
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Combining Extended Table Lens and Treemap Techniques for
Visualizing Tabular Data

Alexandru Telea

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, the Netherlands
alext@win.tue.nl

Abstract
We present a framework for visualizing large tabular data that combines two views: the table view and the treemap
view. The table view extends the known table lens as follows: We cluster related elements to reduce subsampling
artifacts and achieve table size independent rendering time; we use multiple-column sorting to create scenario-
specific data hierarchies on the fly; and we use shaded cushions to show data structure and variation. Hierarchies
built in the table view are shown in a customizable treemap view. One can choose both layout and rendering by a
few clicks, effectively creating visual scenarios on-the-fly. We illustrate our framework on real-life stock data.

Categories and Subject Descriptors (according to ACM CCS): H.2.8 [Database applications]: I.3.3 [Picture genera-
tion]:

1. Introduction

Tabular data is one of the most used information organiza-
tion forms nowadays, present in many domains, e.g. finance,
engineering, statistics, and medicine, and is at the core of
many software tools ranging from end-user systems such as
Excel and SPSS to full databases such as SQL and Oracle. A
data table is usually a regular matrix-like structure of rows
and columns containing data cells. Usually, cells of a sin-
gle column have the same meaning and data type. Cells on a
row are attributes of the same object, or tuple. Common tasks
performed on table data involve assessing the properties of
some attribute (column), finding relations between several
attributes, of subranges thereof, e.g. data trends, averages,
and outliers, and spotting correlations or other interesting
similarities between attribute subranges [Tuk77, PR96].

Performing the above exploratory tasks visually using
graphical table depictions is a powerful, quick, and easy-
to-learn way to get insight in such datasets. The most com-
mon depiction is the spreadsheet metaphor, which draws tex-
tual cell value representations, but can show only a few tens
of rows on a screen at a given time. The table lens tech-
nique [RC94, PR96, TR97] displays more rows by drawing
every table row as a pixel row colored and scaled to con-
vey cell values. Both techniques preserve the familiar tabular
layout. However, if the data are structured along some hierar-

chy, the tabular layout is not the best, as it cannot reflect the
hierarchy. Treemaps may be an effective alternative [Shn92],
as they show both hierarchy and attribute values and sup-
port exploratory tasks which explicitly consider the hier-
archy and/or its relationships with the attributes. However,
how to combine the strengths of treemaps and tables?

In this paper, we present TableVision, a framework for
visual analysis of tabular data, that tightly integrates two
views: an enhanced table view and a treemap view. The ta-
ble view extends the table lens technique in several ways.
First, we use multiple column sorting to discover structure
in the data, by creating hierarchies of related rows in a few
mouse clicks. Second, we use shaded cushions to show the
user-constructed hierarchy directly on the table. In our ta-
ble view, we use the same visual metaphors for various data
types, e.g. numbers, text, categories, time, and date. Third,
we use automatic clustering to alleviate subsampling prob-
lems and render arbitrary size tables at interactive rates. Our
second view is a treemap view which displays the hierarchy
built in the table view. Users can choose the layout and ren-
derer for every treemap level, thus creating flexible visual-
izations on the fly. We demonstrate TableVision with several
scenarios using stock market data.

We proceed as follows. Section 2 overviews related work.
Section 3 describes TableVision: the table view and our ad-

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

ditions to the standard table lens (Sec. 3.1) and how we vi-
sualize the hierarchies built in the table view using the cust-
moizable treemap view (Sec. 3.2). Section 4 discusses our
results. Section 5 concludes the paper and outlines future
work directions.

2. Related Work

Related work can be structured in the categories of ta-
ble and treemap visualization. Rao et al. have introduced
the table lens, a technique that combines textual (focal)
and colored bar-graph (contextual) information in a table
layout [RC94, PR96] to visualize hundreds of rows on a
single screen. The technique was extended to use multi-
ple text focus points [TR97] and also commercially imple-
mented [Inx05]. However, the original design [RC94,PR96]
may have performance and subsampling problems when ren-
dering tens of thousands of rows. Moreover, since a column
is basically drawn as a narrow 2D graph, it is often hard
to spot small-scale variations. Treemaps display both hier-
archical structure (encoded as layout) and data value distri-
bution (encoded as size and/or color) in a screen-compact
way [Shn92]. Various treemap layouts exist, e.g. squari-
fied [BHvW00], space-filling [BE95], and strip [BSW02].
However, treemaps usually visualize a predefined, existing
hierarchy, e.. the ’map of the market’ [Wat99,Mar05] or hard
disk structure [vWvdW99]. In our case, both visualizing and
constructing the hierarchy are intrinsic, coupled parts of the
interactive exploratory process.

3. TableVision Framework

Our TableVision framework consists of multiple, tightly cor-
related, table and treemap views. Both views can be used in-
dependently. One scenario is to start with the more familiar
table view (Sec. 3.1) to build data hierarchies and visualize
these in the treemap view (Sec. 3.2). Both views access ta-
bles from an SQL database, which allows easily computing
various statistics and derived data from the primary values.
As examples, we use stock datasets containing tuples (rows)
of industry categories, company names, and open, high, low
courses of their shares taken at various dates and day-times.
Each attribute is a separate table column.

3.1. Enhanced Table View

The enhanced table view builds on the basic table
lens [RC94]: cell rows become pixel rows, drawn as colored
bar graphs. We extend and adapt this idea as follows.

First, we treat all data attributes similarly, whereas [RC94]
inferred the visual mapping from the attribute type: numeric
attributes were drawn as bar graphs, categorical ones were
drawn as colored ’swatches’, whose position and/or color in-
dicate the category. We use the bar graph to represent any
data type. The bar length and/or color maps the attribute

value. We support any data type having ’less-than’ and dis-
tance operations. The less-than operation is needed to com-
pute the data range (minimum and maximum). The distance
operation, which yields a real value given two data elements,
maps data values to bar lengths and/or colors. Providing
these operations for numeric, date, and time types is triv-
ial. For text data, the less-than operator is the lexicographic
order. We define the distance d(s, t) between two strings
s = {si}i=[1,S] and t = {ti}i=[1,T ] as d(s, t) = ∑

L
i=1 A−i|si −

ti|, where A is the alphabet size and s, t are right-padded
with nulls to the length L = max(S,T ). This distance main-
tains lexicographic order, whereas other known string dis-
tances, e.g. the Levenshtein (edit) distance and variants do
not [Lev66]. Categorical data are treated as string data. We
can replicate all presentation methods from [RC94] with our
colored bar graph: categorical data maps to a sequence of
distinctly colored rectangles. By varying the graph scale, all
rectangles get the same size, yielding the color-by-category
metaphor of [RC94]. Using a thick line graph instead of a
bar graph yields the ’swatches’ presentation of [RC94].

We next introduce the multiple sort technique. The origi-
nal table lens described in [RC94, PR96, TR97] and the In-
xight tool [Inx05] allows sorting one column at a time by
clicking on it. This shows the column values’ distribution,
e.g. if there are many small, large, or average values, and
also reveals correlations among different columns. However,
scenarios such as ’show some stock data sorted on indus-
try, then on company, then on date’ are not directly possible.
Multiple sorts support such scenarios. By shift-clicking on
several column labels c1..ck, we sort the rows first on c1,
then sort the row ranges of equal c1 values, called a clus-
ter, on c2, and so on, just as one would do in a spreadsheet.
This partitions the table into row ranges (clusters) which
share more column values as we go from the first (c1) to
the last (ck) sorted column, similar in concept to the ici-
cle plot [BN01] and permutation matrices [Ber81]. A sec-
ond click on a sorted column ci changes the sort order, a
third click cancels the sorting of that column and all sub-
sequently sorted columns c j, j > i. This simple but power-
ful technique visualizes the distribution and/or variation of
several attributes (the unsorted columns) grouped by desired
properties (the row ranges on the sorted columns).

However useful, multiple sorting can generate hard-to-
interpret bar graphs, since the created clusters are not di-
rectly visible. We solve this by drawing the clusters as lu-
minance cushions over the bar graphs. Luminance cushions
have been previously used to show structure over existing
data plots [TVvW04, VTvW05]. We use here the same idea.
A cushion is a 2D luminance function c(u,v) = (1− s) +
s(1− 4(u− 0.5)2) ∗ (1− 4(v− 0.5)2), where the u,v para-
meters span the [0..1] range and s ∈ [0..1] is the cushion’s
visual strength. We blend cushions multiplicatively over the
bar graphs, which modulates their luminance, as shown by
Fig. 1. We start from the raw, unsorted stock data (Fig. 1 a),
then multiply sort on industry category (Fig. 1 b, second col-

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

umn from left), then on company name within each category
(Fig. 1 c, third column form left), and finally on date within
each company (Fig. 1 d, fourth column form left). The sort-
ing order is shown by small labels (1,2,3,...) on the column
labels. Clearly, the clusters are now visible (Fig. 1).

a) unsorted data b) sort on ’category’

c) sort on ’name’ d) sort on ’date’
Figure 1: Multiple sorting in the table view

We can further refine the cushion design. Lowering the
cushion saturation s towards zero increases the contrast,
making the clusters more visible: Compare Fig. 2 a (s =
0.05) with Fig. 1 b (s = 0.7). Still, too saturated cushions
may obscure the bar graphs. To solve this, we set s(u) =
s0(1− k + ku), i.e. vary the saturation s linearly from 1 (in-
visible cushions) to some user-specified s0 in the horizon-
tal direction u. The constant k controls the horizontal fad-
ing: k = 0 gives the basic design s = s0 (Fig. 1 b,Fig. 2 a),
whereas k = 1 fades cushions from totally transparent at the
left (u = 0) to the desired strength s0 at the right (u = 1)
(Fig. 2 b). The bar graphs are left-aligned, while the cushions
are more visible in the right column half - we thus minimize
their overlap, yet maintain their correlation by blending. Set-
ting k = 0.95, s0 = 0.35 is a nice compromise showing
fainted cushions that do not obscure the bar graphs (Fig. 2 c),
yet convey the clusters. Instead of letting the user vary two
parameters k,s ∈ [0,1], we use a single parameter q ∈ [0,1]
and set k = [5q]/5, s = 5(q− k). This effectively combines
five different k values with the full s range in a single user
parameter. Finally, we can color cushions by their size us-

ing a blue (low) to red (high) rainbow colormap (Fig. 2 d,
’name’ column, third from left). This shows the size distribu-
tion of equal-value row ranges. In our case, this supports the
query ’find most traded companies’ without having to sort
the ’name’ column on the size of its clusters. These compa-
nies are shown by the red cushions - since they have the most
table rows, they are the most traded ones.

a) b)

c) d)
Figure 2: Cushion shading and coloring design

Cushions have a second use. They show equal-value rows,
so they help finding high-frequency, small-scale variations.
In Fig. 3 a we have ascendingly sorted the ’open’ value of a
set of shares (fifth column from left). The bar graph seems to
show that about 95% of the shares have the same low ’open’
value, whereas the other 5%, placed at the column bottom by
sorting, span the rest of the value range till the maximum. A
zoom-in of the bottom-most 3000 rows is shown in Fig. 3 d.
In reality, there are variations along this seemingly flat line,
but these are so small that they map to subpixel distances, so
the bar graph cannot show them. Drawing cushions breaks
the flat line into equal-value ranges, revealing high variation
regions, and also a few large, truly constant-value, regions
(Fig. 3 b).

Multiple sorting emphasizes equal-value regions too. In
Fig. 3 c, we have sorted the ’open’ column (fifth from left),
and then the the ’date’ column (left to the ’open’ column),
and visualized ’date’ with a blue-to-red colormap. As ex-
plained, this sorts the row ranges of equal ’open’ value on

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

a) b) c) d)
Figure 3: Interaction between cushions, sorting, and equal-value row ranges

the ’date’ value. We see indeed that the sorted, sawtooth-
like, blocks in the ’date’ column (Fig. 3 c) match the ’open’
column as visualized with cushions in Fig. 3 b. However, the
cushions show such patterns without having to sort the ’date’
column.

However effective, cushions can overload the image with
too much information. Sometimes we do not care to see
the exactly same-value row ranges, but would like to use
some tolerance to reduce the number of displayed cushions.
We achieve this by a bottom-up agglomerative clustering
of the same-value row ranges, using an average-link strat-
egy [JMF99]. Clusters having most similar values are found
and merged, the new cluster’s value being set to the input
clusters’ values weighted by their row counts. We obtain a
cluster tree with the same-value row ranges as leafs and a
whole column as root. We merge only adjacent clusters, in
row space, so the clustering process is O(NlogN) for N rows,
i.e. takes subsecond time for e.g. 50000 rows on a 2.0GHz
laptop PC. Note that this tree is different from the implicit
hierarchy of nested row ranges created by multiple sorting.
That is, there is a cluster tree for every clustered column,
whereas there is a unique hierarchy, having row ranges as
nodes, and as many levels as multiply-sorted columns, for a
given table. We now draw the cushions on some intermediate
tree level instead of all its leafs, as explained below.

Figure 4 left shows the agglomerative clustering of the
’date’ column (drawn with a rainbow colormap) after the
scenario in Fig. 3. Clearly, the date clusters do not have now
the same values. Next, we cluster the ’open’ column (right
of ’date’), leading to the result in Fig. 4 right. We see how
the near-equal rows, previously visible in Fig. 3 b as dis-
tinct cushions, are now grouped in one tall cluster. Users can
interactively choose the desired simplification level, effec-
tively creating on-the-fly level of detail visualizations of the
column data.

Figure 4: Visualization simplification via clustering

Clustering has two other uses besides the visual level-
of-detail. Brute-force rendering is quite slow for tables of
tens of thousands of rows. Moreover, subsampling artifacts
occur, as several cushions map to a single pixel row. In
Fig. 5 left, first column, we see some large cushions. Ac-
tually, we should see one cushion per row, as this is the
integer row-id column id = [0,50000] (see the underlying
bar graph). This problem appears as 50000 1-pixel-tall cush-
ion textures are drawn on the 500 vertical pixel lines of the
window. Subsampling yields different patterns on different
graphics cards, depending on how textures are mapped on
very thin polygons. However, all show fake ’large clusters’
as in Fig 5 left. Both speed and subsampling problems can
be alleviated as follows. First, we cluster all table columns.
Next, we use only clusters taller than 1 pixel to render the
bar graph, which solves the speed issue, and only clusters
taller than a few (e.g. 5) pixels to render the cushions, which

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

solves the aliasing issue (Fig. 5 right). We do this by travers-
ing the cluster tree depth-first from the root and rendering
clusters just below the target size. This technique reduced
the rendering time for a 50000 rows, 8 columns table from
1.2 seconds on a 2GHz laptop with an Nvidia Quadro card,
and from 1.7 seconds on a 2GHz PC with an older Nvidia
GeForce 4 card, to under 0.01 seconds in both cases. We al-
ways draw less clusters than screen pixel rows, so we guar-
antee a high and constant display rate for any input table
size. The extra time and memory to pay goes into the clus-
tering phase, which is redone only when the table structure
changes.

Our clustering technique is conceptually related to the ac-
cordion drawing method for displaying large trees and se-
quences [SHM05]. Both methods guarantee constant render-
ing time for any input data size, by performing some kind of
clustering. However, input data types, clustering constraints,
and final results are different in the two cases. Also, accor-
dion drawing focuses on guaranteeing visibility for selected
subpixel objects. So far, we only aim to guarantee rendering
time and reduce subsampling artifacts due to thin textures.
However, we could adapt our method to guarantee visibil-
ity of specified (e.g. selected) row-ranges, by e.g. modifying
the cluster similarity to penalize merging such ranges, or by
modifying the render traversal to always return these ranges.
Such experiments are subject of future work.

Figure 5: Subsampling artifacts (large cushions, left) are
removed by clustering (right)

Finally, we propose a zooming technique that comple-
ments the focus and context metaphor of [RC94]. Using a
global zoom slider, we continuously vary the cell height
h from the text size (e.g. h = 18 pixels) to the maximum
zoomed out level h = hmin, which fits the whole table to the
window height (Fig. 6). The table view starts in the famil-
iar text mode, similar to a spreadsheet. As we zoom out, the
cell and text font size gradually decrease. Simultaneously,
we decrease the text and grid line opacities and increase the
bar graphs’ opacity. A careful design of the transparency and
size functions, shown in Fig. 7, effectively smoothly morphs
the textual spreadsheet into a graphical visualization.

row size
(pixels)

text size

text opacity

grid opacity

bar graph opacity

18 9 6 3 1
overpixel range subpixel range

18

3

1

0

1

0

0

text & graphics
blending

hmin

Figure 7: Blending text and graphics

We show context information with both dynamic pop-ups
under the mouse pointer and the status bar, in contrast to the
text focus elements proposed in [RC94]. Our users found
the textual table morphing into a graphical representation
more intuitive than mixing the two in one image by means of
text focus elements. Overall, our zooming resembles the Ma-
trixZoom technique for visualizing large matrices [AvH04].
However, we involve more, and different, parameters (cf.
Fig. 7) as our visual table elements are different.

3.2. Parameterizable Treemap View

The multiple sort technique (Sec. 3.1) effectively creates
data hierarchies on-the-fly. Although the cluster cushions re-
flect these hierarchies, we show next how to use treemaps
to provide better, and different, insights. The second view of
our framework is a treemap view, in which both the layout
and visual mapping (rendering) are user-controllable. This
lets one create a rich set of visualizations, as shown by the
following scenarios.

Figure 8 shows a common stock data scenario. We sort
the rows first on the ’category’, then on (company) ’name’,
and then on ’date’, creating a four-level deep hierarchy with
three clicks, the leafs being rows with the same ’date’. Next,
we drag-and-drop this hierarchy from the table view into the
treemap view. To visualize it, we specify the layout, i.e. how
to position the hierarchy nodes, and rendering, i.e. how to
draw them, by using several preset visualization scenarios,
as follows.

Figure 8 visualizes data from the Romanian Rasdaq tech-
nology index [Ras05], which contains over 2000 compa-
nies. Discovering ’quick movers’ in this emerging market
is a task the brokers named as challenging and important,
as most Rasdaq companies have sporadic trades and hard
to predict behavior. This visualization uses a layout preset:
squarified treemap [BHvW00] on the first (’category’) and
second (’name’) levels and a strip treemap [BE95, BSW02]

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

a) h = 18 b) h = 6 c) h = 3 d) h = hmin

Figure 6: Table view zooming from text level (a) to whole-table-in-window (d)

Figure 8: Treemap view: stock data visualization scenarios

on the third (’date’) level. Since the strip layout maintains
children order in a parent, and the ’date’ level is sorted,
we easily read the visualization as increasing dates (days)
associated to the treemap leaves in a left-to-right, top-to-

bottom order. The size of the treemap leafs is constant, as
each one shows a single day. Thus, their parents (companies)
and grandparents (industry categories) get sizes proportional
with the number of days we had data for their respective el-
ements. After specifying the layout, we select for the third
(’date’) level a renderer that colors the treemap nodes as a
function of the difference between the share’s ’open’ and
’close’ values during the node’s date value (1 click). Red
shades map to losses, green shades to gains (the color sat-
uration indicating the magnitude), blue unchanged values,
light blue missing values, light gray values outside a user-
specified value range of interest, and dark gray values out-
side a user-specified period of interest respectively. Users
can customize the rendering settings, as well as filter the
data for a specific time period, in a GUI. Building this visu-
alization took only a few clicks. The table view (e.g. Fig. 3)
showed that there’s little variation in the individual ’open’
and ’close’ columns. Figure 8 top strengthens this discovery
saying that most shares do not change price (’open’ equals
’close’), shown by the large amount of blue treemap cells.
The large light blue blocks in the upper half of several com-
pany ’name’ cells shows that data is missing for the first part
of the considered period. We also see that shares either do
not change value (blue zones) or have a very dynamic be-
havior (dense red-green alternations). This allows discover-
ing which companies are most active, and during which pe-
riod of time, which was exactly one of the aims of the stock
brokers interested in our application. Figure 8 bottom shows
a related scenario. Here, we select using the GUI a specific
period (2001-2005 out of the full 1999-2005 data range), and
a specific price change range (above +5% and below -5% of
the daily value). A few dark gray regions appear, indicating
the filtered-out period. A large part of the visualization be-
comes light gray, as these shares have not changed outside
the specified price range during these days. We can now fo-
cus on the remaining green and red cells, and we discover an
outlier: the compact upper-left green block. This is a com-
pany that has continously increased for all the considered
period, and is thus an interesting buy option.

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

Figure 9 top shows a similar scenario to Fig. 8, this time
however for the about 300 heavyweight (mainstream) Ro-
manian Exchange companies. We quickly see that these
companies are much more frequently traded and exhibit a
different evolution pattern that the ones in Fig. 8. Hence, we
created here a fourth hierarchy level by multiple sorting, the
’time of day’, to show how many intraday samples we have
for each stock. Creating this level for the data in Fig. 8 would
be useless as we don’t have intraday values for that dataset.

Figure 9: Treemap view: intraday change (top); open price
versus time (bottom)

Figure 9 bottom shows a third scenario. We multiply sort
the table on categories, then on share names, and finally on
a derived ’date & time’ attribute (3 clicks). The last attribute
is computed from the primary ’date’ and ’time’ columns by

a simple SQL operation. Next, we open a treemap view that
uses a layout preset: squarified for the first (’category’) level
and a regular grid layout for the second (’name’) level. The
grid layout divides the parent space in equally sized chil-
dren of given aspect ratio. Finally, we select a yellow border
renderer for the ’category’ level, a 2D graph renderer for
the ’name’ level, and a cushion renderer on the third ’date
& time’ level. We configure the graph renderer to draw the
’open’ (Y axis) versus ’date & time’ (X axis) values. In this
way, we constructed one of the most widespread, classical
types of stock visualization, in a few clicks. As shown by
the white (bagkground) spots in Fig. 9 bottom, the regular
grid layout on the second level cannot always perfectly fill
its parent, since it enforces same-size children with fixed as-
pect ratio. If we relax one of these constraints, e.g. using a
strip layout, we can achieve a perfect space fill. However, our
users preferred the regular grid as it produced nicely shaped,
equal graphs which are easy to read. The combination of
graphs and rendered cushions display both the evolution of
the shares’ open values and the number of time samples we
have data for them. This image is conceptually quite simi-
lar to the table view’s cushions and bar graph combination
(Sec. 3.1), but uses a different spatial layout. Clearly, the
above scenarios are not final and can be further improved.
However, we present them here to illustrate the simplicity of
visualization construction in our framework.

Our idea of visualizing on-the-fly constructed hierarchies
with treemaps is similar with the flexible hierarchies of
Treemap 4.0 tool [CPS04]. However, we construct (and vi-
sualize) the hierarchy in the table view and then examine it in
the treemap view, whereas [CPS04] uses the treemap view,
and additional text-based GUIs, for this.

4. Discussion

We implemented the TableVision framework in C++ using
OpenGL and the wxWidgets GUI toolkit. Careful user in-
terface design and several speed optimizations, such as the
clustering technique (Sec. 3.1) were required to gain user
acceptance. Surprisingly, SQL database access was a major
speed bottleneck, even for in-memory databases, that was
removed by extra caching techiques. TableVision was tested
by several stock brokers. We explained the table view and
treemap view basic functions in a few online training ses-
sions of several hours, and provided some preset scenarios
to start with (see Sec. 3.2). To limit confusion, we offered
also a few presets for the many tool parameter values. Af-
ter a while, the users were able to navigate the data and got
interested to create own scenarios. The table view’s more
powerful features, e.g. multiple sorting and cushions, were
accepted only after the resulting hierarchies were understood
in the treemap view. Overall, the evaluation was positive, as
the combination of table and treemap views helped achiev-
ing several planned discovery goals, e.g. finding ’market
movers’ which became object of further study.

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

Acknowledgements

We acknowledge the help of Cristian Micu and Rãzvan Pasol
from ING Romania and Intercapital Invest for providing us
with stock data, insight into brokering strategies, and tool
evaluation.

5. Conclusions

TableVision tightly integrates enhanced table and treemap
views to create visualizations for table data. We extend the
table lens with several mechanisms. First, we use multiple
sorts to create hierarchical structure from unstructured ta-
bles. Second, we add shaded cushions to help seeing the
data structure and small-scale variations, and combine these
with the underlying bar graphs with minimal visual clut-
ter. Third, we use a bottom-up clustering scheme to render
very large tables interactively and also minimize subsam-
pling problems. Finally, we use a smooth zooming mech-
anism to navigate between text and graphics. The treemap
view shows how we can use several presets combining lay-
outs and renderers to create a rich set of visualizations for
the hierarchical data with just a few clicks. We connect the
two views by allowing to drag-and-drop data from one to the
other. Overall, we achieve a simple to use and learn, yet ver-
satile exploration framework for table data, in which users
can gradually pass from the familiar spreadsheet view to the
more complex table lens and treemap views.

We plan to extend TableVision in several ways. First, there
are yet unexplored directions for compactly and effectively
showing information in the table view. Second, we plan to
include new renderers and layouts in the treemap view and
validate our framework in new application areas.

References

[AvH04] ABELLO J., VAN HAM F.: Matrixzoom: A visual
interface to semi-external graphs. In Proc. InfoVis (2004),
IEEE Press, pp. 183–190.

[BE95] BAKER M., EICK S.: Space-filling software visu-
alization. J. Vis. Lang. Comp., 6 (1995), 119–133.

[Ber81] BERTIN J.: Graphics and Graphic Information
Processing. De Gruyter, 1981.

[BHvW00] BRULS M., HUIZING K., VAN WIJK J. J.:
Squarified treemaps. In Proc. VisSym (2000), IEEE Press,
pp. 33–42.

[BN01] BARLOW T., NEVILLE P.: A coimparison of 2d
visualizations of hierarchies. In Proc. InfoVis (2001),
IEEE Press, pp. 131–138.

[BSW02] BEDERSON B., SHENIDERMAN B., WATTEN-
BERG M.: Ordered and quantum treemaps: Making effec-
tive use of 2d space to display interactions. ACM TOG 21,
4 (2002), 833–854.

[CPS04] CHINTALAPANI G., PLAISANT C., SHNEIDER-
MAN B.: Extending the utility of treemaps with flexible

hierarchy. In Proc. Information Visualisation (IV) (2004),
IEEE Press, pp. 335–344.

[Inx05] INXIGHT: Inxight Data Visualization Solutions,
2005. www.inxight.com.

[JMF99] JAIN A., MURTY M., FLYNN P.: Data cluster-
ing: a review. ACM Comp. Surv. 31, 3 (1999), 264–323.

[Lev66] LEVENSHTEIN V.: Binary codes capable of cor-
recting deletions, insertions, and reversals. Sov. Phys.
Dokl., 6 (1966), 707–710.

[Mar05] MARKETMAP: Map of the Market, 2005.
www.smartmoney.com.

[PR96] PIROLLI P., RAO R.: Table lens as a tool for mak-
ing sense of data. In Proc. AVI (Advanced Visual Inter-
faces) (1996), pp. 59–63.

[Ras05] RASDAQ: Rasdaq Technology Stock Exchange In-
dex, 2005. www.rasd.ro.

[RC94] RAO R., CARD S. K.: The table lens: Merging
graphical and symbolic representations in an interactive
focus+context visualization for tabular information. In
Proc. SIGCHI (1994), ACM Press, pp. 1–7.

[SHM05] SLACK J., HILDEBRAND K., MUNZNER T.:
Prisad: A partitioned rendering infrastructure for scalable
accodion drawing. In Proc. InfoVis (2005), pp. 41–48.

[Shn92] SHNEIDERMAN B.: Tree visualization with
treemaps: 2d space-filling approach. ACM TOG 11, 1
(1992), 92–99.

[TR97] TENEV T., RAO R.: Managing multiple focal lev-
els in table lens. In Proc. InfoVis (1997), pp. 59–63.

[Tuk77] TUKEY J. W.: Exploratory data analysis.
Addison-Wesley, 1977.

[TVvW04] TELEA A., VOINEA L., VAN WIJK J. J.: Ezel:
A visual tool for performance assessment of peer-to-peer
file-sharing networks. In Proc. InfoVis (2004), IEEE
Press, pp. 41–48.

[VTvW05] VOINEA L., TELEA A., VAN WIJK J. J.:
Cvsscan: Visualization of code evolution. In Proc. ACM
SoftVis (2005), ACM Press, pp. 47–56.

[vWvdW99] VAN WIJK J. J., VAN DE WETERING H.:
Cushion treemaps: Visualization of hierarchical informa-
tion. In Proc. InfoVis (1999), IEEE Press, pp. 73–78.

[Wat99] WATTENBERG M.: Visualizing the stock market.
In Proc. SIGCHI (abstracts on Human factors in comput-
ing systems) (1999), ACM Press, pp. 188–189.

c© The Eurographics Association 2006.



A. Telea / Combining Table Lens and Treemaps

Figure 10: TableVision overview: standard table, enhanced table lens, and treemap views

c© The Eurographics Association 2006.


