
Visual Assessment Techniques for Component-Based Framework Evolution

Lucian Voinea
Technische Universiteit Eindhoven

L.Voinea@tue.nl

Alexandru Telea
Technische Universiteit Eindhoven

A.C.Telea@win.tue.nl

Abstract

Many component models have been proposed to
address the challenge of reducing software
development time and costs. Such models often offer
similar functionality. We study how developers can
assess the relative strengths and weaknesses of such
models, based on information about the component
development process, and the component framework
performance. We use a visual tool to gather such
information and support our approach. We validate
our approach on ROBOCOP, a complex component
framework used in the industry.

1 Introduction

Component based software engineering is regarded
as a promising approach towards reducing the software
development time and costs. While it has proven to be
successful in many application domains such as office
and distributed internet-based applications, the
component-based approach toward development is still
to be validated in the area of dependable systems,
which have special requirements on the quality
attributes. Möller et al. [4] have elaborated a set of
such requirements, and classified a number of existing
component models according to their conformance to
the set. However, as the number of component models
increases, a new challenge arises: how to discriminate
among models that satisfy the same set of requirements
such that the best suited one is selected as development
base for a given system. Using the evaluation
methodology proposed in [4], one can easily reach the
conclusion that for example the Koala [6], and PECOS
[9] component models offer similar benefits from the
point of view of testability, resource utilization, and
availability of a computational model. When these are
the only important nonfunctional requirements for the
component model, the selection of the best suited
model can be further refined on two directions. First,
one may try to establish which model fits better with
the software development process that will be further

used during the project’s lifecycle. Second, one may
try to select that component model which increases the
granularity of the requirement conformance
assessment, in order to spot better performance
margins.

In this paper we propose a novel approach to
implement these two specialized directions of
assessment. We segregate component models based on
history recordings about component structure
evolution, on the one hand, and framework
performance, on the other hand. We implement the
above directions by using CVSscan [7] [8], a tool for
visual assessment of source code evolution.

The remainder of this paper is as follows. In Section
2, we describe the component information data
modeling and the visual mappings that CVSscan uses
to encode source code evolution. In Sections 3,4, and
5, we present three mechanisms for distinguishing
among component models based on information about
component structure and framework state evolution, as
follows: assessment of the component development
process (Section 3); assessment of change propagation
from framework to components (Section 4); and
assessment of framework performance (Section 5).We
illustrate each of the above techniques with examples
from the ROBOCOP component framework. Finally,
in Section 6 we conclude with a number of
recommendations to maximize the efficiency of the
techniques we propose, and we give a short view on
our future direction of research.

2 Data modeling and visual mappings

CVSscan [8] is a visual tool developed to support
program and process understanding in large software
projects. It uses the information stored in CVS source
code repositories to build graphical representations of
the evolution of a given software system (or
subsystem) along hundreds of versions. CVSscan is
based on three main mechanisms, as follows. First, it
uses a dense, pixel-filling display where every few
pixels convey information, via their position and color,

about a source code line. Second, CVSscan offers a
rich set of navigation mechanisms, which allows users
to follow the evolution in time of a given aspect of the
source code, ranging from a single line to a whole file.
Third, CVSscan includes a classical text editor whose
navigation (scrolling) is correlated with the pixel-
filling display. For a detailed overview of the
implementation and functionality of the above
techniques, as well as the functionality of CVSscan,
we refer to [7] and [8].

CVSscan reveals information about both the
structure of a program and the process it undergoes
from creation until a given moment. To understand
this, we next briefly present the program data model
and visual mappings in use by CVSscan.

CVSscan is based on the data model used by the
CVS version management system. Given some source
file, CVS stores several versions of this file and
allows, via a comparison technique similar to UNIX’s
diff, to detect which source code lines are modified,
inserted, deleted, or stay unchanged between
consecutive versions. Finally, for every file version,
we extract (basic) syntactic information, such as
function headers and bodies, comments, and include
statements. CVSscan displays this information in
various ways, controlled by several visual mappings. A
visual mapping is, essentially, a way of assigning
position, shape, and color attributes to (parts of) the
data model described above. Since this model is
centered on file versions, source code lines, and
syntactic structures, our visual mappings will
emphasize these concepts as well. CVSscan offers two
such visual mappings: file-based and line-based. The
file-based mapping essentially maps the time (version
number) to the horizontal X axis and the line number
in file to the vertical Y axis. Every code line gets then
drawn as a pixel line, colored by various attributes.
Every version appears thus as a vertical stripe. In
Figure 1 (top), we use the file-based mapping to show
65 versions of a C source file colored by line status:
green denotes constant, yellow modified, red modified
by deletion, and light blue modified by insertion, lines.
The line-based mapping maps also time to the
horizontal axis. However, the Y coordinate of a code
line is now computed globally, over all versions, rather
than per version. In the line-based mapping, a given
code line has the same Y coordinate in all versions it
appears, and Y coordinates respect local line orderings
in all file versions. Identity between code lines in
different versions is evaluated with the diff tool. The
exact algorithm for computing the line-based mapping
is described in [8].

stabilization phase

Figure 1: File-based (top) and line-based (bottom)
mappings in CVSscan

The file-based mapping offers a simple, yet powerful
overview of the complete evolution of a given file or,
since in our concrete usage developers would code one
component per file, of a given component. Individual
code lines are not visible in Figure 1. However, this
image manages to depict around 20000 lines of code
spread over 65 versions. Colors indicate the type,
frequency, and distribution of changes, and version
sizes (on the Y axis) show the code evolution and
eventual stabilization phase the project enters. In
contrast, the line-based mapping allows identifying
stable code fragments and quickly spotting significant
inserted or deleted code as large gray areas.

2.1 Component System Assessment

Given the data model and visual mappings
supported by CVSscan, as described so far, the
question comes how one could use the above
techniques to assess component-based software.
Specifically, we are interested in assessing the
component development process and the performance
of component frameworks, for a given component
model. To use the CVSscan, or similar approaches,
such as its predecessor tool SeeSoft [2] for component-
based software source code, the following must hold:

• this software can be described by a linear
structure, i.e. an ordered sequence of elements.
These elements can be source code lines, in the
simplest case. However, any alternative data
model can be used, e.g. syntactic blocks

(component scopes, procedures, structures, or
other namespaces).

• information about the structure evolution is
available. In the simplest case of using a line-
based structure, this implies being able to
determine at which moment in time did a certain
line appear in the source code, and respectively
disappear from it. In other words, mechanisms
must be available for extracting and comparing
code structures.

Assessing a component development process is, in

this respect, a conceptually simple task. Indeed,
virtually all component models have a clear mapping
between components and their source code.
Additionally, many software projects use version
control management (VCM) systems, similar to CVS,
which hold history records about code evolution and
offer mechanisms for code comparison.

Assessing the component framework performance
using evolution visualization tools such as CVSscan is,
however, a more difficult task. It depends on the
ability of such tools to represent the framework state
by a linear structure and map performance
measurements and metrics on structure evolution
patterns. It may be the case that each performance
parameter requires its own line-based structure and
visualization and has a specific set of evolution
patterns.

We next present three mechanisms for assessing a
component model based on visualizations built with
the CVSscan tool. We illustrate these mechanisms with
real life examples. All these examples have been
obtained from the ROBOCOP framework for
component based software development [3].

2.2 Context of assessment

To understand the assessment results, we first
sketch the context in which we used the CVSscan tool.
ROBOCOP was developed on a period of four years
by an international consortium of several industry and
academic partners. Its focus is on providing a generic,
flexible, and resource-efficient set of mechanisms and
tools for implementing, composing, deploying, and
monitoring component-based software applications
with a focus on high volume embedded appliances
such as mobile phones, set-top boxes, and embedded
controllers. In this respect, the ROBOCOP component
model is similar to Koala [6], Rubus [1] and PECOS
[9]. ROBOCOP’s core, the run-time environment
(RRE), acts as a virtual machine providing application-
specific component library management, component

instantiation and destruction, and inter-component
communication and control interfaces.

Component interfaces are described in the
ROBOCOP Interface Description Language (RIDL).
Just as in most component frameworks, this language
can be translated, or compiled, to generate classical C
skeleton code. Developers can next add component
implementation code to this skeleton and compile it on
a variety of platforms.

For both the RRE and the component libraries,
several tens of versions exist, developed by the
different consortium partners during its four year
history. These versions emerged either due to changes
in the framework and/or component interfaces or due
to implementation changes when porting these to
different hardware platforms.

Finally, we mention that CVSscan was built and
used in assessing the ROBOCOP framework by
different people than those who work on the
component framework itself. We had thus the added
difficulty of understanding a third-party large software
system mainly through the perspective of our CVSscan
visualization tool.

3 Assessment of component development

The choice of the component development process
is an important issue when selecting the base
component model on which a software system should
be built. Investigating history recordings can give an
indication about the effort required to have a minimal
working component for testing purposes, the effort for
modifying component interface and/or implementation,
and the overhead related to maintaining framework
compliance during development. Questions such as
“how hard is to build a minimal component?” or “how
much component code was changed when some
framework interface got added?” can be directly
targeted by CVSscan. Once we have been able to
answer several such questions concerning the past
evolution of our system, we attempt to extrapolate the
results to the future. Most partners of the ROBOCOP
endeavor have expressed their high interest in being
able to answer, even if only qualitatively, the above
questions.

Figure 2 depicts several CVSscan visualizations of
a real-life ROBOCOP component evolution along 15
versions. We use a line-based layout, so the evolution
of each source code line can be easily followed along
the horizontal time axis. The upper part (Content view)
shows three snapshots of the entire system evolution
from the perspective of three different versions:

 Content view

Change view

Version 4 Version 7 Version 13

A

B

C

D

E

F

G

H

I

J

N

M

O

K

L

Version

Version Code lines

Code lines

Figure 2: Visualization of ROBOCOP component development process

version 4, version 7 and version 13. Color encodes
line content as follows: black (darker) indicates
function headers, yellow (lighter) shows function
bodies. The three snapshots in the lower part of Figure
2 (Change view) correspond to the ones in the Content
view, but use a different color encoding: black (darker)
indicates lines that do not change from one version to
the next one, while yellow (lighter) encodes changing
lines. In all snapshots, white shows gaps in the code,
i.e. places where code was deleted in a previous
version or will be inserted in a future version. For a
detailed explanation of the line-based layout
construction, see [8].

We can use Figure 2 to understand our component
development process. In the beginning (A), the
developer tries to build a stable component interface.
He edits the RIDL component description file and then

generates a C source code skeleton using the RIDL
compiler. In the first three versions of the considered
use case, the developer does not add implementation
code to the generated C skeleton, but tries to refine the
RIDL interface description. This is apparent in Figure
2 (J), as no code is inserted in the visualized file
besides the C function headers automatically generated
by the RIDL compiler, i.e. the thin dark lines inserted
in versions 2 and 3. Additionally, we see that the code
is automatically generated, since the function headers
in region K are changed. Generated function headers
have an automatically created textual reference to the
line number in the RIDL description file that
corresponds to that function. Inserting new interface
specifications causes the textual references to the
interface specifications following after them to
change, since the specification location in file changes.

As depicted in Figure 2, however, this can lead to
misunderstandings, due to the current skeleton
generation process, as follows. Every time the
developer adds new specifications to the RIDL file, he
needs to run it through the RIDL compiler in order to
generate appropriate function headers, which cannot
be created by hand. However, once developers start to
manually fill in this generated skeleton, adding new
interfaces can be a very cumbersome process. This is
mainly caused by the RIDL compiler, which has no
ability to merge the new skeleton information with the
existing one, but generates the entire skeleton anew,
discarding any hand-coded additions performed by the
developer. To prevent this, users maintain copies of
the old code, and every time new interfaces are added,
the generated function headers are manually merged
(i.e. by cut-and-paste) in the saved copy. In this way,
however, textual inconsistencies are introduced in the
existing function headers as they reference invalid
locations in the RIDL specification file. This can be
seen also from Figure 2, by comparing area (K) and
(N). The introduction of new interfaces in version 2
and 3 (J) causes existing function headers to be
updated (K). However, in version 7, the developer
manually inserts automatically generated headers in
the previous file version (E), which causes no update
in the existing headers (N).

Figure 2 shows also the amount of effort required
to have a minimal component running for testing
purposes. Version 4 of the considered component was
also the first functional one. We identify the main
effort to achieve that as writing the code in the (B)
area. From the Change view, we also see that the code
required for a minimal component does not change in
time except for some additional interface additions
like the one highlighted in (E).

The evolution of the ‘useful’ component code can
be noticed in the areas D, G and I, where most of the
code inserted during component refinement (i.e.
versions 4..15) goes away. Areas C, F, and H in the
Content view and the corresponding regions L, M, and
O in the Change view refer to empty function
implementations, i.e. non implemented interfaces.
These represent the code overhead required for
compliance with the ROBOCOP framework and have
no other useful purpose for the functionality of the
component.

Summarizing the information in Figure 2, we
conclude that developing ROBOCOP components
requires a very careful code architecting. Subsequent
interface changes are difficult to accommodate or lead
to inconsistencies. Additionally, the effort required to
have a minimal ROBOCOP component running may
be relatively high, e.g. accounting for almost 50% of

the developed code in the presented example.
However, once we have this code, it does not change
significantly during further refinement of the
component. Eventually, ROBOCOP components
might have to include pure ‘overhead’ functions
(empty implementations) for compliance with the
framework.

4 Assessment of change propagation

When component frameworks are not yet mature, it
is often the case that new framework versions are not
compatible with previous ones. In such cases, existing
components need to be re-architected to various
degrees in order to be supported by the new
framework. The effort required for this step may be so
high that migrating to a different, more mature,
component framework or maintaining the old
framework may be better alternatives. A detailed
estimation of the transition cost at framework change
is therefore of paramount importance. CVSscan can
help make such estimations, based on history
recordings for components that have been already re-
architected to comply with new framework versions.

Figure 3 shows four CVSscan snapshots visualizing
the evolution of the same component as the one
discussed in Section 3, but including two additional
versions that correspond to the transition from a first
framework version to a second one. In the upper part
of Figure 3, we use a file-based layout in conjunction
with a version filter (see [8]) to depict the amount of
code from one version that may be found in other
versions. Color is used to encode change: yellow
(light) areas are lines that did not change during
development; black (dark) areas show line changes.
By analyzing the upper left image in Figure 3, we infer
that a lot of code had to be changed when passing
from component version 16 to version 17.
Additionally, only about 75% of the component
implementation code from version 16 is found in
version 17. Furthermore, the upper right image shows
that new code had to be written for version 17 in
addition to what was preserved from version 16. The
amount of newly written code is almost 40% of what
was preserved. Overall, about 50% of the component
code in version 17 differs from the one in version 16:
This signals a quite high effort to adapt components
cope with changes in the ROBOCOP framework.

The lower part of Figure 3 uses a line-based layout
together with a version filter to show what interfaces
have been removed and what was inserted during re-
architecting. Color is used to encode line content:
black (darker) = function headers; yellow (lighter) =

File-based layout

Line-based layout

Versions

Versions

Code lines version 16 version 17

A

Figure 3: Migrating a component from ROBOCOP 1.0 to ROBOCOP 2.0

function bodies; white = deleted or inserted code,
exactly as in Figure 2 (see Section 3) Correlating the
lower left image (A) with the content evolution images
from Figure 2, we can easily see that a major benefit of
migrating to the new version 2.0 of the ROBOCOP
framework was to decrease the number of mandatory
interfaces that a component must implement to be
compliant with the framework.

CVSscan allows also more in-depth analysis of the
re-factoring a component passes through. This allows
us, when browsing the code, to separate framework-
induced code changes from those attempting to achieve
a better design for the component itself. Figure 4
depicts such a case. We use here a line-based mapping
to show the evolution of a component’s code over 10

versions. The same color scheme as in Figure 2 and
Figure 3 is used to display line changes. In Figure 4,
we can quickly see an abrupt change performed in
version 8. At a first look, we believe to see the
addition of several component interfaces (blue stripes,
A) and deletion of some of the existing ones (blue
stripes, D). However, a closer analysis of the image
(B) shows that all function declarations from version 7
are also found in version 8, and the actual code
deletions refer only to parts of the implementation
(function bodies). Moreover, the newly introduced
functions (A) are not interface implementations. Using
a classical code editor, we can easily investigate the
declarations of the newly added functions and realize

they do not have a ROBOCOP signature. Hence, the
major re-factoring performed in version 8 does not
change the component interface but is rather an
attempt to factor out common implementation code (C)
in order to make the component code more readable.
 Versions

Code
lines

A

B

Version 8 interfaces get
deleted here D

C

functions
get added
here

Figure 4: ROBOCOP component re-factoring:
factorizing common functionality

5 Assessment of framework performance

An important decision factor in choosing a certain
component framework as base for a software system is
the set of quality attributes it offers. Sometimes it is the
case that different component frameworks claim to
meet the same set of nonfunctional requirements. For
example, both Koala [6] and PECOS [9] allegedly
offer similar benefits concerning testability, resource
utilization, and availability of a computational model.
In such cases, further evaluation of the frameworks is
needed to assess their performance with respect to
each quality attribute and identify relevant quality
margins. To do this, we map the performance to
graphical patterns in the evolution of a linear code
structure and use CVSscan to visualize these patterns.

Figure 5 shows two CVSscan snapshots displaying
the performance of the ROBOCOP System Integrity
Manager (SIM) module running on a given terminal.
The SIM module [5] is a part of the ROBOCOP
framework in charge with remotely maintaining the
system integrity of already deployed systems. One of
the main activities of this module is to search for
defective components and replace them with good-
functioning ones according to a set of predefined
policies. While this is one of the main features of the
ROBOCOP framework, care has to be taken when

building the replacement policies to avoid
inconsistencies.

In Figure 5, we depict the evolution of a set of
components running on a ROBOCOP terminal (client),
managed by a SIM using two different replacement
policies (Policy 1 and Policy 2). The horizontal axis
represents the time. The vertical axis represents the
component set. In other words, whereas the examples
presented in the previous sections displayed code lines
versus time, we now display components versus time.
Color encodes component change: yellow (lighter) =
component changed by the SIM; green (darker) =
component remains unchanged. The lower colored
strip in each image shows the policy that generated a
given change: light green (lighter) = Policy 1; blue
(darker) = Policy 2.

 Discrete Time (SIM intervention)

Component set

Policies

Policies

D

A
C A A

A

B

C C

A B A

Figure 5: ROBOCOP system integrity manager:
consistent(top) and inconsistent (bottom) policies

We can see different patterns emerging when the
SIM replaces a faulty service: A = both policies
generate a replacement; B = only Policy 1 generates a
replacement; C = Policy 1 generates a replacement
immediately after a replacement generated by Policy 2;
D = both policies generate continuously replacements.
While pattern A may indicate that Policy 2 comes as
an enhancement of Policy 1, as it corrects possible
flaws not covered by the latter, pattern C may indicate
a problem introduced by SIM, as every replacement
performed by Policy 2 is on a latter occasion
overridden by Policy 1. Moreover, pattern D may
indicate the presence of an inconsistency between the
two policies, as the decision about changing a
component is continuously retaken at every SIM
intervention by both policies. Currently, ROBOCOP

system developers are considering the use of CVSscan
to help them while assessing the SIM module
performance for a given set of policies.

6 Conclusions
We have presented several techniques for assessing

several aspects of the component development process,
using the CVSscan source code visualization tool. We
validated our approach, both in terms of the CVSscan
tool intuitiveness and the correctness of the concrete
findings we obtained with it. For this, we analyzed
ROBOCOP, a complex third party component
framework, and discussed our findings and
methodology with its developers. Two issues emerged.
First, our concrete findings (e.g. “component interfaces
stayed unchanged for the following ‘x’ versions”) were
confirmed by the developers as known, correct facts.
Second and more interesting, some findings led us to
hypotheses (e.g. “the patterns seen here denote code
re-factoring”) that were new for the developers, but, at
further detailed code inspection, were found correct. In
other words, our visualization lets one see known
information and also discover new facts about a given
component structure and implementation.

Our approach is relatively generic. CVSscan’s line-
based code model currently uses the UNIX-like diff
provided by the CVS repository to compare code.
Although this makes CVSscan applicable to any type
of source code, a weak point is the accuracy of the
diff operator used to compare component versions.
The visualization accuracy depends on the heuristics
behind this operator, which can lead to data
misinterpretations, e.g. when too many changes occur
between consecutive versions. However, CVSscan can
also support a syntactic, instead of line-based, code
model, where the central element is a component’s
interface, defined e.g. as a list of methods. Once a
diff mechanism is implemented for such a model,
e.g. by syntactic interface comparison via method
signatures, CVSscan can be straightforwardly used.
Instead of a code line, users would see now a method,
or even a whole component. The CVSscan tool, as
well as several example datasets, is available at:

www.win.tue.nl/~lvoinea/soft/CVSscan_setup.exe

So far, we only focused on the evolution of
individual components. As future direction of research,
we plan to extend our approach with higher-level
overviews, such as whole-project evolution
visualizations, to enable inter-component evolution
analyses on entire systems. Our final aim is to integrate
CVSscan in a toolset for component visualization and
analysis and make it effectively and efficiently

available to the component based software engineering
process.

7 Acknowledgments
This research was part of the ITEA project

Space4U, whose aim is to define a component based
framework for the middleware layer of high volume
embedded appliances (http://www.win.tue.nl/space4u)

8 References
[1] Articus Systems, Rubus OS - reference manual, 1996

[2] S.G. Eick, J.L. Steffen, E.E. Sumner, "Seesoft - A Tool
For Visualizing Line Oriented Software Statistics", IEEE
Trans. on Software Engineering, IEEE CS Press, Vol. 18, N.
11, Nov. 1992, pp. 957– 968

[3] ITEA, ROBOCOP: Robust Open Component Based
Software Architecture for Configurable Devices Project --
Framework concepts. Public Document V1.0, May 2002,
available online at:
http://www.hitech-projects.com/euprojects/robocop/

[4] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin,
“Evaluation of Component Technologies with Respect to
Industrial Requirements”, Proc. of the 30th EUROMICRO
Conference (EUROMICRO’04), IEEE CS Press, Rennes
(France), 31 August – 3 September 2004, pp. 56 – 63

[5] J. Muskens and M. Chaudron, “Integrity Management in
Component Based Systems”, Proc. of the 30th EUROMICRO
Conference (EUROMICRO’04), IEEE CS Press, Rennes
(France), 31 August – 3 September 2004, pp. 611 – 619.

[6] R. van Ommering, F. van der Linden, J. Kramer, and J.
Magee, “The Koala Component Model for Consumer
Electronics”. IEEE Transactions on Computers, 33(3), 2000,
p.p. 78– 85

[7] L. Voinea, A. Telea, M. Chaudron, “Version Centric
Visualization of code Evolution”, to appear in Proc. of the
IEEE Eurographics Symposium on Visualization
(EUROVIS’05), IEEE CS Press, available online at
http://www.win.tue.nl/~lvoinea/cvsv.pdf

[8] L. Voinea, A. Telea, J.J. van Wijk, “CVSscan:
Visualization of code evolution”, to appear in Proc. of the
ACM Symposium on software Visualization (SoftVis’05),
ACM Press, NY, USA, available online at
http://www.win.tue.nl/~lvoinea/cvss.pdf

[9] M Winter, T Genssler, “Components for Embedded
Software – The Pecos Approach”, Proc. Second
International Workshop on Composition Languages, In
conjunction with 16th European Conference on Object-
Oriented Programming (ECOOP), Malaga (Spain), June 11,
2002

