

CVSgrab: Mining the History of Large Software Projects

S.L. Voinea and A. Telea

Technische Universiteit Eindhoven

Abstract
Many software projects use Software Configuration Management systems to support their development
process. Such systems accumulate in time large amounts of information useful for process accounting and
auditing. We study how software developers can get insight in this information in order to understand the
project context and the product artifacts. To this end, we propose several new techniques for visual mining of
project evolution. Central to our approach is a file-based evolution visualization, where each project is shown
as a set of horizontal stripes depicting files along the time axis. We propose several mechanisms for
interactively building layouts in this display, and for correlating the evolution with the results of various
software metrics. We demonstrate the usefulness of our approach on real- life data sets.

Categories and Subject Descriptors (according to ACM CCS): D.2.2 [Software Engineering]: Design Tools
and Techniques; D.2.7 [Software Engineering]: Maintenance, Enhancement; H.5.2 [User Interfaces]:
Evaluation, Methodology

1 Introduction
Software Configuration Management (SCM) systems are
an essential ingredient of effectively managing large-scale
software development projects. A main feature of a SCM
system is that it maintains a history of changes done in the
structure and contents of the managed project. This serves
primarily the very specific goal of navigating to and
retrieving a specific version in the evolution of the project.
However, information maintained by SCM systems enable
also many scenarios that fall outside the above very precise
goal. The intrinsically maintained system evolution
information is an excellent starting point for empirically
understanding the software development process and its
structure. One area that can benefit from this information is
the software maintenance of large projects.

During the maintenance phase of most projects,
appropriate documentation misses or is ‘out of sync’ with
the actual code. In such cases, code evolution information
maintained by a SCM system (when such a system is used)
is the one and only up-to-date reference material available.
Effective use of this information can greatly help
maintainers understand and manage the evolving project.

In this paper, we propose a set of new techniques for
visually assessing the entire evolution of software projects
using the evolution information contained in SCM systems.
Typical questions we target with our techniques are:
- What is the project-wide activity, i.e. when have been

files created, modified, and by who, and how did this
activity evolve during the project?

- Which are the project areas of high(est) activity?
- How are development tasks distributed among the

programmers?
- Which are the project files that belong and/or are

modified together?
- How well does the project conceptual and functional

organization match the actual folder structure?
We validate our techniques by implementing them in a

tool, CVSgrab, which seamlessly combines SCM data
extraction with analysis and visualization.

The structure of this paper is as follows. In Section 2, we
review previous work on software evolution visualization.
Section 3 outlines the data model we use for the software
projects to be visualized. Next, we detail the visual layout
mechanisms we use for our evolution visualizations and for
correlating them with other results of project evolution
analysis. Next, we propose several interaction techniques to
support the visual mining of the evolution data. Section 4
presents several use-cases that illustrate the use of our
approach for investigating the evolution of industry-size
projects. Section 5 summarizes our contribution and
outlines open issues for future research.

2 Related work

The research community has only recently acknowledged
the huge potential of the information stored by SCM
systems as a starting point for empirical studies on software
development. The massive growth in popularity and use of
SCM systems, influenced by open source projects like CVS

Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

© The Eurographics Association 2006.

and Subversion, opens new possibilities for project
accounting, auditing and understanding. Efforts have been
focused so far in two research directions: data mining and
data visualization. Data mining research focuses on
processing and extracting relevant information from the
evolution data stored into SCM systems. However, most
data mining approaches work by trying to fit an existing
‘data model’ on the raw information stored by the SCM
systems, which is fine if the model is correct and exactly
what the user wants to see, but may be of limited use
otherwise.

Data visualization, the second research direction, takes
the different path of making the large amount of evolution
information effectively available to the user. Visualization
techniques use a ‘weak’ data model, as the goal is to let the
user discover patterns and trends by himself rather than
hard-coding such models in the mining process.
Visualization tools try to present data in a way that is as
intuitive and familiar as possible to users. SeeSoft [ESS92]
is one of the first tools to visualize software change. It uses
a direct ‘code line to pixel line’ visual mapping and color to
show code fragments that match given modification
requests. Augur [FD04] visually combines information
about artifacts and activities of a software project at a given
moment. UNIX’s gdiff and its Windows version
WinDiff visualize code differences between just two
versions of a given file by drawing the line insertions,
deletions, and modifications found by the diff tool. Such
tools can reveal the line-based structure of software
systems and change dependencies at given moments in
time. However, they do not provide insight into code
attributes and higher-level structural changes made
throughout an entire project with hundreds of versions of
thousands of files. Moreover, they do not use all the
information potential of SCMs, such as information on
change time and authors.

Recent efforts try to overcome these limitations.
Collberg et al. [CKN*03] visualize the software structures
and mechanisms evolution using a sequence of graphs.
However, this approach does not seem to scale well on real-
life datasets. The CVSscan tool [VTvW05] offers
comprehensive overviews on the evolution of single, or
few, files. Code lines are mapped to pixel lines, as in
SeeSoft [ESS92]. Next, file versions are arranged along the
time axis to visualize evolution. They are equally spaced,
disregarding their recorded creation time. In this way,
CVSscan can detect change dependencies inside a small
number of files, but doesn’t allow correlations across large
projects. The uniform time sampling is efficient only when
relevant changes occur at the same time and need to be
distinguished from neighboring ones. For large projects, the
situation is different, as changes rarely occur at exactly the
same time, so correlations must be based on some kind of
distance measure. [Lan01] also uses a version uniform
sampling of the time axis to visualize project evolution at
class level. Classes are drawn as variable size rectangles,
laid out one below the other in a vertical stripe in
alphabetical order. Closely related, Wu et al. [WSH*04]
visualize evolution of entire projects at file level using a

time uniform axis, and focus on the moments of evolution.
Such methods scale well for industry-size systems and
provide insightful evolution overviews. Still, they do not
offer an easy way to find the artifacts that have a similar
evolution.

We propose here a set of visualization technique that
extend the work mentioned so far and enable evolution
correlations across complete projects. We introduce a new
mechanism for interactive building of layouts that supports
a visually driven data-mining approach to answer the
evolution assessment questions stated in Section 1.

3 Visualization model

We use the assumption that developers are comfortable
with visualizing code in the same spatial context in which
they construct it [ESS92]. Software maintenance is mainly
done at code level, so we use a 2D code-centric approach to
visualize the software evolution, as in [ESS92, VTvW05].
As a new element, we interactively present the entire
evolution of complete projects on one screen. This enables
actively using visualization for mining the history of
software projects.

3.1 Data model

We use data from the CVS version control management
system, one of the most popular SCMs available. However,
our data model is generic to all structure-based SCM
systems. The central element is a repository R that stores
all versions of all NF files in a project:

 { }NFiFR i .. 1==
Each file Fi is defined as a set of NVi versions:

{ }ijii NVjVF .. 1==
A version is a tuple containing several attributes: the

unique version id, the time when it was committed to the
repository, the author who committed it, a log message and
its source code:

demessage,cortime,authoidV ji ,,=

The first four elements (id, time, author, and message)
are unstructured attributes. The code can be structured in
different ways, e.g. a set of lines, or set of functions,
classes, modules, or other grammar constructs.

3.2 Visualization techniques

The approaches in [Lan01] and [WSH*04] are the only
ones we are aware of that scale well for visualizing the
evolution of industry-size projects. Both techniques use a
fixed vertical ordering of the entities (classes and files).
This ordering does not specifically help finding entities
with similar evolution. We propose a novel approach for
visualizing complete projects with a flexible entity layout
that can be interactively modified by users to suit specific
analysis scenarios.

Similarly to [WSH*04] we visualize complete projects at
file granularity level. Every file is drawn as a fixed height
horizontal stripe made of several segments (Figure 1). Each
segment corresponds to a version of that file. Segments are

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

© The Eurographics Association 2006.

ordered according to creation time and their length is scaled
with the lifetime of the respective version. Segments can be
colored to show various data. First, we can show the author
that committed the respective version by mapping the
author id to a unique hue (Figure 1 top). This helps
evolution correlations based on both activity and the
authors’ network. Alternatively, color can show the state of
the version in the context of a complete project, i.e. file not
created yet, before last version, last version. (Figure 1
bottom). This supports evolution correlations based on
activity only, but provides simpler image that focus
specifically on activity events. For both alternatives, we use
geometric shaded cushions [vWvdW99] to emphasize the
version segments and segregate between vertically stacked
file stripes. Also, we draw the commit moments themselves
as thin vertical yellow lines between the version cushions.

V1 V3 V2 V4 V5 V6 V7 V8

Time

Time

file not created yet before last
version

last version before last
version

Figure 1: File evolution representation. Color encodes
user identity (top) and activity (bottom)

We build complete project visualizations of software
evolution by stacking individual file stripes on the vertical
axis so they share the same time scale and use the same
color encoding. In contrast to [Lan01] and [WSH*04], we
do not fix the vertical axis ordering, but allow (and
encourage) users to interactively change the layout to target
specific analysis needs. We describe next two mechanisms
to achieve this goal: sorting and clustering.

Sorting allows identifying how a relevant project metric
is distributed across a set of files. Files are ordered along
the vertical axis according to that metric’s values. Similarly
to the TableLens system [RC94], we propose several
metrics that generate alternative layouts of the project
evolution: creation time (similar to [WSH*04]), alphabetic
order (similar to [Lan01]), activity measure (i.e. number of
versions), and evolution similarity measure. The last metric
works as follows: given some file of interest (the focus), we
measure the similarity S between its evolution and that of
all other files (the context).

To define S, we introduce first the notions of commit
neighborhood NK and evolution correspondentτ . Let V1 be
the set of commit moments for all versions of a file F1 and
V2 be the set of commit moments for all versions of a file
F2. Then *: 21 VVN K → is a mapping that assigns to each
element t of V1 a set of elements V2

* ⊆ V2 that are in a time
vicinity of K time-units from t:

() { }KtuVuutN K <−∈= , 2

{ }∞→ UsVV1:τ is a mapping that assigns to each
element t of V1 the minimum element from ()tN K , if such
an element exists, or ∞ (infinity) otherwise:

() () ()
otherwise

empty not is

 t tNN
t KK





∞
=

min
τ

We define now the evolution similarity S(F1,F2) of files
F1 and F2 as the symmetrized sum of inverses of the time
difference between all commit moments in a file and their
evolution correspondents in the other file:

() ()∑∑
== +−

+
+−

=
21

1 221 11
21 1

11
1

11 V

j jj

V

i ii ttVttV
FFS

ττ
),(,

where
1Vti ∈ ,

2Vt j ∈ , 1τ is the evolution correspondent

from V1 to V2, and 2τ is the evolution correspondent from
V2 to V1. This measure says that files that are changed at
similar moments, are more similar than others from an
evolution perspective. Using S(Fref , F) permits us now to
sort all files F according to the relevance (i.e. connection)
they have with respect to a given reference file Fref. Why
would this assumption be true? The underlying idea, which
can be checked as correct in many large software projects,
is that files which depend on each other, either via explicit
data or call structures or otherwise, must (and will) be
changed together to maintain the desired system invariants.
Thus, change similarity is correlated with interface or
implementation interdependencies. We argue that not
complete transactions are important for detecting similar
files, but pure commit moments. A transaction-based
similarity measure, e.g. [ZWD*04], fails to correlate files
that are developed by different authors and have different
comments attached, but are nevertheless highly coupled.

Figure 2 shows an example of the proposed similarity
measure used to sort files on the vertical axis. The
evolution of 23 files is colored by activity, as described for
Figure 1. Yellow lines show commit moments. The
topmost file is the reference file Fref; chosen by the user, the
other files are vertically sorted on decreasing similarity
with respect to Fref. This image allows us to easily find the
files that a have a similar evolution with the reference one.

 reference file decreasing similarity

Figure 2: Sorted files layout based on a similarity measure

The second generic mechanism we propose for
interactive building of layouts is the clustering operation.
Clustering enables finding groups of strongly related files,
i.e. files that have similar computed properties. Two issues
must be addressed here. First, we must provide a
meaningful similarity measure. Second, we must provide a
method for grouping similar files. We use the same
similarity measure described before for the sort mechanism,
and a bottom-up agglomerative clustering based on average

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

© The Eurographics Association 2006.

link to group similar files [ELL01]. We start with the
individual files and recursively group the two most similar
ones in a cluster, until a single cluster is obtained, creating
thus a cluster tree. When a new cluster is constructed, it
collects all the commit events of its two children. Similarly
to the HCE system [SS02], after the tree is constructed, the
user can choose to draw the clusters at some given depth
from the root, i.e. view the project at the desired ‘level of
detail’. Although our clustering may be more
computationally intensive than other techniques, e.g. k-
means [ELL01], it provides a simple, automatic and
deterministic way to identify similar entities.

We visualize the clustering results using colored and
shaded cushions. Clusters are rendered as semitransparent
rectangles atop of the file stripes, textured with plateau
cushions [LNV*05], i.e. luminance signals that increase
parabolically close to the margins and have a constant
(plateau) value in the middle. We use alternating hues, e.g.
blue and red, for neighbor cushions. Due to the semi
transparency of the cushions, these hues blend with the file
stripes (Figure 3, right). The alternating hues effectively
help visual segregation of clusters depicted by cushions.
For example, Figure 3 compares cluster cushions with and
without alternating hues.

Figure 3: Cluster segregation: plateau cushions without
(left) and with alternating hues (right)

 However, alternating hues alone may not be sufficient
for visual segregation. When a rich color encoding is used
for the file stripes, e.g. the author-id color encoding, we
must minimize its interference with the cushion hues. A
too soft cushion hue blending over richly colored file
stripes yields a poor visual separation of clusters in the
border regions.

Figure 4: Cluster segregation: color blending only (top),
plateau cushions (bottom)

Figure 4 presents a relevant example. It depicts the
evolution of 10 files with color-encoded author-id. Three
clusters are also shown, the first one containing the first
four files, the second containing the following two, and the
last containing the remaining four. Figure 4 top uses a

color-only blending scheme to segregate between clusters.
However, the visual transitions between clusters are not
obvious. One could easily interpret the color change as
author-id change and not as another cluster. In contrast,
Figure 4 bottom uses plateau cushions and one can now
easily identify the three clusters. We experimented with
different cushion profiles, such as purely parabolic
[vWvdW99]. However, the design presented above was the
most visually pleasing and effective of the studied ones.

By combining sort and cluster operations, we can
interactively build visualizations of project evolution that
suit specific analysis needs, as illustrated next.

1

2

3
C

lu
st

er
s

Sort ranges

Figure 5: Interactively built layout using sort and
clustering operations

Figure 5 shows the evolution of 28 files from a real
project (the FreeDesktop) using such an interactively built
layout. The described alternating blue-red hue blending and
plateau cushions are used to segregate clusters. Files are
colored on activity: white (i.e. pink or light blue after hue
blending) = file not created yet, dark blue (dark blue or
magenta after hue blending) = before last version, light
blue (light blue or magenta after hue blending) = last
version. Yellow lines show commit moments. Six clusters
emerge, each containing files with similar evolution.
Within each cluster, files are sorted according to their
creation time. This image immediately shows files with
similar behavior. The strongly related files in cluster 1 are:
Glyph.c, Picture.c, Xrender.c, Xrender.h. At detailed
inspection, we discovered that these files contain code of
the project’s image generation engine. This confirms the
correlation between similar evolution and conceptual
similarity.

A second important finding is that files with a strongly
coupled evolution, i.e. clusters 1 and 2, have also a similar
creation time and this time is close to the project beginning.
Files that are created later seem to be less connected
(cluster 3). This may be an indication that the system’s core
functionality, developed in the beginning of the project, is
found in clusters 1 and 2. Concluding, the interactively
built layout in Figure 5 enables user-driven cross-project
correlations based on similar evolution and the creation
time metric. Such correlations do not address only the
development process assessment. As illustrated by this
example, they may bring insight also in the structure and
organization of the project, a key requirement in the
maintenance phase of many projects.

© The Eurographics Association 2006.

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

The interactive layout technique we propose enables the
user to combine clustering with a refined sort operation, i.e.
equal values in one sort criterion may be further ordered
using another metric, to adapt the visual mining process to
specific needs. Useful correlations can be obtained by
comparing the results of different sort operations.

To further extend the correlation capabilities of our
interactive layout in this direction, we use metric views, i.e.
narrow information bars that decorate the main evolution
visualization area. These views use simple encoding
techniques, e.g. 1D graphs and color maps, to show one-
dimensional metric data in a very small space. To enable
correlations, metric views share their main axis with one of
the axes of the main visualization. Vertical views visualize
per-file computed quantities, and horizontal views visualize
time-related, per-project metrics. Concretely, in the vertical
metric view we show the various metrics used for sorting,
i.e. the file creation time, alphabetical order, activity
measure, and similarity with respect to a reference file. In
the horizontal metric view, we visualize the project-wide
activity measure, i.e. total number of files updated in a
given period. Figure 6 shows the evolution of 68 files from
a large project (the VTK library) using the same color
encoding as in Figure 2, i.e. activity based, and sorted on
creation time. The vertical metric view shows the file
activity as a 1D bar graph. The horizontal metric view
shows the project wide activity. By correlating the main
layout with the vertical metric view, we see that file
creation time does not fully determine the file activity. Two
activity hotspots are identified. They correspond to groups
of files that appeared later in the project but had high
activity, so they might contain important and/or
problematic functionality. We validated this hypothesis
against the knowledge of an expert VTK user, and it proved
to be consistent with the reality. Concluding, the correlation
of the interactively built layout with the metric views
enables the user to easily construct pertinent hypotheses
about the qualitative aspects of a project based on its
evolution.

V
er

tic
al

 m
et

ric

Horizontal metric

ActivityActivity hotspots

Figure 6: Metric views. Vertical: file activity. Horizontal:
project- wide activity

While these do not immediately guarantee a valid system
assessment, they represent a solid starting point for further
investigation and facilitate understanding process during
the maintenance phase of software projects.

3.3 User interaction

To validate the proposed techniques, we implemented them
in CVSgrab, a tool for visual mining of CVS repositories.
To facilitate the exploratory layout building and correlation
making we provide a rich interaction palette, following
Shneiderman’s guidelines [Shn96]. CVSgrab gives an
intuitive 2D overview on the evolution of complete
projects. Industry-size projects, however, may contain
thousands of files spread across more than one decade. To
facilitate access to details, CVSgrab provides zoom and
pan facilities. Zoom presets enable easy access to standard
view modes, e.g. fit image to screen, fit file to line size.
Some visual elements have a zoom-adaptive behavior to
preserve their visual efficiency across different levels of
detail. The plateau cushions, for example, have a zoom-
dependant height such that their appearance remains the
same in the border regions. In this way, the visual
segregation of clusters becomes independent on the zoom
level at which it is performed. Figure 8 illustrates this. The
bottom row shows a 20-fold magnified inset of the data
shown in the top row. Still, the cushions shown in the top
row look similar to the ones in the bottom row. Details-on-
demand let users get detailed information about a selected
or mouse-brushed version, such as precise size, file name,
up to author comments saved at commit time.

4 Exploration Scenarios

We analyzed the use of CVSgrab for mining the history of
several industry-size projects. Here we present the results
of one such exploration for the VTK library, an open source
project of over 2700 files written by 40 developers in over
11 years. The project was mined by three experienced C++
developers having, however, no VTK knowledge. They
participated first in a 15-minute training in which the
functionality of CVSgrab was explained on a small
example project, with several generic use cases that could
be easily reproduced on other input data. Next, they mined
the history of VTK for 2 hours. Finally, their findings were
assessed by a developer with over eight years of VTK
experience.

Figure 7 depicts various annotated visualizations of the
complete project evolution obtained during the study using
sort operations. Figure 7.a, 7.c, and 7.d color files on
activity, as detailed in Sec. 3.2. Yellow lines show commit
moments. Figure 7.b colors files on author id, every hue
being a separate author. While this might create confusion
when establishing the identity of users encoded by similar
hue, it gives a good overview of major overall patterns. In
Figure 7.a files are sorted alphabetically. Although cluster
cushions are not rendered, a vertical metric view (C) shows
the clusters to which files belong, using color mapping. The
alphabetical sorting of files uses the full pathname and thus
nicely groups together files in the same folders. By mouse
brushing the evolution area, the users easily identified the
major folders of the project, highlighted in (A): Imaging,
Graphics, Contrib, and Common. The names were made
available as details-on-demand in visualization window’s
status bar. Two compact, low-activity evolution regions
were also spotted (B). By brushing the corresponding

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

© The Eurographics Association 2006.

a) b)

c) d)

B

C

H

E

G

I

F

A

D

J

K

M
L

Figure 7: Interactively built layouts of the VTK project using sort operations: (a) files sorted alphabetically, vertical metric
shows cluster IDs, (b) files sorted by creation time, vertical metric shows activity, (c) files sorted by activity, vertical metric
shows activity, (d) files sorted by similarity with respect to a reference file- vtkIntArray.cxx , vertical metric shows similarity.

evolution area, the users discovered, via the status bar
information, that they refer to VTK code examples in
Python.

The vertical metric view (C) helped the users conclude
that the project’s functional organization does not
correspond entirely to its organization as a set of folders,
i.e. to the file hierarchy. Sorting on creation time allowed
the users to find several possible moments of so-called
punctuated evolution (E), i.e. moments when large code
changes took place in a short time. The details-on-demand
feature helped refining their hypotheses about these events.
Of the four moments highlighted in the image (E), three
refer to the addition of VTK examples, and just one
involves heavy changing of the library functionality.
Further, as visible in the image, the vertical metric (F) has
no smooth transitions. This suggested there is no direct
correlation between creation time and file activity. Indeed,
the project contains both files that were introduced early
but recorded little activity, e.g. stable interfaces and/or
implementations, and files that where introduced later but
were frequently updated, e.g. problematic and/or unstable
implementations. In Figure 7.c files are ordered according
to their recorded activity. The vertical metric view (G)
depicts also the activity measure using a rainbow color map
(red = high activity, blue = low activity). From this image,
the users concluded that most development is concentrated
in less than 10% of all files (G), with a few files, e.g.
vtkRender.cxx, vtkPolyData.cxx, vtkImageData.cxx being
frequently updated. Indeed, these files contain fundamental,

core-related structures of the library. Figure 7.c was also
useful to find the activity outliers. The highlighted inset (H)
depicts an example of an early outlier, i.e. a stable file
during evolution: vtkRender.h. The highlighted inset (I)
depicts a late outlier, i.e. a file introduced later, but often
updated: vtkDataObject.cxx. Finally, in Figure 7.d, files are
arranged according to their similarity with respect to a
selected reference file: vtkIntArray.cxx. The vertical metric
view (L) uses a rainbow colormap to depict the similarity
measure (red = very similar; blue = very different). The
users concluded that the chosen reference file had little in
common with most of the other files in the project, as the
metric view is almost entirely blue. In the magnification
caption (K) a zoomed-in region of the evolution area (J) is
displayed. This revealed a small number of files that had a
higher similarity value. Via the details-on-demand
mechanism the users discovered their identity:
vtkLongArray.cxx, vtkFloatArray.cxx, vtkBitArray.cxx, etc.
Indeed, detailed inspection confirmed these files have a
tightly coupled implementation. The files depicted in
region (M) are arranged in decreasing order of their
creation time. They represent actually files that have no
similarity with the reference one and are sorted according
to a secondary criterion.

In Figure 8 the evolution of the complete VTK project is
displayed using sort and clustering operations. An activity-
based color encoding is used, as in Figure 7.a. The three
users relied on the filtering mechanism of CVSgrab to
interactively adjust the number of displayed clusters in
order to approach a desired visual granularity level. To

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

© The Eurographics Association 2006.

cope with the unbalanced cluster hierarchy characteristic to
agglomerative clustering, we propose a nonlinear selection
of the hierarchy level to be visualized. For a given selected
granularity level, all clusters on the minimum level that
offers at least the requested level of detail are displayed.
Due to the very nature of clustering, different requested
granularity levels might lead in this case to the same visual
representation, but also representations of neighboring
requested granularity levels might be very different.

In Figure 8 top, from left to right, we display all clusters
on the requested level of detail of 5%, 40%, and
respectively 50% of the entire system. Files are sorted in
alphabetical order. The proposed filtering mechanism
shows here another known drawback of agglomerative
clustering: both large (E) and very small clusters (F) coexist
and it is difficult to assess them together. This can be
corrected, if desired, by modifying the tree render traversal
to return clusters having some size balancing constraints.
Still, useful investigations can be done using the actual
traversal. The arrows in the image highlight parts of the
cluster inclusion path in the cluster hierarchy.

On inclusion path (A) the users observed that one part of
the system behaved like a cluster seed of highly connected
files (I) that grew in a large cluster (G). This part seemed to
contain (a part of) the core of the VTK library, which the
users localized in the Graphics folder. Using the details-on-
demand feature, the users found that the cluster seed (I)
contains mainly interfaces for a number of rendering
related classes (e.g. vtkVectorDot.h, vtkLineSource.h,
vtkWarpTo.h). On inclusion path (B), the users observed
that a large part of the system (E) appears to have a
separate evolution with respect to the core (H). Via the

details-on-demand mechanism the users discovered this
part contains mainly usage examples in three programming
languages: C, Tcl, and Python. Further, a subset of the Tcl
examples (J) seems to have a different evolution then the
rest (K). Again, at closer inspection of the files themselves
and their respective comments, the users could indeed
confirm that the examples were structured in a different
way, and had a different evolution, from the main core of
the VTK proper.

 In Figure 8, bottom, zoomed-in captions of evolution are
displayed for requested cluster granularity levels of 32%
(left) and 33% (right) of the entire system. Files are
arranged in order of their creation time. As previously
explained, the difference in the number of displayed
clusters can be quite large, even for consecutive requested
levels of detail. Nevertheless, the clusters highlighted in (C)
and (D) seem to have an interesting evolution. Via details-
on-demand, the users discovered that cluster (C) has two
evolution ‘roots’: one that groups generic data description
and modeling classes of VTK (L), e.g. vtkImageData.cxx,
vtkDataObject.cxx, and one that contains the
implementation of various grid classes (M), e.g.
vtkStructuredGrid.cxx, vtkRectilinearGrid.cxx. Cluster (D)
contains the implementation of various array classes (N),
e.g. vtkFloatArray.cxx, vtkIntArray. These suggested that
the implementation of the array classes is closely connected
to the VTK dataset classes. Indeed, this supposition was
confirmed by the experienced user. Additionally, they are
all related to the implementation of the grid techniques,
which less is intuitive and, therefore, a good direction to
further investigate in order to understand the system.

A

B E

F

C

D

G
I H
J

K

L

M

N

Figure 8: Visualization layouts: clustering and alphabetical sort (top row); clustering and sort on creation time (bottom row)

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

© The Eurographics Association 2006.

At the end of this study, we summarized the three users’
observations and checked them again with the knowledge
of the expert developer, who validated the largest part of
the observations as fully correct. One aspect he found
himself novel was the lower-than-expected number of files
from the ‘project core’, i.e. files where most of the activity
is concentrated (see G in Figure 7.c).

5 Conclusions

This paper presents a set of visualization and interaction
techniques that support history mining of large-scale
software projects. Our goal is to enable developers and
project managers in the software maintenance community
to visually and interactively explore the evolution of
software projects in a way that facilitates the system and
process understanding.

We propose a novel technique for interactive layout of
file evolution representations, by interactively mixing and
adjusting sort and cluster operations to direct the visual
mining towards specific goals. We enable evolution
correlations based on more sort criteria at the same time, by
adding horizontal and vertical metric views. We propose a
simple-to-use, yet powerful clustering technique that
reduces the project visualization to a user-specified number
of clusters with files having similar evolutions. This targets
queries such as “show the whole project split into n similar
components”. We reduce the interference between the
cluster rendering and file colors using a mixed cluster
luminance and hue encoding. This combines the visual
comfort of hue-based cluster segregation with the precision
of the plateau cushions in the boundary regions.

We validate the proposed techniques by implementing
them in CVSgrab, a visual tool for exploring the evolution
of industry–size projects. The dense pixel visualization
combined with interactively built layouts makes it possible
to navigate and assess code projects beyond the size of
what is possible by similar tools [CKN*03, VTvW05] or
with better insight [Lan01, WSH*04]. For example, we can
get a comprehensive overview of the complete evolution of
the VTK project (2700 files, 40 developers, over 11 years,
about 100 versions for active files) in five screens, with
quite little interaction. True, CVSgrab does not allow
visualizing code at line level. For this, other tools, such as
[VTvW05] are best used. CVSgrab’s main strength comes
when one does not know where (and why) to zoom in,
given a large software project of many versions. Secondly,
the evolution-based similarity sorting and clustering
proposed here can be effectively used to discover relations
between files in a project that are not apparent, without
needing to use more the complex, slower, language-specific
parsing of the files’ contents.

We plan to extend our approach with more sort criteria
and different, more effective, similarity measures. The
visual encoding of clusters should be improved to cope
with the unbalanced cluster trees, e.g. by simultaneously
displaying clusters with different similarity levels. Another
challenge is to visualize and enable correlations across
multiple version attributes at the same time. Our final aim

is to create a fully featured code visualization and analysis
toolset, and make it available to the software development
and maintenance community.

Acknowledgements

We are thankful to the anonymous EUROVIS reviewers for
their detailed and constructive remarks on earlier versions
of this paper.

References
[CKN*03] COLLBERG C., KOBOUROV S., NAGRA J., PITTS J.,

WAMPLER K.: A System for Graph-Based Visualization
of the Evolution of Software, Proc. ACM SoftVis, ACM
Press, 2003, pp. 77 – 86

[ELL01] EVERITT E., LANDAU S., LEESE M.: Cluster
Analysis. Arnold Publishers, 2001

[ESS92] EICK S.G., STEFFEN J.L., SUMNER E.E.: SeeSoft -
A Tool for Visualizing Line Oriented Software
Statistics. IEEE Trans. on Software Engineering,
18(11), 1992, IEEE CS Press, 1992, pp. 957 – 968

[FD04] FROEHLICH J., DOURISH P.: Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams. Proc. ICSE, IEEE CS Press,
2004, pp. 387 – 396

 [Lan01] LANZA M.: The evolution matix: Recovering
software evolution using software visualization
techniques. Proc. Intl. Workshop on Principles of
Software Evolution, ACM Press, 2001, pp. 37–42

[LNV*05] LOMMERSE G., NOSSIN F., VOINEA S.L., TELEA
A.: The Visual Code Navigator: An Interactive Toolset
for Source Code Investigation. Proc. IEEE InfoVis,
IEEE CS Press, 2005, pp. 24 – 31

[Shn96] SHNEIDERMANN B.: The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualization.
Proc IEEE Symp. on Visual Languages (VL ‘96), IEEE
CS Press, 1996, pp. 336 – 343

[SS02] SEO J., SHNEIDERMAN B., Interactively Exploring
Hierarchical Clustering Results. IEEE Computer,
Volume 35, Number 7, IEEE CS Press, 2002, pp. 80-86

[RC94] RAO R., CARD S.K., The Table Lens: Merging
Graphical and Symbolic Representations in an
Interactive Focus Context Visualization for Tabular
Information. Proc. ACM Conf. Human Factors in
Computing Systems, ACM Press, 1994, pp. 318 – 322

 [VTvW05] VOINEA L., TELEA A., VAN WIJK J.J.: CVSscan:
Visualization of Code Evolution, Proc. ACM SoftVis,
ACM Press, 2005, pp. 47 – 56

[vWvdW99] VAN WIJK J.J, VAN DE WETERING H.: Cushion
Treemaps: Visualization of Hierarchical Information.
Proc. IEEE InfoVis, IEEE CS Press, 1999, pp. 73 – 78

[WSH*04] WU J., SPITZER C.W., HASSAN A.E., HOLT R.C.,
Evolution Spectrographs: Visualizing Punctuated
Change in Software Evolution. Proc. IWPSE, IEEE CS
press, 2004, pp. 57 – 66

[ZWD*04] ZIMMERMANN T., WEIßGERBER P., DIEHL S.,
ZELLER A.: Mining version histories to guide software
changes. Proc. ICSE, IEEE CS Press, 2004, pp. 429 –
445

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

© The Eurographics Association 2006.

a) b)

c) d)

B

C

H

E

G

I

F

A

D

J

K

M
L

Figure 7: Interactively built layouts of the VTK project using sort operations: (a) files sorted alphabetically, vertical metric
shows cluster IDs, (b) files sorted by creation time, vertical metric shows activity, (c) files sorted by activity, vertical metric
shows activity, (d) files sorted by similarity with respect to a reference file- vtkIntArray.cxx , vertical metric shows similarity.

© The Eurographics Association 2006.

S.L. Voinea & A. Telea / CVSgrab: Mining the History of Large Software Projects

