the operations' definitions (what to do with the selected
data). All operations in our framework communicate
with each other only via selections. Practically,
selections play the role of (named) input and output
variables in dataflow programming. Let us give an
example: Given some component-based software, we
want to visualize all component instances thereof,
which are of a given type Package. This
visualization scenario can be expressed as the
following sequence of three operations:

1) Inp = readData(input)
2) Out = selectOnValue(Inp,type,Package)

3) display(Out)

The first operation readData reads all component
data from some input file input and places it in the
selection Inp. The second operation produces the
selection Out containing all data elements in Out
whose attribute called type has the value Package,
i.e. all component instances of package type. Finally,
the third operation display produces a visual image
of the selected subset Out.

3.2. Operation Model

Operations, already introduced in the previous section,
are of three classes (see also Fig. 2):
• Editing: change the structure and/or attribute data
• Selection: change the selection set
• Mapping: map selections to visual objects
In the previous example (Sec 3.1), readData is an
editing operation, as it creates new nodes and edges in
the data model, when reading the input data;
selectOnValue is a selection operation, as it creates
a new selection; and display is a mapping operation
as it maps the selection Sel to visual objects.
Operations may have three types of parameters:
• Selections: specify the selections to be

read/written
• Attributes: specify the attribute names from the

CM to be read/written
• Values: specify other operation-specific

parameters, such as thresholds, flags, options, etc.
This above operation model has several advantages. As
operations are explicit about which data elements they
change, the framework can perform automatic updates.
For example, if some selection Sel changes, all data
viewers (discussed in Sec. 3.2.3) that monitor Sel are
automatically updated. The fixed operation interface
(selections, attributes, values) allows the framework to
automatically construct graphics user interfaces (GUIs)
for all operations, in which users can set operation
parameters and monitor results. Overall, this allows
users to easily program new operations and incorporate
them with minimal effort in SMs of the framework, as
detailed in Sec. 3.3.

We next discuss the three operation types, give
examples for each type, and show how the genericity
and flexibility requirements set to our framework are
met.

3.2.1. Selection Operations

Selection operations are the main instrument used to
navigate through large component architectures. Given
one or several input selections, a selection operation
produces an output selection containing component
instances and relations (i.e. nodes and edges) that
match the desired criteria. Several examples follow.
Conditional selections gather all elements in the input
whose attribute values match some condition. In this
way, filters such as “get all component instances of a
type T” or “get all component instances providing an
interface I” can be readily implemented. Call graph
selections gather all component instances reachable
from a given component via a given function or
service call. Level selections (called 'horizontal slices'
in the reverse engineering literature [Wong, 1999]) are
useful to visualize multi-layer software architectures at
a given level of detail, by gathering all component
instances in a given architectural layer. Tree selections
(called 'vertical slices' in [Wong, 1999]) gather all
component instances and containment relations
reachable from an input selection, and are useful for
visualizing subsystem structures or change propagation
[Marshall et al., 2001]. Finally, boolean selections
allow combining existing selections via intersection,
union, etc, and allow creating arbitrarily complex
filters from simple building bricks.

3.2.2. Editing Operations

Structure editing operations construct and modify the
graph. Such operations include reading several data
file formats such as RSF [8], DOT [9], and GXL [2].
Visualizing some custom component-based software
amounts thus to program a new operation for reading
the desired data format. If the data at hand is too large
to be directly visualized (e.g. there are too many
components), aggregation operations can be used to
simplify it. These take the data (nodes and edges) in an
input selection and replace them with a unique
‘cluster’ node. The input selection can be
programmatically constructed, e.g. by automatic
clustering methods, or can be the output of user
interaction, described in Sec. 3.2.3.

Attribute editing operations modify the attribute
values of component instances but not the relations,
i.e. the graph structure. Such operations are
architectural metrics, e.g. component coupling
strength, number of provisions, requirements, and
internalizations [8]. Metrics can compute new attribute
values for each component instance, such as the above
examples, or single values for whole selections, such
as global subsystem quality metrics. Decoupling the
selection of the metric’s input from the metric

computation itself allows applying any metric on any
subset of components (selection), which is not the case
in other software visualization tools [8, 11]. Moreover,
explicitly specifying the attribute names that store the
metric allows easy run-time prototyping of various
metric combinations. For example, one can compute
several metrics, store them in several attribute values,
and then interactively cycle through the computed
metrics to e.g. visually compare them.

Layout operations (or layouts briefly) are the first
step in bringing the abstract component data to a visual
representation. Given that component instances and
their relations form a graph (as explained in Sec. 3.1),
a very natural way to visualize these is to draw this
graph. Drawing the graph involves two steps:
assigning a geometric position to every node and edge;
and choosing a graphic symbol to draw every node and
edge. The first step, called laying out the graph, is
performed by layout operations. In detail, layouts
compute geometric position attributes for the nodes
and edges in a given input selection. The second step,
called mapping the graph, is discussed separately in
Sec. 3.2.3.

Decoupling the drawing in the layout and mapping
steps has several benefits. First, we can layout different
subgraphs corresponding to different component
subsystems separately. For example, containment
relations between component instances (vertical slices,
Sec. 3.2.1) are best visualized using a tree layout
(Figure 6 top). Call graphs or horizontal slices (Sec.
3.2.1) are best visualized using a so-called spring
embedder layout [9]. Second, we can precompute
several layouts e.g. to quickly switch between them.
This is useful for large graphs (thousands of
component instances) whose layouts may take up to
minutes. Finally, we can cascade different layouts on
the same position attributes, e.g. to interactively refine
an existing layout. An example of cascading is the
nested layout described next. Nested layouts are useful
to visualize both containment and association
(“provides”, “requires”) relations of a component
architecture. If we draw components as boxes, we
depict containment (“A contains B”) by drawing B’s
box inside A’s, and association (“A provides/requires
B”) by drawing a line between A and B (see Figure 5
and Figure 6). To produce such results, we lay out
separately the sub-components of every component
instance using the spring embedder layout and then lay
out recursively the bounding boxes of the containing
nodes. Nested layouts produce images similar to
package UML diagrams and have proven to be very
helpful in many applications [9,10], as they are quite

familiar to software engineers. Users can easily
combine simple layouts as the building bricks for the
more complex layouts. Adding new layouts to our
framework is reasonably simple. The implementations
of the spring embedder and tree layouts we use in our
framework [9] exceed 50000 C lines. Adding them in
a black-box fashion required less than 100 C++ lines
for each. Our custom layouts, such as the nested
layout, have each fewer than 200 C++ lines.

3.2.3. Mapping Operations

So far, we described how to read data (Sec. 3.2.2),
select subsets of interest (Sec. 3.2.1), and assign
geometric positions for drawing it (Sec. 3.2.2).
Mapping operations, discussed here, allow users to
customize the way data is finally drawn to produce the
visualization, and how users can interact with the
visual objects.

Creating visual representations of our data model must
obey two requirements. First, users must be able to
easily customize the way objects are drawn. Second,
the framework must cope with drawing and interacting
with potentially complex drawings of thousands of
visual objects in real time. To fulfill these
requirements, we designed an architecture consisting
of four elements: mappers, viewers, glyph factories,
and user actions (Fig. 3). The implementation is based
on the C++ toolkit Open Inventor that provides
advanced mechanisms for rendering and interacting
with large 3D models [7].

The mapper is the central element of the mapping
subsystem. It is responsible for creating 2D or 3D
visual representations of the data model. We have
implemented several mappers, as follows. The glyph
mapper creates an iconic symbol, also called a glyph,
for each component instance (node) and relation (edge)
in its input selection, and places these glyphs at the

geometric coordinates provided by attribute values
previously computed by a layout operation (Sec.
3.2.2).
The glyph mapper allows customizing the drawing of
every individual node or edge glyph, as follows. For
every node and edge it maps, the glyph mapper calls a
glyph factory software component, which builds the
desired glyph visual representation and returns it to the
mapper. The glyph factory sets the glyph's graphical
properties (color, shape, size, annotation, transparency,
and so on) from the attributes of the mapped node or
edge. Users can thus customize the appearance of
every single node and edge in the visualization by
simply switching between various predefined glyph
factories. Most such factories are programmed in the
scripting language Tcl, so users can even edit them on
the fly, to obtain complete customization. The usage of
glyphs is exemplified by applications in Sec. 4.1
(Figure 5) and 4.2 (Figure 6).

A second type of mapper is the splat mapper. Instead
of drawing nodes and edges explicitly, as the glyph
mapper does, the splat mapper produces a height map,
or 3D plot. The height map shows the density of nodes
per unit area, following the placement produced by e.g.
a spring embedder layout. Splat mappers effectively
visualize large tightly connected graphs, such as the
ones arising from the “provides” or “requires”
relations in component architectures. Drawing all
nodes and edges of such graphs separately often
produces cluttered images when high coupling is
present, i.e. there are too many relations in the system.
Instead, a height map is effective for spotting tightly
coupled subsystems, as component instances in these
subsystems are ‘gathered’ together by the spring
embedder layout. The splat mapper is demonstrated by
applications in Sec. 4.3 (Figure 7).

Figure 3: Mapping and visualization subsystem

The third component of the mapping subsystem is the
viewer. Viewers (Figure 5) display the output of
mappers and also allow mouse-based 2D and 3D

navigation (zoom, pan, rotate, fly through) in the
displayed data, as well as interaction with the
displayed data. Viewers can be thought as operations

(Sec. 3.2) having an input and an output selection and
an attribute argument. The data in the input selection is
displayed using a mapper. When the user selects the
displayed objects, using the mouse, the viewer adds the
selected objects in its output selection. The output
selection can be then passed as input to any of the
framework’s operations (filtering, editing, viewing,
etc). In this way, users can easily both navigate the
complete data to get an overview and select some
subsystem of interest to examine it in more detail.
Finally, viewers allow specifying a so-called user

action. This is an operation that is executed every time
the user performs mouse-based selection in a viewer,
and receives as input the viewer’s output selection. By
customizing the user action, a wide range of
exploration scenarios can be implemented. For
example, a user action can pop up a second viewer
displaying the data the user selected in a first viewer,
as demonstrated by the application in Sec. 4.2.

3.3. Component Architecture

For our framework to be effective in practice, users
must avail of a wide range of problem models,
consisting of component models (CMs) and scenario
models (SMs). Writing a CM for a given component-
based system is usually easy, as it involves translating
the native application CM to our simple CM format
(Sec. 2). Writing a custom SM involves crafting
appropriate editing, filtering, and mapping operations
that support the questions specific to the system being
analyzed. In order to simplify the usage of such
operations (i.e. writing, packaging, browsing, and
customizing them), we introduced a simple
component-based metaphor in our framework. All
customizable software elements in our framework
(operations, viewers, glyph factories, and user actions)
are implemented as components with fixed interfaces.
Components are declared in Tcl and may be
implemented either in Tcl or compiled C or C++. To
exemplify, we sketch next the declaration of the
operation component selectOnValue introduced
in Sec. 3.1:

component selectOnValue {
 type operation
 library filters
 selections { input output }
 attributes { name value }
 info “Selects by attribute value”
 proc exec { input output name value }
 { … implementation … }
}

The first declarator type gives the component’s type,
i.e. operation in this case. The library declarator
specifies the component library this component is part
of. Components can be organized in hierarchical
component libraries, much as class libraries in OO
languages. The selections declarator gives the
operation’s selection arguments, in this case the
selections input and output. The
attributes declarator gives the operation’s
attribute arguments, in this case the attribute name

whose value should equal value. The info
declarator gives some information text to be displayed
in the component’s GUI. Finally, the exec declarator
is the name of a Tcl procedure that implements the
operation’s functionality. Given this declaration, the
visualization framework automatically constructs a
component GUI and adds the component in a visual
browser. Figure 4 (upper half) shows the browser in
which we selected the selectOnValue component,
whose GUI is shown in the lower half of Figure 4.

Figure 4: Component browser and GUI

Creating SMs is easily done by packaging those
components that should be used together for a given
problem domain. A typical visualization proceeds then
as follows. The user loads the desired PM, e.g.
“Architectural metrics for Java-based software”, from
an existing set of pre-packaged PMs. Next, the
concrete data to be visualized is loaded, in this case an
architectural description of some Java-based system.
Next, the user browses through the components made

available by the loaded PM, selects the desired ones,
and applies them on the loaded data in the desired
order, to gain the desired insight. No programming
experience is needed here, as all actions are done just
via the component GUIs.

4. Applications

In this section, we demonstrate the use of our
visualization framework with three real-world
applications using component-based software.

4.1. Architectural Metrics

In this application, we visualize several architectural
metrics computed by the software analysis tool SAAT
[3] on a given software system (Figure 5). Our system
representation consists of a logical view, containing
structural inter-component relations, and a scenario
view, containing use cases describing specific system
tasks. We use a nested layout (Sec. 3.2.3) to represent
the use cases, scenarios, and components: If
component C is in scenario S, its visual representation
is contained in C’s visual representation. For use cases
and scenarios, we use simple box glyphs. For the
system we study, containment has just three levels
(components in scenarios, scenarios in use cases).
However, our nested layout can accommodate in
principle any number of containment levels. Inter-
component relations (method calls) are drawn as lines.
If the same element (e.g. component) appears in
several scenarios, it is separately drawn in every
scenario box. This matches the representation expected
by system architects. When the user selects a
component in a scenario with the mouse, all visual
representations of that component in all scenarios it
occurs are automatically highlighted (Figure 5). This is
easily implemented by a custom user action (Sec.
3.2.3). This allows easy comparison of the behavior of
a given component in different scenarios. For
components, we use a special glyph that shows four
metrics: coupling, inverse coupling, fan in, and fan out.
These are displayed as a four (individually colored) bar
chart in 3D. Finding outliers, i.e. components with
high/low metrics, is easy, as these have the

longest/shortest metric bars. Displaying the four
metrics along each other with the bar chart glyph
allows easy comparison of the metrics for the same
component. Using the same color for the same metric
allows comparison of that metric between different
components.

Figure 5: Architectural metrics

4.2. Multiple Views in Reverse Engineering

We visualize now a component-based mobile phone
architecture from Nokia [ref vissym]. The data comes
from reverse engineering an existing software system
of several hundred components. First, we use a filter to
select all component instances and their containment
relations. We display these using a tree layout and a
glyph colored by the component type (Figure 6 top).
When the user selects, with the mouse, some
components in this viewer, we display them and all
contained sub-components in a second viewer using a
nested layout (Figure 6 bottom). This shows us both
containment relations (boxes in boxes) and call
relations (lines between boxes). We easily implement
the above by a user action for the first viewer (Sec.
3.2.3).

Figure 6: Subsystem containment (top) and dependencies (bottom)

This scenario, constructed in just a few minutes,
allows us to see which are the 'interface' components
through which Subsystems 1 and 2 communicate. We
also see that lower level components (innermost boxes
in the nested layout) do not make cross-system calls, a
desired property of software architectures.

4.3. Visualizing Provisions

In this application, we visualize the provision, or “is
called by”, relations in a Java-based software system of
about 2000 components. Since the provision relations
graph is dense, visualizing it using a spring embedder
layout and glyphs (e.g. boxes and lines) produces a
cluttered image. Instead, we use a splat mapper (Sec.
3.2.3). The dots in Figure 7(left) show the
components’ positions computed by a spring
embedder. The shaded image shows the density field
computed as number of packages times number of
provision relations per unit area. Figure 7(right) shows
the same field as a height plot. We can see two ‘hot
spots’ in the left image, corresponding to the two peaks
in the right image. These correspond to the most called
classes in the system, i.e. String and ListIter.
Other hot spots correspond to other frequently used
components. A similar scenario can be built to
visualize component requirements.

Figure 7: Visualizing provisions

5. Conclusions

The aim of this paper is to demonstrate the usefulness
of visual tooling for the development and maintenance
of component-based software. Our contribution is
twofold. First, we demonstrate the usage of our
visualization tool in three scenarios for real-world
software systems. Secondly, we show how we used a
component based tool architecture to make the
customizability of our tool simple for end users. This
lets us define a visualization scenario in minutes by
assembling pre-packaged components such as data
editing, filtering, rendering, and user actions. Having
this stable framework, our main focus now is to

construct more visualization components and apply
them to support both forward and reverse engineering
of large component-based software systems.

6. References

[1] The Robocop paper please !!!

[2] Marshall, M. S., Herman, I., and Melançon, G., “An
object-oriented design for graph visualization”,
Software: Practice and Experience, 31(8), John Wiley
& Sons, 2001, pp. 739-756.

[3] Muskens, J., SAAT: Software Architectural Analysis Tool,
Master’s Thesis, Department of Mathematics and Computer
Science, Eindhoven University of Technology, 2002

[4] Box, D, Essential COM, Object Technology Series,
Addison-Wesley, 1997

[5] Mowbrai, T. and Zahavi, R, Essential Corba, John
wiley & Sons, 1995

[6] Van Ommering, R., F. van der Linden, J. Kramer,
and J. Magee, “The Koala Component Model for
Consumer Electronics Software”, IEEE Computer, 33
(3), IEEE CS Press, 2002, pp. 78-85.

[7] Wernecke, J. The Inventor Mentor: Programming
Object-Oriented 3D Graphics, Addison-Wesley, 1993.

[8] Wong, K., S. Tilley, H. Muller, and M. Storey,
“Structural Redocumentation: A Case Study”, IEEE
Software, 12 (1), 1995, IEEE CS Press, pp. 46-50. See
also Rigi User’s Manual, Dept. of Computer Science,
Univ. of Victoria, Canada.

[9] North, S. C. and E. Koutsofios, “DOT and
NEATO’s User Guide”, AT&T Bell Labs Reports,
http://www.research.att.com, 2000

[10] Riva, C., A. Maccari, A. Telea, “An Open
Visualisation Toolkit for Reverse Architecting”, Proc.
IWPC, IEEE CS Press, 2002

[11] Kazman, R. and Carriere, J., “Rapid Prototyping
of Information Visualization using VANISH”, Proc.
IEEE InfoVis, IEEE CS Press, 1996, pp. 91-98

http://www.research.att.com/

	1. Introduction
	2. Problem Modeling
	3. Visualization Framework Architecture
	3.1. Data Model
	3.2. Operation Model
	3.2.1. Selection Operations
	3.2.2. Editing Operations
	3.2.3. Mapping Operations

	3.3. Component Architecture

	4. Applications
	4.1. Architectural Metrics
	4.2. Multiple Views in Reverse Engineering
	4.3. Visualizing Provisions

	5. Conclusions
	6. References

