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Abstract 
 

Many component models have been proposed to 
address the challenge of reducing software 
development time and costs. Such models often offer 
similar functionality. We study how developers can 
assess the relative strengths and weaknesses of such 
models, based on information about the component 
development process, and the component framework 
performance. We use a visual tool to gather such 
information and support our approach. We validate 
our approach on ROBOCOP, a complex component 
framework used in the industry. 
 
1 Introduction 

Component based software engineering is regarded 
as a promising approach towards reducing the software 
development time and costs. While it has proven to be 
successful in many application domains such as office 
and distributed internet-based applications, the 
component-based approach toward development is still 
to be validated in the area of dependable systems, 
which have special requirements on the quality 
attributes. Möller et al. [4] have elaborated a set of 
such requirements, and classified a number of existing 
component models according to their conformance to 
the set. However, as the number of component models 
increases, a new challenge arises: how to discriminate 
among models that satisfy the same set of requirements 
such that the best suited one is selected as development 
base for a given system. Using the evaluation 
methodology proposed in [4], one can easily reach the 
conclusion that for example the Koala [6], and PECOS 
[9] component models offer similar benefits from the 
point of view of testability, resource utilization, and 
availability of a computational model. When these are 
the only important nonfunctional requirements for the 
component model, the selection of the best suited 
model can be further refined on two directions. First, 
one may try to establish which model fits better with 
the software development process that will be further 

used during the project’s lifecycle. Second, one may 
try to select that component model which increases the 
granularity of the requirement conformance 
assessment, in order to spot better performance 
margins. 

In this paper we propose a novel approach to 
implement these two specialized directions of 
assessment. We segregate component models based on 
history recordings about component structure 
evolution, on the one hand, and framework 
performance, on the other hand. We implement the 
above directions by using CVSscan [7] [8], a tool for 
visual assessment of source code evolution. 

The remainder of this paper is as follows. In Section 
2, we describe the component information data 
modeling and the visual mappings that CVSscan uses 
to encode source code evolution. In Sections 3,4, and 
5, we present three mechanisms for distinguishing 
among component models based on information about 
component structure and framework state evolution, as 
follows: assessment of the component development 
process (Section 3); assessment of change propagation 
from framework to components (Section 4); and 
assessment of framework performance (Section 5).We 
illustrate each of the above techniques with examples 
from the ROBOCOP component framework. Finally, 
in Section 6 we conclude with a number of 
recommendations to maximize the efficiency of the 
techniques we propose, and we give a short view on 
our future direction of research. 
 
2 Data modeling and visual mappings 

CVSscan [8] is a visual tool developed to support 
program and process understanding in large software 
projects. It uses the information stored in CVS source 
code repositories to build graphical representations of 
the evolution of a given software system (or 
subsystem) along hundreds of versions. CVSscan is 
based on three main mechanisms, as follows. First, it 
uses a dense, pixel-filling display where every few 
pixels convey information, via their position and color, 



about a source code line. Second, CVSscan offers a 
rich set of navigation mechanisms, which allows users 
to follow the evolution in time of a given aspect of the 
source code, ranging from a single line to a whole file. 
Third, CVSscan includes a classical text editor whose 
navigation (scrolling) is correlated with the pixel-
filling display. For a detailed overview of the 
implementation and functionality of the above 
techniques, as well as the functionality of CVSscan, 
we refer to [7] and [8]. 

CVSscan reveals information about both the 
structure of a program and the process it undergoes 
from creation until a given moment. To understand 
this, we next briefly present the program data model 
and visual mappings in use by CVSscan. 

CVSscan is based on the data model used by the 
CVS version management system. Given some source 
file, CVS stores several versions of this file and 
allows, via a comparison technique similar to UNIX’s 
diff, to detect which source code lines are modified, 
inserted, deleted, or stay unchanged between 
consecutive versions. Finally, for every file version, 
we extract (basic) syntactic information, such as 
function headers and bodies, comments, and include 
statements. CVSscan displays this information in 
various ways, controlled by several visual mappings. A 
visual mapping is, essentially, a way of assigning 
position, shape, and color attributes to (parts of) the 
data model described above. Since this model is 
centered on file versions, source code lines, and 
syntactic structures, our visual mappings will 
emphasize these concepts as well. CVSscan offers two 
such visual mappings:  file-based and line-based. The 
file-based mapping essentially maps the time (version 
number) to the horizontal X axis and the line number 
in file to the vertical Y axis. Every code line gets then 
drawn as a pixel line, colored by various attributes. 
Every version appears thus as a vertical stripe. In 
Figure 1 (top), we use the file-based mapping to show 
65 versions of a C source file colored by line status: 
green denotes constant, yellow modified, red modified 
by deletion, and light blue modified by insertion, lines. 
The line-based mapping maps also time to the 
horizontal axis. However, the Y coordinate of a code 
line is now computed globally, over all versions, rather 
than per version. In the line-based mapping, a given 
code line has the same Y coordinate in all versions it 
appears, and Y coordinates respect local line orderings 
in all file versions. Identity between code lines in 
different versions is evaluated with the diff tool. The 
exact algorithm for computing the line-based mapping 
is described in [8].  
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Figure 1: File-based (top) and line-based (bottom) 
mappings in CVSscan 

The file-based mapping offers a simple, yet powerful 
overview of the complete evolution of a given file or, 
since in our concrete usage developers would code one 
component per file, of a given component. Individual 
code lines are not visible in Figure 1. However, this 
image manages to depict around 20000 lines of code 
spread over 65 versions. Colors indicate the type, 
frequency, and distribution of changes, and version 
sizes (on the Y axis) show the code evolution and 
eventual stabilization phase the project enters. In 
contrast, the line-based mapping allows identifying 
stable code fragments and quickly spotting significant 
inserted or deleted code as large gray areas. 

 
2.1 Component System Assessment 

Given the data model and visual mappings 
supported by CVSscan, as described so far, the 
question comes how one could use the above 
techniques to assess component-based software. 
Specifically, we are interested in assessing the 
component development process and the performance 
of component frameworks, for a given component 
model. To use the CVSscan, or similar approaches, 
such as its predecessor tool SeeSoft [2] for component-
based software source code, the following must hold: 

• this software can be described by a linear 
structure, i.e. an ordered sequence of elements. 
These elements can be source code lines, in the 
simplest case. However, any alternative data 
model can be used, e.g. syntactic blocks 



(component scopes, procedures, structures, or 
other namespaces). 

• information about the structure evolution is 
available. In the simplest case of using a line-
based structure, this implies being able to 
determine at which moment in time did a certain 
line appear in the source code, and respectively 
disappear from it. In other words, mechanisms 
must be available for extracting and comparing 
code structures. 

 
Assessing a component development process is, in 

this respect, a conceptually simple task. Indeed, 
virtually all component models have a clear mapping 
between components and their source code. 
Additionally, many software projects use version 
control management (VCM) systems, similar to CVS, 
which hold history records about code evolution and 
offer mechanisms for code comparison.  

Assessing the component framework performance 
using evolution visualization tools such as CVSscan is, 
however, a more difficult task. It depends on the 
ability of such tools to represent the framework state 
by a linear structure and map performance 
measurements and metrics on structure evolution 
patterns. It may be the case that each performance 
parameter requires its own line-based structure and 
visualization and has a specific set of evolution 
patterns.  

We next present three mechanisms for assessing a 
component model based on visualizations built with 
the CVSscan tool. We illustrate these mechanisms with 
real life examples. All these examples have been 
obtained from the ROBOCOP framework for 
component based software development [3].  

 
2.2 Context of assessment 

To understand the assessment results, we first 
sketch the context in which we used the CVSscan tool. 
ROBOCOP was developed on a period of four years 
by an international consortium of several industry and 
academic partners. Its focus is on providing a generic, 
flexible, and resource-efficient set of mechanisms and 
tools for implementing, composing, deploying, and 
monitoring component-based software applications 
with a focus on high volume embedded appliances 
such as mobile phones, set-top boxes, and embedded 
controllers. In this respect, the ROBOCOP component 
model is similar to Koala [6], Rubus [1] and PECOS 
[9]. ROBOCOP’s core, the run-time environment 
(RRE), acts as a virtual machine providing application-
specific component library management, component 

instantiation and destruction, and inter-component 
communication and control interfaces.  

Component interfaces are described in the 
ROBOCOP Interface Description Language (RIDL). 
Just as in most component frameworks, this language 
can be translated, or compiled, to generate classical C 
skeleton code. Developers can next add component 
implementation code to this skeleton and compile it on 
a variety of platforms. 

For both the RRE and the component libraries, 
several tens of versions exist, developed by the 
different consortium partners during its four year 
history. These versions emerged either due to changes 
in the framework and/or component interfaces or due 
to implementation changes when porting these to 
different hardware platforms.  

Finally, we mention that CVSscan was built and 
used in assessing the ROBOCOP framework by 
different people than those who work on the 
component framework itself. We had thus the added 
difficulty of understanding a third-party large software 
system mainly through the perspective of our CVSscan 
visualization tool. 

 
3  Assessment of component development 

The choice of the component development process 
is an important issue when selecting the base 
component model on which a software system should 
be built. Investigating history recordings can give an 
indication about the effort required to have a minimal 
working component for testing purposes, the effort for 
modifying component interface and/or implementation, 
and the overhead related to maintaining framework 
compliance during development. Questions such as 
“how hard is to build a minimal component?” or “how 
much component code was changed when some 
framework interface got added?” can be directly 
targeted by CVSscan. Once we have been able to 
answer several such questions concerning the past 
evolution of our system, we attempt to extrapolate the 
results to the future. Most partners of the ROBOCOP 
endeavor have expressed their high interest in being 
able to answer, even if only qualitatively, the above 
questions. 

Figure 2 depicts several CVSscan visualizations of 
a real-life ROBOCOP component evolution along 15 
versions. We use a line-based layout, so the evolution 
of each source code line can be easily followed along 
the horizontal time axis. The upper part (Content view) 
shows three snapshots of the entire system evolution 
from the perspective of three different versions:
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Figure 2: Visualization of ROBOCOP component development process

version 4, version 7 and version 13. Color encodes 
line content as follows: black (darker) indicates 
function headers, yellow (lighter) shows function 
bodies. The three snapshots in the lower part of Figure 
2 (Change view) correspond to the ones in the Content 
view, but use a different color encoding: black (darker) 
indicates lines that do not change from one version to 
the next one, while yellow (lighter) encodes changing 
lines. In all snapshots, white shows gaps in the code, 
i.e. places where code was deleted in a previous 
version or will be inserted in a future version. For a 
detailed explanation of the line-based layout 
construction, see [8]. 

We can use Figure 2 to understand our component 
development process. In the beginning (A), the 
developer tries to build a stable component interface. 
He edits the RIDL component description file and then 

generates a C source code skeleton using the RIDL 
compiler. In the first three versions of the considered 
use case, the developer does not add implementation 
code to the generated C skeleton, but tries to refine the 
RIDL interface description. This is apparent in Figure 
2 (J), as no code is inserted in the visualized file 
besides the C function headers automatically generated 
by the RIDL compiler, i.e. the thin dark lines inserted 
in versions 2 and 3. Additionally, we see that the code 
is automatically generated, since the function headers 
in region K are changed. Generated function headers 
have an automatically created textual reference to the 
line number in the RIDL description file that 
corresponds to that function. Inserting new interface 
specifications causes the textual references to the 
interface specifications following after them to 
change, since the specification location in file changes. 



As depicted in Figure 2, however, this can lead to 
misunderstandings, due to the current skeleton 
generation process, as follows. Every time the 
developer adds new specifications to the RIDL file, he 
needs to run it through the RIDL compiler in order to 
generate appropriate function headers, which cannot 
be created by hand. However, once developers start to 
manually fill in this generated skeleton, adding new 
interfaces can be a very cumbersome process. This is 
mainly caused by the RIDL compiler, which has no 
ability to merge the new skeleton information with the 
existing one, but generates the entire skeleton anew, 
discarding any hand-coded additions performed by the 
developer. To prevent this, users maintain copies of 
the old code, and every time new interfaces are added, 
the generated function headers are manually merged 
(i.e. by cut-and-paste) in the saved copy. In this way, 
however, textual inconsistencies are introduced in the 
existing function headers as they reference invalid 
locations in the RIDL specification file. This can be 
seen also from Figure 2, by comparing area (K) and 
(N). The introduction of new interfaces in version 2 
and 3 (J) causes existing function headers to be 
updated (K). However, in version 7, the developer 
manually inserts automatically generated headers in 
the previous file version (E), which causes no update 
in the existing headers (N). 

Figure 2 shows also the amount of effort required 
to have a minimal component running for testing 
purposes. Version 4 of the considered component was 
also the first functional one.  We identify the main 
effort to achieve that as writing the code in the (B) 
area. From the Change view, we also see that the code 
required for a minimal component does not change in 
time except for some additional interface additions 
like the one highlighted in (E).  

The evolution of the ‘useful’ component code can 
be noticed in the areas D, G and I, where most of the 
code inserted during component refinement (i.e. 
versions 4..15) goes away. Areas C, F, and H in the 
Content view and the corresponding regions L, M, and 
O in the Change view refer to empty function 
implementations, i.e. non implemented interfaces.  
These represent the code overhead required for 
compliance with the ROBOCOP framework and have 
no other useful purpose for the functionality of the 
component. 

Summarizing the information in Figure 2, we 
conclude that developing ROBOCOP components 
requires a very careful code architecting. Subsequent 
interface changes are difficult to accommodate or lead 
to inconsistencies.   Additionally, the effort required to 
have a minimal ROBOCOP component running may 
be relatively high, e.g. accounting for almost 50% of 

the developed code in the presented example. 
However, once we have this code, it does not change 
significantly during further refinement of the 
component. Eventually, ROBOCOP components 
might have to include pure ‘overhead’ functions 
(empty implementations) for compliance with the 
framework. 
 
4 Assessment of change propagation 

When component frameworks are not yet mature, it 
is often the case that new framework versions are not 
compatible with previous ones. In such cases, existing 
components need to be re-architected to various 
degrees in order to be supported by the new 
framework. The effort required for this step may be so 
high that migrating to a different, more mature, 
component framework or maintaining the old 
framework may be better alternatives. A detailed 
estimation of the transition cost at framework change 
is therefore of paramount importance. CVSscan can 
help make such estimations, based on history 
recordings for components that have been already re-
architected to comply with new framework versions. 

Figure 3 shows four CVSscan snapshots visualizing 
the evolution of the same component as the one 
discussed in Section 3, but including two additional 
versions that correspond to the transition from a first 
framework version to a second one. In the upper part 
of Figure 3, we use a file-based layout in conjunction 
with a version filter (see [8]) to depict the amount of 
code from one version that may be found in other 
versions. Color is used to encode change: yellow 
(light) areas are lines that did not change during 
development; black (dark) areas show line changes. 
By analyzing the upper left image in Figure 3, we infer 
that a lot of code had to be changed when passing 
from component version 16 to version 17. 
Additionally, only about 75% of the component 
implementation code from version 16 is found in 
version 17. Furthermore, the upper right image shows 
that new code had to be written for version 17 in 
addition to what was preserved from version 16. The 
amount of newly written code is almost 40% of what 
was preserved. Overall, about 50% of the component 
code in version 17 differs from the one in version 16: 
This signals a quite high effort to adapt components 
cope with changes in the ROBOCOP framework. 

The lower part of Figure 3 uses a line-based layout 
together with a version filter to show what interfaces 
have been removed and what was inserted during re-
architecting. Color is used to encode line content: 
black (darker) = function headers; yellow (lighter) =
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Figure 3: Migrating a component from ROBOCOP 1.0 to ROBOCOP 2.0

function bodies; white = deleted or inserted code, 
exactly as in Figure 2 (see Section 3)  Correlating the 
lower left image (A) with the content evolution images 
from Figure 2, we can easily see that a major benefit of 
migrating to the new version 2.0 of the ROBOCOP 
framework was to decrease the number of mandatory 
interfaces that a component must implement to be 
compliant with the framework. 

CVSscan allows also more in-depth analysis of the 
re-factoring a component passes through. This allows 
us, when browsing the code, to separate framework-
induced code changes from those attempting to achieve 
a better design for the component itself. Figure 4 
depicts such a case. We use here a line-based mapping 
to show the evolution of a component’s code over 10 

versions. The same color scheme as in Figure 2 and 
Figure 3 is used to display line changes. In Figure 4, 
we can quickly see an abrupt change performed in 
version 8.  At a first look, we believe to see the 
addition of several component interfaces (blue stripes, 
A) and deletion of some of the existing ones (blue 
stripes, D). However, a closer analysis of the image 
(B) shows that all function declarations from version 7 
are also found in version 8, and the actual code 
deletions refer only to parts of the implementation 
(function bodies). Moreover, the newly introduced 
functions (A) are not interface implementations. Using 
a classical code editor, we can easily investigate the 
declarations of the newly added functions and realize 



they do not have a ROBOCOP signature. Hence, the 
major re-factoring performed in version 8 does not 
change the component interface but is rather an 
attempt to factor out common implementation code (C) 
in order to make the component code more readable. 
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Figure 4: ROBOCOP component re-factoring:  
factorizing common functionality 

 
5 Assessment of framework performance 

An important decision factor in choosing a certain 
component framework as base for a software system is 
the set of quality attributes it offers. Sometimes it is the 
case that different component frameworks claim to 
meet the same set of nonfunctional requirements. For 
example, both Koala [6] and PECOS [9] allegedly 
offer similar benefits concerning testability, resource 
utilization, and availability of a computational model. 
In such cases, further evaluation of the frameworks is 
needed to assess their performance with respect to 
each quality attribute and identify relevant quality 
margins. To do this, we map the performance to 
graphical patterns in the evolution of a linear code 
structure and use CVSscan to visualize these patterns. 

Figure 5 shows two CVSscan snapshots displaying 
the performance of the ROBOCOP System Integrity 
Manager (SIM) module running on a given terminal. 
The SIM module [5] is a part of the ROBOCOP 
framework in charge with remotely maintaining the 
system integrity of already deployed systems. One of 
the main activities of this module is to search for 
defective components and replace them with good-
functioning ones according to a set of predefined 
policies. While this is one of the main features of the 
ROBOCOP framework, care has to be taken when 

building the replacement policies to avoid 
inconsistencies.  

In Figure 5, we depict the evolution of a set of 
components running on a ROBOCOP terminal (client), 
managed by a SIM using two different replacement 
policies (Policy 1 and Policy 2). The horizontal axis 
represents the time. The vertical axis represents the 
component set. In other words, whereas the examples 
presented in the previous sections displayed code lines 
versus time, we now display components versus time. 
Color encodes component change: yellow (lighter) = 
component changed by the SIM; green (darker) = 
component remains unchanged. The lower colored 
strip in each image shows the policy that generated a 
given change: light green (lighter) = Policy 1; blue 
(darker) = Policy 2.  
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Figure 5: ROBOCOP system integrity manager: 
consistent(top) and inconsistent (bottom) policies 

We can see different patterns emerging when the 
SIM replaces a faulty service: A = both policies 
generate a replacement; B = only Policy 1 generates a 
replacement; C = Policy 1 generates a replacement 
immediately after a replacement generated by Policy 2; 
D = both policies generate continuously replacements. 
While pattern A may indicate that Policy 2 comes as 
an enhancement of Policy 1, as it corrects possible 
flaws not covered by the latter, pattern C may indicate 
a problem introduced by SIM, as every replacement 
performed by Policy 2 is on a latter occasion  
overridden by Policy 1. Moreover, pattern D may 
indicate the presence of an inconsistency between the 
two policies, as the decision about changing a 
component is continuously retaken at every SIM 
intervention by both policies. Currently, ROBOCOP 



system developers are considering the use of CVSscan 
to help them while assessing the SIM module 
performance for a given set of policies. 
 

6 Conclusions 
We have presented several techniques for assessing 

several aspects of the component development process, 
using the CVSscan source code visualization tool. We 
validated our approach, both in terms of the CVSscan 
tool intuitiveness and the correctness of the concrete 
findings we obtained with it. For this, we analyzed 
ROBOCOP, a complex third party component 
framework, and discussed our findings and 
methodology with its developers. Two issues emerged. 
First, our concrete findings (e.g. “component interfaces 
stayed unchanged for the following ‘x’ versions”) were 
confirmed by the developers as known, correct facts. 
Second and more interesting, some findings led us to 
hypotheses (e.g. “the patterns seen here denote code 
re-factoring”) that were new for the developers, but, at 
further detailed code inspection, were found correct. In 
other words, our visualization lets one see known 
information and also discover new facts about a given 
component structure and implementation.  

Our approach is relatively generic. CVSscan’s line-
based code model currently uses the UNIX-like diff 
provided by the CVS repository to compare code. 
Although this makes CVSscan applicable to any type 
of source code, a weak point is the accuracy of the 
diff operator used to compare component versions. 
The visualization accuracy depends on the heuristics 
behind this operator, which can lead to data 
misinterpretations, e.g. when too many changes occur 
between consecutive versions. However, CVSscan can 
also support a syntactic, instead of line-based, code 
model, where the central element is a component’s 
interface, defined e.g. as a list of methods. Once a 
diff mechanism is implemented for such a model, 
e.g. by syntactic interface comparison via method 
signatures, CVSscan can be straightforwardly used. 
Instead of a code line, users would see now a method, 
or even a whole component. The CVSscan tool, as 
well as several example datasets, is available at: 

www.win.tue.nl/~lvoinea/soft/CVSscan_setup.exe 

So far, we only focused on the evolution of 
individual components. As future direction of research, 
we plan to extend our approach with higher-level 
overviews, such as whole-project evolution 
visualizations, to enable inter-component evolution 
analyses on entire systems. Our final aim is to integrate 
CVSscan in a toolset for component visualization and 
analysis and make it effectively and efficiently 

available to the component based software engineering 
process. 
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