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Abstract 

 
In this paper, we advocate the use of visual tooling for 
the development and maintenance of component-based 
software systems. Our contribution is twofold. First, 
we demonstrate how an interactive visualization tool 
effectively supports understanding large component 
based software. Secondly, we show how to design such 
a tool in order to make it applicable for a wide range 
of component systems and investigation goals. We 
demonstrate our approach by several visualization 
scenarios for real-world systems. 
 
1. Introduction 
 
Component based software systems have recently 
emerged as an alternative to traditional software 
system construction methodologies. Component 
systems attempt to accelerate software development 
and, in the same time, diminish production costs by 
assembling systems from existing software 
components. In this way, complex applications can be 
quickly built by maximizing the reuse of existing 
functionality, which is provided in the form of 
components. However promising, component based 
development can be a complex task. First, the design, 
development, and maintenance of reusable software 
components may be considerably complicated by the 
composability requirement, i.e. the ability of 
components to operate properly and effectively in a 
given composition context. Secondly, constructing 
applications from predefined components such that the 
resulting applications obey a number of functional 
and/or non-functional requirements can be a 
challenging task.   
 
Most component architectures (e.g. COM [4], CORBA 
[5], Koala [6], or Robocop [ref]) describe components 
as a set of interrelated models. Such models describe 
particular aspects of the components, such as the 

execution, functionality, documentation, behaviour, 
and resource consumption. As component-based 
applications become increasingly complex, the 
question of how to effectively understand both their 
structure and behaviour becomes harder to answer. 
Typical questions that frequently arise when 
developing component-based systems are: How do 
component models or their instances (i.e. the 
applications) evolve in time? How can one check that a 
given component instance matches a given component 
model (or set of models)? How cleanly designed (e.g. 
modular) is a given system? How can one find out 
specific design problems in a given component 
instance and/or model? Such questions can be partially 
answered by applying several metrics on the systems at 
hand, such as computing the coupling, fan-in, or fan-
out of a system of interconnected components to assert 
the system’s modularity [3]. However, in most cases 
one does not know beforehand which metrics to 
compute. Understanding the computed metrics can be 
hard even for a moderately sized system of a few tens 
of components and becomes a challenge for systems of 
hundreds of components or more. Finally, many 
objectives, such as understanding a system’s evolution 
in time, are not easily quantifiable in metrics, but 
require a different type of insight.  
 
We address the above questions by advocating an 
interactive visualization approach using customizable 
tooling. We propose a software framework for 
interactive visualization and exploration of the 
structure, properties, and behaviour of component-
based. Our framework implements several visual 
metaphors, or tools, that can be used to understand 
component-based architectures to up to hundreds of 
components.  Users can freely specify both the 
component data to be examined (i.e. what they want to 
visualize) and the visualization scenarios (i.e. how they 
want to view the data). We achieve this high 
customizability by using a component architecture for 
our framework. We demonstrate our solution by 



visualization scenarios using real-world component 
architectures. 
 
The remainder of this paper is as follows. In Sec. 2 we 
describe how we model a problem, i.e. understanding a 
component-based system, in our framework. Section 3 
details the design of our framework, showing how it 
effectively and efficiently supports the requirements 
stated in Sec. 2. Section 4 demonstrates the use of our 
framework on several real-world component systems. 
Finally, Section 5 concludes the paper. 
 
2. Problem Modeling 
 
To be successful, our visualization framework should: 
• Work on software systems based on different 

(ideally, any) component architectures (R1) 
• Support a wide range (ideally, any) type of queries 

such as the ones sketched in Section 1 (R2) 
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Figure 1: Problem model 

 
We model a problem in our visualization framework 
by two elements: a component model (CM) and a 
scenario model (SM) (see Fig. 1). Concerning the first 
requirement (R1), one of the main respects in which 
software architectures differ from each other is their 
component model. So far, there is no ‘mainstream’ 
component model that easily integrates other models. 
Moreover, component models evolve and/or are open 
to extension. For the needs of our visualization 
framework, we use a very simple, yet generic 
component model: A component is a set of named 
textual attributes. Every attribute describes some 
property, such as the component’s number of lines of 
code, required memory consumption, executable 
platform, version number, or component inter-
dependencies, such as “provides”, “requires”, or 
“contains” relations. Obviously, existing CMs easily 
map into our description. For example, the executable 
model of a component in the Robocop architecture 
consists of several services that provide several 
interfaces, or ports ([xxx]). A similar port concept 
exists in the COM and CORBA component models too 

[4,5]. In our simple CM, these ports would translate to 
a set of named attributes. To keep our model simple, 
we don’t strongly type our attributes in any way.  
 
Whereas the component model describes what we wish 
to visualize, the scenario model (SM) describes how 
we want to construct the visualization. Specifically, the 
SM consists of a set of operations. Each operation 
describes an action that is part of the visualization. For 
example, a typical visualization scenario consists of 
the following operation sequence: 
• read some component software description;  
• select a subset of interest from the whole dataset; 
• compute some metrics on the selected subset;  
• represent visually the selected subset, with the 

computed metrics;  
• specify how the visualization reacts to the user 

interaction.  
Users with different concerns (questions) and/or 
different component systems will require different 
visualization scenarios consisting of different 
operations. For example, the metric operations used for 
Java-based component software may be different than 
the ones used for one based on C or C++. In this sense, 
the syntax and semantics of the operations in the 
scenario model correspond to the syntax and semantics 
of the CM respectively. 
 
To be effective, our visualization framework must 
support several scenario models implementing a wide 
range of operations (R2). In the next section we 
describe the classes of operations our framework 
supports and explain the design choices we took to 
ensure the requirements (R1) and (R2). 
 
3. Visualization Framework Architecture 
 
The architecture of our visualization framework 
consists of two main elements: a data model (DM) and 
an operation model (OM). The operations (part of 
SMs, described in Sec. 2) communicate with each 
other via the shared data model (Fig. 2). The data 
model holds component instances of the CM described 
in Sec. 2. The DM is implemented in C++ for 
efficiency reasons. The OM is implemented partly in 
C++, for efficiency, and partly in the interpreted Tcl 
language for flexibility. We next describe both the DM 
and OM. 
 
3.1. Data Model 
 
Data to be visualized consists of three elements: 
structure, attribute values, and selections, as follows. 



Structure and attribute values refer to the instantiation 
of the relational, respective non-relational attributes in 
the CM. We can see the structure as a graph whose 
nodes are the component instances and arcs the 
relations between these instances (Fig. 2). This graph 
can have any topology, as there are no constraints on 
the relations between components. The attribute values 
represent concrete instances of the CM attributes. They 
may take values of several basic types (int, float, 
string, pointer, and arrays thereof). If desired, specific 
problem models may place topological and/or value 
constraints on the structure and attribute values 
respectively and check them via operations in their SM 
(see Sec. 3.2). 
 

 
Figure 2:  Framework architecture 

 
Selections, defined as named sets of nodes and edges 
(i.e. component and relation instances respectively), 
are the last element of our framework’s data model. 
Selections allow specifying the data elements on which 
visualization operations are executed. To make our 
framework flexible, we decouple the selection 
specification (which are the data to operate on) from 
the operations' definitions (what to do with the selected 
data). All operations in our framework communicate 
with each other only via selections. Practically, 
selections play the role of (named) input and output 
variables in dataflow programming. Let us give an 
example: Given some component-based software, we 
want to visualize all component instances thereof, 
which are of a given type Package. This 
visualization scenario can be expressed as the 
following sequence of three operations: 
 
1) Inp = readData(input) 
2) Out = selectOnValue(Inp,type,Package) 

3) display(Out) 
 

The first operation readData reads all component 
data from some input file input and places it in the 
selection Inp. The second operation produces the 
selection Out containing all data elements in Out 
whose attribute called type has the value Package, 
i.e. all component instances of package type. Finally, 
the third operation display produces a visual image 
of the selected subset Out.  
 
3.2. Operation Model 
 
Operations, already introduced in the previous section, 
are of three classes (see also Fig. 2): 
• Editing: change the structure and/or attribute data 
• Selection: change the selection set 
• Mapping: map selections to visual objects 
In the previous example (Sec 3.1), readData is an 
editing operation, as it creates new nodes and edges in 
the data model, when reading the input data; 
selectOnValue is a selection operation, as it creates 
a new selection; and display is a mapping operation 
as it maps the selection Sel to visual objects. 
Operations may have three types of parameters: 
• Selections: specify the selections to be 

read/written 
• Attributes: specify the attribute names from the 

CM to be read/written 
• Values: specify other operation-specific 

parameters, such as thresholds, flags, options, etc. 
This above operation model has several advantages. As 
operations are explicit about which data elements they 
change, the framework can perform automatic updates. 
For example, if some selection Sel changes, all data 
viewers (discussed in Sec. 3.2.3) that monitor Sel are 
automatically updated. The fixed operation interface 
(selections, attributes, values) allows the framework to 
automatically construct graphics user interfaces (GUIs) 
for all operations, in which users can set operation 
parameters and monitor results. Overall, this allows 
users to easily program new operations and incorporate 
them with minimal effort in SMs of the framework, as 
detailed in Sec. 3.3. 
 
We next discuss the three operation types, give 
examples for each type, and show how the genericity 
and flexibility requirements set to our framework are 
met. 
 
3.2.1. Selection Operations 
 



Selection operations are the main instrument used to 
navigate through large component architectures. Given 
one or several input selections, a selection operation 
produces an output selection containing component 
instances and relations (i.e. nodes and edges) that 
match the desired criteria. Several examples follow. 
Conditional selections gather all elements in the input 
whose attribute values match some condition. In this 
way, filters such as “get all component instances of a 
type T” or “get all component instances providing an 
interface I” can be readily implemented. Call graph 
selections gather all component instances reachable 
from a given component via a given function or 
service call. Level selections (called 'horizontal slices' 
in the reverse engineering literature [Wong, 1999]) are 
useful to visualize multi-layer software architectures at 
a given level of detail, by gathering all component 
instances in a given architectural layer. Tree selections 
(called 'vertical slices' in [Wong, 1999]) gather all 
component instances and containment relations 
reachable from an input selection, and are useful for 
visualizing subsystem structures or change propagation 
[Marshall et al., 2001]. Finally, boolean selections 
allow combining existing selections via intersection, 
union, etc, and allow creating arbitrarily complex 
filters from simple building bricks. 
 
3.2.2. Editing Operations 
 
Structure editing operations construct and modify the 
graph. Such operations include reading several data 
file formats such as RSF [8], DOT [9], and GXL [2]. 
Visualizing some custom component-based software 
amounts thus to program a new operation for reading 
the desired data format. If the data at hand is too large 
to be directly visualized (e.g. there are too many 
components), aggregation operations can be used to 
simplify it. These take the data (nodes and edges) in an 
input selection and replace them with a unique 
‘cluster’ node. The input selection can be 
programmatically constructed, e.g. by automatic 
clustering methods, or can be the output of user 
interaction, described in Sec. 3.2.3.  
 
Attribute editing operations modify the attribute 
values of component instances but not the relations, 
i.e. the graph structure. Such operations are 
architectural metrics, e.g. component coupling 
strength, number of provisions, requirements, and 
internalizations [8]. Metrics can compute new attribute 
values for each component instance, such as the above 
examples, or single values for whole selections, such 
as global subsystem quality metrics. Decoupling the 
selection of the metric’s input from the metric 

computation itself allows applying any metric on any 
subset of components (selection), which is not the case 
in other software visualization tools [8, 11]. Moreover, 
explicitly specifying the attribute names that store the 
metric allows easy run-time prototyping of various 
metric combinations. For example, one can compute 
several metrics, store them in several attribute values, 
and then interactively cycle through the computed 
metrics to e.g. visually compare them. 
 
Layout operations (or layouts briefly) are the first 
step in bringing the abstract component data to a visual 
representation. Given that component instances and 
their relations form a graph (as explained in Sec. 3.1), 
a very natural way to visualize these is to draw this 
graph. Drawing the graph involves two steps: 
assigning a geometric position to every node and edge; 
and choosing a graphic symbol to draw every node and 
edge. The first step, called laying out the graph, is 
performed by layout operations. In detail, layouts 
compute geometric position attributes for the nodes 
and edges in a given input selection. The second step, 
called mapping the graph, is discussed separately in 
Sec. 3.2.3. 
 
Decoupling the drawing in the layout and mapping 
steps has several benefits. First, we can layout different 
subgraphs corresponding to different component 
subsystems separately. For example, containment 
relations between component instances (vertical slices, 
Sec. 3.2.1) are best visualized using a tree layout 
(Figure 6 top). Call graphs or horizontal slices (Sec. 
3.2.1) are best visualized using a so-called spring 
embedder layout [9]. Second, we can precompute 
several layouts e.g. to quickly switch between them. 
This is useful for large graphs (thousands of 
component instances) whose layouts may take up to 
minutes. Finally, we can cascade different layouts on 
the same position attributes, e.g. to interactively refine 
an existing layout. An example of cascading is the 
nested layout described next. Nested layouts are useful 
to visualize both containment and association 
(“provides”, “requires”) relations of a component 
architecture. If we draw components as boxes, we 
depict containment (“A contains B”) by drawing B’s 
box inside A’s, and association (“A provides/requires 
B”) by drawing a line between A and B (see Figure 5 
and Figure 6). To produce such results, we lay out 
separately the sub-components of every component 
instance using the spring embedder layout and then lay 
out recursively the bounding boxes of the containing 
nodes. Nested layouts produce images similar to 
package UML diagrams and have proven to be very 
helpful in many applications [9,10], as they are quite 



familiar to software engineers. Users can easily 
combine simple layouts as the building bricks for the 
more complex layouts. Adding new layouts to our 
framework is reasonably simple. The implementations 
of the spring embedder and tree layouts we use in our 
framework [9] exceed 50000 C lines.  Adding them in 
a black-box fashion required less than 100 C++ lines 
for each. Our custom layouts, such as the nested 
layout, have each fewer than 200 C++ lines.  
 
3.2.3. Mapping Operations 
 
So far, we described how to read data (Sec. 3.2.2), 
select subsets of interest (Sec. 3.2.1), and assign 
geometric positions for drawing it (Sec. 3.2.2). 
Mapping operations, discussed here, allow users to 
customize the way data is finally drawn to produce the 
visualization, and how users can interact with the 
visual objects.  
 
Creating visual representations of our data model must 
obey two requirements. First, users must be able to 
easily customize the way objects are drawn. Second, 
the framework must cope with drawing and interacting 
with potentially complex drawings of thousands of 
visual objects in real time. To fulfill these 
requirements, we designed an architecture consisting 
of four elements: mappers, viewers, glyph factories, 
and user actions (Fig. 3). The implementation is based 
on the C++ toolkit Open Inventor that provides 
advanced mechanisms for rendering and interacting 
with large 3D models [7].  
 
The mapper is the central element of the mapping 
subsystem. It is responsible for creating 2D or 3D 
visual representations of the data model. We have 
implemented several mappers, as follows. The glyph 
mapper creates an iconic symbol, also called a glyph, 
for each component instance (node) and relation (edge) 
in its input selection, and places these glyphs at the 

geometric coordinates provided by attribute values 
previously computed by a layout operation (Sec. 
3.2.2). 
The glyph mapper allows customizing the drawing of 
every individual node or edge glyph, as follows.  For 
every node and edge it maps, the glyph mapper calls a 
glyph factory software component, which builds the 
desired glyph visual representation and returns it to the 
mapper. The glyph factory sets the glyph's graphical 
properties (color, shape, size, annotation, transparency, 
and so on) from the attributes of the mapped node or 
edge. Users can thus customize the appearance of 
every single node and edge in the visualization by 
simply switching between various predefined glyph 
factories. Most such factories are programmed in the 
scripting language Tcl, so users can even edit them on 
the fly, to obtain complete customization. The usage of 
glyphs is exemplified by applications in Sec. 4.1 
(Figure 5) and 4.2 (Figure 6). 
 
A second type of mapper is the splat mapper. Instead 
of drawing nodes and edges explicitly, as the glyph 
mapper does, the splat mapper produces a height map, 
or 3D plot. The height map shows the density of nodes 
per unit area, following the placement produced by e.g. 
a spring embedder layout. Splat mappers effectively 
visualize large tightly connected graphs, such as the 
ones arising from the “provides” or “requires” 
relations in component architectures. Drawing all 
nodes and edges of such graphs separately often 
produces cluttered images when high coupling is 
present, i.e. there are too many relations in the system. 
Instead, a height map is effective for spotting tightly 
coupled subsystems, as component instances in these 
subsystems are ‘gathered’ together by the spring 
embedder layout. The splat mapper is demonstrated by 
applications in Sec. 4.3 (Figure 7). 
 

 

 
Figure 3: Mapping and visualization subsystem 

 
The third component of the mapping subsystem is the 
viewer. Viewers (Figure 5) display the output of 
mappers and also allow mouse-based 2D and 3D 

navigation (zoom, pan, rotate, fly through) in the 
displayed data, as well as interaction with the 
displayed data.  Viewers can be thought as operations 



(Sec. 3.2) having an input and an output selection and 
an attribute argument. The data in the input selection is 
displayed using a mapper. When the user selects the 
displayed objects, using the mouse, the viewer adds the 
selected objects in its output selection. The output 
selection can be then passed as input to any of the 
framework’s operations (filtering, editing, viewing, 
etc). In this way, users can easily both navigate the 
complete data to get an overview and select some 
subsystem of interest to examine it in more detail. 
Finally, viewers allow specifying a so-called user 

action. This is an operation that is executed every time 
the user performs mouse-based selection in a viewer, 
and receives as input the viewer’s output selection. By 
customizing the user action, a wide range of 
exploration scenarios can be implemented. For 
example, a user action can pop up a second viewer 
displaying the data the user selected in a first viewer, 
as demonstrated by the application in Sec. 4.2. 
 

 
3.3. Component Architecture 
 
For our framework to be effective in practice, users 
must avail of a wide range of problem models, 
consisting of component models (CMs) and scenario 
models (SMs). Writing a CM for a given component-
based system is usually easy, as it involves translating 
the native application CM to our simple CM format 
(Sec. 2). Writing a custom SM involves crafting 
appropriate editing, filtering, and mapping operations 
that support the questions specific to the system being 
analyzed. In order to simplify the usage of such 
operations (i.e. writing, packaging, browsing, and 
customizing them), we introduced a simple 
component-based metaphor in our framework. All 
customizable software elements in our framework 
(operations, viewers, glyph factories, and user actions) 
are implemented as components with fixed interfaces. 
Components are declared in Tcl and may be 
implemented either in Tcl or compiled C or C++. To 
exemplify, we sketch next the declaration of the 
operation component selectOnValue introduced 
in Sec. 3.1: 
 
component selectOnValue { 
  type       operation 
  library    filters 
  selections { input output } 
  attributes { name  value  } 
  info      “Selects by attribute value” 
  proc       exec { input output name value } 
             { … implementation … } 
} 

 
The first declarator type gives the component’s type, 
i.e. operation in this case. The library declarator 
specifies the component library this component is part 
of. Components can be organized in hierarchical 
component libraries, much as class libraries in OO 
languages. The selections declarator gives the 
operation’s selection arguments, in this case the 
selections input and output. The 
attributes declarator gives the operation’s 
attribute arguments, in this case the attribute name 

whose value should equal value. The info 
declarator gives some information text to be displayed 
in the component’s GUI. Finally, the exec declarator 
is the name of a Tcl procedure that implements the 
operation’s functionality. Given this declaration, the 
visualization framework automatically constructs a 
component GUI and adds the component in a visual 
browser. Figure 4 (upper half) shows the browser in 
which we selected the selectOnValue component, 
whose GUI is shown in the lower half of Figure 4. 
 

 
Figure 4: Component browser and GUI 

 
Creating SMs is easily done by packaging those 
components that should be used together for a given 
problem domain. A typical visualization proceeds then 
as follows. The user loads the desired PM, e.g. 
“Architectural metrics for Java-based software”, from 
an existing set of pre-packaged PMs. Next, the 
concrete data to be visualized is loaded, in this case an 
architectural description of some Java-based system. 
Next, the user browses through the components made 



available by the loaded PM, selects the desired ones, 
and applies them on the loaded data in the desired 
order, to gain the desired insight. No programming 
experience is needed here, as all actions are done just 
via the component GUIs. 
 
4. Applications 
 
In this section, we demonstrate the use of our 
visualization framework with three real-world 
applications using component-based software. 
 
4.1. Architectural Metrics 
 
In this application, we visualize several architectural 
metrics computed by the software analysis tool SAAT 
[3] on a given software system (Figure 5). Our system 
representation consists of a logical view, containing 
structural inter-component relations, and a scenario 
view, containing use cases describing specific system 
tasks. We use a nested layout (Sec. 3.2.3) to represent 
the use cases, scenarios, and components: If 
component C is in scenario S, its visual representation 
is contained in C’s visual representation. For use cases 
and scenarios, we use simple box glyphs. For the 
system we study, containment has just three levels 
(components in scenarios, scenarios in use cases). 
However, our nested layout can accommodate in 
principle any number of containment levels. Inter-
component relations (method calls) are drawn as lines. 
If the same element (e.g. component) appears in 
several scenarios, it is separately drawn in every 
scenario box. This matches the representation expected 
by system architects. When the user selects a 
component in a scenario with the mouse, all visual 
representations of that component in all scenarios it 
occurs are automatically highlighted (Figure 5). This is 
easily implemented by a custom user action (Sec. 
3.2.3). This allows easy comparison of the behavior of 
a given component in different scenarios. For 
components, we use a special glyph that shows four 
metrics: coupling, inverse coupling, fan in, and fan out. 
These are displayed as a four (individually colored) bar 
chart in 3D. Finding outliers, i.e. components with 
high/low metrics, is easy, as these have the 

longest/shortest metric bars. Displaying the four 
metrics along each other with the bar chart glyph 
allows easy comparison of the metrics for the same 
component. Using the same color for the same metric 
allows comparison of that metric between different 
components. 
 

 
Figure 5: Architectural metrics 

 
4.2. Multiple Views in Reverse Engineering 
 
We visualize now a component-based mobile phone 
architecture from Nokia [ref vissym]. The data comes 
from reverse engineering an existing software system 
of several hundred components. First, we use a filter to 
select all component instances and their containment 
relations. We display these using a tree layout and a 
glyph colored by the component type (Figure 6 top). 
When the user selects, with the mouse, some 
components in this viewer, we display them and all 
contained sub-components in a second viewer using a 
nested layout (Figure 6 bottom). This shows us both 
containment relations (boxes in boxes) and call 
relations (lines between boxes). We easily implement 
the above by a user action for the first viewer (Sec. 
3.2.3).  
 

 



 
Figure 6: Subsystem containment (top) and dependencies (bottom)

  
This scenario, constructed in just a few minutes, 
allows us to see which are the 'interface' components 
through which Subsystems 1 and 2 communicate. We 
also see that lower level components (innermost boxes 
in the nested layout) do not make cross-system calls, a 
desired property of software architectures. 
 
4.3. Visualizing Provisions 
 
In this application, we visualize the provision, or “is 
called by”, relations in a Java-based software system of 
about 2000 components. Since the provision relations 
graph is dense, visualizing it using a spring embedder 
layout and glyphs (e.g. boxes and lines) produces a 
cluttered image. Instead, we use a splat mapper (Sec. 
3.2.3). The dots in Figure 7(left) show the 
components’ positions computed by a spring 
embedder. The shaded image shows the density field 
computed as number of packages times number of 
provision relations per unit area. Figure 7(right) shows 
the same field as a height plot. We can see two ‘hot 
spots’ in the left image, corresponding to the two peaks 
in the right image. These correspond to the most called 
classes in the system, i.e. String and ListIter. 
Other hot spots correspond to other frequently used 
components. A similar scenario can be built to 
visualize component requirements. 

 

 
Figure 7: Visualizing provisions 

 
5. Conclusions 
 
The aim of this paper is to demonstrate the usefulness 
of visual tooling for the development and maintenance 
of component-based software. Our contribution is 
twofold. First, we demonstrate the usage of our 
visualization tool in three scenarios for real-world 
software systems. Secondly, we show how we used a 
component based tool architecture to make the 
customizability of our tool simple for end users. This 
lets us define a visualization scenario in minutes by 
assembling pre-packaged components such as data 
editing, filtering, rendering, and user actions. Having 
this stable framework, our main focus now is to 



construct more visualization components and apply 
them to support both forward and reverse engineering 
of large component-based software systems. 
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