
Eurographics/ IEEE-VGTC Symposium on Visualization (2007)
Ken Museth, Torsten Möller, and Anders Ynnerman (Editors)

Multiscale Visualization of Dynamic Software Logs

Sergio Moreta and Alexandru Telea

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, the Netherlands
s.moreta@student.tue.nl, alext@win.tue.nl

Abstract
We present a set of techniques and design principles for the visualization of large dynamic software logs consisting
of attributed change events, such as obtained from instrumenting programs or mining software repositories. We
enhance the visualization scalability with importance-based antialiasing techniques that guarantee visibility of
several types of events. We present a hierarchical clustering method that uncovers several patterns of interest in
the event logs, such as same-lifetime memory allocations and software releases. We visualize the clusters using a
new type of technique called interleaved cushions. We demonstrate our methods on two real-world problems: the
monitoring of a dynamic memory allocator and the analysis of a software repository.

1. Introduction
In this paper, we present an approach for the visual anal-
ysis of time-dependent data obtained from software logs.
We consider two types of logs: profiling logs and source
code evolution logs. These are typically weakly structured
datasets containing hundreds of thousands of low-level
events. Developers often need to ask questions at a higher
level than reflected by the log data. Hence, we need ways to
create and show structure from these unstructured logs.

We propose a set of techniques and design elements to
construct scalable visualizations of dynamic log data. First,
we introduce several anti-aliasing techniques to render large
log datasets which guarantee different visibility types ad-
dressing different user queries, even for subpixel items. Sec-
ond, we present a clustering method for creating hierarchical
visualizations which answer several structure-related ques-
tions. Finally, we introduce interleaved shaded cushions, a
new visualization technique for rendering the data hierarchy
which allows one to easily follow and discover structures.
We demonstrate our techniques on two different problems:
The testing of a dynamic memory allocator and the evolu-
tion analysis of a large source code repository.

This paper is structured as follows. Section 2 overviews
efforts in visualizing software logs. Section 3 describes our
data model. Section 4 presents our visualization design. Sec-
tion 5 describes our new clustering techniques that reveal
global evolution patterns. Section 5.2 presents the inter-
leaved cushions used to visualize clusters. In section 6 we

apply our techniques on two real-life applications. Finally,
section 8 summarizes our findings and outlines future re-
search directions.

2. Related work
Several methods exist for visualizing time-dependent soft-
ware log data. For the study of memory allocators, logs con-
sist of allocation and deallocation events, and various met-
rics, e.g. memory fragmentation, occupancy, and block size
distribution [GT89]. Logs are created by code instrument-
ing and profiling tools [ACS90, JG94, WKT04] and visual-
ized by applications such as Rivet [BST∗00,Bos01], LynxIn-
sure [Lyn06], Polka [SK93], and the more general TANGO
animation framework [Sta92]. However, time-dependent
metrics show only aggregated facts and little structural in-
sight. Our second application is visualizing source code evo-
lution logs from code repositories. These record events such
as code lines added, modified, or deleted, author names,
file types, and modification date [VT06b]. Repository logs
have been visualized using 2D orthogonal layouts of sets
of axis-aligned, attribute-colored, densely packed, rectan-
gles [VT06a]. Such methods suffer from serious aliasing
when the drawn rectangles are smaller than one pixel line.
Extra structure can be generated, e.g. to emphasize groups
of files having similar evolutions, using hierarchical cluster-
ing and luminance cushions [VT06b,VT06a]. However, this
technique considers the evolution of entire files only. More-
over, the luminance cushions, as proposed in [VT06a], are
quite hard to interpret visually.

c© The Eurographics Association 2007.



S. Moreta and A. Telea / Multiscale Visualization of Dynamic Software Logs

3. Data model
Our generic software log data is a set of artifacts S = {ei}.
An artifact has an own identity (i) but can change at sev-
eral moments t j yielding the a set of artifact versions {ei

j} j .
With each event {ei

j}, data attributes ai
j can be associated.

In this paper, we consider two artifact types from two differ-
ent applications. In the first case, an artifact ei = (ai

,bi) is a
memory address range [a,b]. An element ei

j is an allocation
or deallocation of the memory block [ai

,bi] taking place at
moment t j , and has several attributes: the memory address
range, calling process ID, and allocator-specific attributes
(detailed in Sec. 6.1). We create a log file S containing all
(de)allocation events recorded by the memory allocator, by
instrumenting the C library functions malloc and free.
In our second example, artifacts ei are files stored in a CVS
or Subversion repository. The repository log S records the
changes ei

j of all files i at moments t j. An event ei
j has several

data attributes: the commit author, a commit message, and
the amounts of added and removed code lines with respect
to the previous change. The contents of a file between two
successive changes is called a file version. We extract such
data using the CVSgrab repository analysis tool [VT06a].

4. Visualization model
We visualize the artifact space S described in Sec. 3 as fol-
lows. First, we use a 2D Cartesian layout which maps dis-
crete event time j and artifact identifier i to the x and y axes
respectively. For the memory log data, the artifacts’ y axis
order is implicitly given by their memory addresses. For the
repository log, artifacts (files) are ordered on the y axis fol-
lowing a depth-first traversal of the repository root, so files
in the same directory get laid out close to each other on the y
axis. Every element {ei

j} j is an axis-aligned rectangle. This
layout has several advantages. It is compact or dense, so hun-
dreds of thousands of elements can fit on a single screen. No
screen space is wasted. Empty areas convey actual informa-
tion, e.g. they indicate memory fragmentation for the alloca-
tor log data (Sec. 4.1). Every artifact ei ∈ S maps to a distinct
horizontal strip, so the visualization is intuitive. Encoding
time on the x axis is a natural choice. Finally, this layout
is simple and fast to compute. After layout, we color every
rectangle to show a data attribute ai

j via a suitable color map-
ping scheme. To separate same-color neighbor elements, we
overlay each element with a luminance cushion, dark at the
element border and bright at its center. We use both parabolic
cushions [vWvdW99] and plateau cushions [LNVT05].

Figure 4 illustrates the basic idea for a memory alloca-
tion log dataset containing 119932 allocations spanning a
period of 4 minutes done by 54 concurrent processes. Color
shows the allocating process ID. This image already reveals
several aspects: The "blue" process allocates the most mem-
ory. Since the y axis maps one-to-one to the memory address
space, the long rectangles at the image bottom show that the
"blue" process allocates memory early and frees it as last

in this scenario. After start, almost no extra memory is al-
located in the first third of the monitored period. Next, the
"green" process rapidly allocates many equal-sized blocks,
all at one moment, and frees them at the same time too,
as shown by the thin vertical green stripes. We discovered
that this pattern of same-lifetime blocks is typical for array
objects. These arrays use about half of the free memory (y
axis), so they are quite important. The second third of the
period shows a dynamic allocation-freeing pattern which al-
most fills up the entire memory at some moments. In the last
third, there are few allocations. At the end, all memory is
freed.

time (seconds)

memory (KB)

{array

allocations

highly dynamic period

first phase second phase third phase

Figure 1: Dynamic memory allocation visualization

4.1. Importance-Based Anti-Aliasing
However useful, the visualization in Fig. 4 has some prob-
lems. Some memory logs have hundreds of thousands of al-
locations. Similarly, repository logs contain hundreds of ver-
sions of thousands of files [LNVT05, VT06b, VT06a]. Ren-
dered on a typical screen, this yields rectangles smaller than
one pixel in one or both dimensions. Increasing the screen
size is not a solution, as the axes sampling can be highly
non-uniform. For both memory and repository logs, the time
(x axis) sampling can be extremely dense compared to the
time range. The same happens on the y axis e.g. when the
memory log contains blocks of a few bytes on a total range
of e.g. megabytes.

The question is: How to color a pixel covered by K seg-
ments e1, . . .,eK of which we want to show the attribute val-
ues a1, . . .,aK? Figure 2 a shows allocated blocks colored
by process ID. Figure 3 a shows the evolution of 2792 files
over 850 versions spanning over 10 development years from
the Visualization Toolkit (VTK) repository. Color shows the
amount of changed lines (blue=unchanged, red=maximal
change over the whole project life). This image addresses the

c© The Eurographics Association 2007.



S. Moreta and A. Telea / Multiscale Visualization of Dynamic Software Logs

question "which files have changed least/most, and when?"
Yet, figures 2 a and 3 a are misleading when displayed in
color e.g. on a computer screen. In both cases, the drawn
rectangles are of subpixel size. Simply drawing all rect-
angles shows only the color C of the last drawn element
C = c(aK), where c is the scalar-to-color mapping function,
which amounts to a regular dataset undersampling. More
gravely, subpixel-width rectangles, e.g. allocations quickly
followed by deallocations, become invisible. This is actually
what happens in area A in Fig. 2 a. Seeing this image, we
first thought we found an allocator bug, as it indicates a free
memory range (white space) between two occupied ranges
(colored space).

a) no antialiasing

b) linear antialiasing

c) bias isolated events 

   (α=0.03)

A

B

A

B

B

A

Figure 2: Importance-based antialiasing for memory log

A better solution is to use anti-aliasing. If each element ei
covers a fraction fi ≤ 1 of a pixel, we compute its color C by
blending the color mapping the attributes’ weighted average
with the background color cB

C =
K
∑
i=1

fic
(

K
∑
i=1

fiai

)

+

(

1−
K
∑
i=1

fi

)

cB (1)

This makes previously invisible, thin segments visible
(Fig. 2 b). We also restrict rectangles that fully cover one
or more pixels to the fully covered pixels only, i.e. neglect
fractional coverages fi. This wins more space for those thin
subpixel-size rectangles. For non-numeric attributes a j

i , e.g.
author names or IDs, we do the color mapping first in Eqn. 1,
followed by weighted averaging.

Looking now carefully in area A, we see a very thin verti-
cal line, i.e. a rapid allocation-deallocation pair. Hence, there
was no allocator bug. Secondly, area B (Fig. 2 b) looks now,
correctly, much more densely populated than its counterpart
in Fig. 2 a. Finally, areas such as A (Fig. 3 a) which seemed
to show high change (red) due to undersampling appear now
in cooler colors (Fig. 3 b), correctly showing a moderate
change amount.

Yet, isolated thin segments like the one in Fig. 2 a (area A)
are still hard to see. These are isolated, short-lived memory
blocks in the memory log (thin vertical rectangles), which
indicate short-lived temporary variables, or files created at
singular moments in the repository log (thin horizontal rect-
angles). We further emphasize such events with a modified
anti-aliasing function

C =
Fc
(

∑K
i=1 f α

i ai
F

)

+ BcB

F + B (2)

where α > 0 is a bias factor and F = ∑K
i=1 f α

i and B =
(

1−∑K
i=1 fi

)α
are the pixel fractions covered by foreground

(element) colors and background color cB respectively. Low
α values emphasize areas containing few and thin segments.
Comparing Figures 2 b and c or Figures 3 b and c, drawn
with α = 0.03, we see many isolated events which would
have otherwise passed undetected. Conversely, high α val-
ues filter out sparsely covered pixels (isolated rapid events),
e.g. Fig. 3 d (α = 3). This simplifies the view when we are
interested only in dense-event areas, e.g. removes the short-
lived temporary variables in the memory log view.

5. Hierarchical visualization
Although giving an overview of dynamic log datasets, the vi-
sualizations discussed so far contain little structure. We can-
not yet address some goals adequately. One such goal is to
emphasize same-lifetime memory blocks, typical for array
elements, e.g. the green vertical stripes in Fig. 2. Reveal-
ing such patterns helps us visually check if a) the allocator
serves all memory requests quickly; b) allocates the blocks at
consecutive memory addresses, and c) wastes as little mem-
ory as possible. Similar questions exist for the repository log
data (see Sec. 6.2).

We reveal such patterns using a bottom-up agglomera-
tive clustering. We first discuss the distance metrics used for
clustering (Sec. 5.1), followed by a new way to visualize
clusters (Sec. 5.2).

c© The Eurographics Association 2007.



S. Moreta and A. Telea / Multiscale Visualization of Dynamic Software Logs

a) no antialiasing b) linear antialiasing

c) bias isolated events (α=0.03) d) filter isolated events (α=3.0)  

A A

Figure 3: Importance-based antialiasing for the software evolution log

5.1. Distance metrics
Our agglomerative clustering uses a distance metric d : S →
R to measure the similarity between the log items to clus-
ter. We start with all memory blocks or file versions e j

i of
our log. We repeatedly pick the two elements e j

i and el
k for

which d(e j
i ,el

k) = min and merge them into a new cluster
until we obtain a single root cluster. Every cluster has an ex-
tent E and an area A. For leaves, E is the rectangle given
by the start and end attribute values along the x and y axes,
i.e. the memory range and lifetime for memory blocks, and
file identity and version lifetime for the repository log. The
area A is simply the area of E. For non-leaf clusters, E is the
rectangular bounding-box of the children’s extents and A is
the sum of the children’s areas. The distance metric choice
determines the type of global patterns that will be visible, as
follows.

time

memory

A

B

ts
A te

Ats
B te

B

ms
A

me
A

me
B

ms
B

cluster containing 

A and B

Figure 4: Distance metric construction

Consider e.g. two memory blocks A and B with lifetimes
tA
s , tA

e and tB
s , tB

e and memory address ranges mA
s ,mA

e and
mB

s ,mB
e , respectively (Fig. 4). A good distance metric is

d1(A,B) = |tB
s − tA

s |+ |tB
e − tA

e | (3)

This distance clusters elements with similar lifetimes, e.g.
blocks allocated and freed at similar moments in the mem-
ory log, or files changed at similar moments in the reposi-
tory log. Sometimes, however, not all log items are equally
important. For example, items having short lifetimes te − ts,
such as rapid allocation-deallocation events corresponding
to temporary variables, are less important than items with
longer lifetimes. Clustering such high-frequency events first
unclutters the visualization. For this we use the distance

d2(A,B) =
A(A)+A(B)

2Amax
d1(A,B) (4)

where A(X) = (tX
e − tX

s )(mX
e −mX

s ) is the area of cluster X
and Amax is the maximal element area over the entire log
dataset S. Clearly, Equations 3 and 4 can be used on both
leaf and non-leaf cluster.

The distance metrics d1 and d2 do not constrain clustering
along the y axis, i.e. can yield non-compact clusters consist-
ing of scattered elements. Sometimes, though, we want to
cluster only elements which are strict neighbors along the
y axis, e.g. contiguous memory blocks for the memory log

c© The Eurographics Association 2007.



S. Moreta and A. Telea / Multiscale Visualization of Dynamic Software Logs

or same-directory files for the repository log (see Sec. 4).
Restricting clustering to y-neighbors only also simplifies the
visualization by favoring compact clusters. We do this by the
distance

d3(A,B) =

{

d1(A,B), if dy(A,B) = 0
∞, if dy(A,B) > 0

(5)

where dy(A,B) = min(|mA
s − mB

e |, |mB
s − mA

e |). Finally, by
using the ’short lifetime first’ metric d2 instead of d1 in
Equation 5, we can favor compact clusters and cluster short-
lifetime segments first.

Clustering creates a tree containing all log items as leaves.
To visualize this tree at a user-chosen level of detail, we com-
pute a tree section. For a tree T = {Ci}, a section Sec is a set
of disjoint clusters Sec = {C j} ∈ T , Ci ∩C j =�∀i 6= j, such
that the union of leaves of C j equals the initial dataset S.
Two sectioning methods are particularly useful. The same-
error section contains clusters C j of similar distances d(x,y)
between the clusters’ children x,y. The same-size section
contains clusters C j of similar number of leaves or ’area’
(time extent times space extent) The same-error method tar-
gets the goal "group elements which are more similar than a
given value". The same-size method targets the goal "show
the data partitioned in self-similar groups of similar sizes".
In our tool, we can specify either sectioning method and in-
teractively control the size or error parameter to view the
cluster tree at different levels of detail.

5.2. Interleaved cushions
As explained in Sec. 5.1, some distance metrics yield non-
compact clusters consisting of scattered rectangles. How to
visualize such clusters? Color coding does not work, as one
can distinguish only around 10 different colors and a section
has more clusters. We present here interleaved cushions, a
new method to render non-compact clusters. The basic idea
is simple. For each cluster consisting of several rectangles
C = {ri}, we compute the bounding box B of the rectangles.
Next, we construct a parabolic profile h(x,y) spanning the
rectangle B, similar to the so-called cushions used to render
treemaps [vWvdW99]. Finally, we render all rectangles ri,
the luminance of a point (x,y) ∈ ri being given by h(x,y).
Hue can encode extra data attributes.

h(x,y)

x,yA1 B1 A2 B2 A3
Figure 5: Two interleaved cushions: A1A2A3 and B1B2

Figure 5 sketches the idea in 2D for two clusters contain-
ing the non-compact children A1,A2,A3 and B1,B2. A clus-
ter can contain non-compact rectangles, but the eye can still
find it by following the continuous variation of the parabolic
luminance function. Dark (h(x,y) = 0) discontinuities are

cluster borders. Bright (h(x,y) > 0) discontinuities separate
rectangles which belong to different clusters. Clusters ap-
pear visually as intersecting cushion profiles, hence the name
’interleaved cushions’. If we moreover color each cluster
with one color, e.g. picked randomly from a small color
set, visually segregating clusters becomes even easier. Fig-
ure 6 shows the result. Note the interleaved cushion of sizes
w,h in the center which depicts one large cluster. Although
this cluster is non-compact, as shown by the thin horizontal
bands splitting its cushion, we perceive it as separate fol-
lowing the cushion’s smooth luminance variation. Figure 7
shows more examples of interleaved cushions, discussed in
detail in Sec. 6.

w

h

Figure 6: Interleaved cushions

Figure 6 uses the luminance cushions, where the lumi-
nance signal itself is parabolic [LNVT05, VT06a]. Geo-
metric cushions [vWvdW99] have a luminance profile of a
parabola lit from a certain angle. Although geometric cush-
ions are arguably better for treemaps, their luminance signal
is non-symmetric when the light vector is not vertical. We
found luminance cushions clearly better for showing non-
compact clusters, due to the intuitive symmetry of the lumi-
nance signal. Plateau cushions [LNVT05] are best to show
individual elements, e.g. Figs. 4 and 8.

6. Applications
We implemented our anti-aliased hierarchical cushions and
various navigation, zoom-and-pan, details-on-demand, and
brushing functions in an application for visualizing software
log data. We discuss our application for two problem do-
mains.

6.1. Dynamic memory allocator analysis
First, we visualize the behavior of a dynamic memory allo-
cator. This allocator, used on a mobile device, serves tens of
processes with thousands of malloc and free calls per

c© The Eurographics Association 2007.



S. Moreta and A. Telea / Multiscale Visualization of Dynamic Software Logs

b)a) c)

f) h)g)

A

B

A

B

C

D

e)

d)

Figure 7: Hierarchical visualization. Memory log, compact metric (a-c) and occupancy evolution (d). Repository log, compact
(e-f) and non-compact (g-h) metrics. Clustered visualizations show same-lifetime memory blocks (c) and software releases (h)

second. The allocator organizes memory in a pool, parti-
tioned into B bins, and an unstructured heap. Each bin bi
has a fixed number Nbi of free blocks of equal size dim0 <

dimi < dimB. A malloc request of size s < dimB is served
by allocating a full block in the bin bi whose block size best
fits s. If bi is full or s > dimB, memory is allocated on the
heap. Important quality metrics are waste and fragmentation.
Waste equals the memory lost because of the fixed block
sizes. Fragmentation manifests itself by having scattered in-
stead of contiguous free blocks. Typical questions are:
• How does fragmentation depend on time and pool?
• How does waste depend on time and pool?
• Which are the largest quasi-compact regions allocated?

• Are the (de)allocations served in the right order?
Figure 8 shows all B = 13 bins and the heap, rendered as ex-
plained in Sec. 4, all scaled to the same window size. Color
shows per-block waste (blue=none, red=maximal). A red bar
right of each view shows the free memory in that pool/heap.
The black-framed bars under the views show the occupancy
evolution in time (blue=all free, red=all full). We see several
interesting facts. Bins 1,9 and 12 have the most per-block
waste (warm colors) and bins 4 and 5 the least (cold col-
ors). The heap has zero waste (dark blue), which is indeed
correct. Bins 9,11,12 and 13 are the fullest (shortest vertical
red bar). All bins begin with little fragmentation (compact
blocks at bottom of all bin views), but end up with a higher

c© The Eurographics Association 2007.



S. Moreta and A. Telea / Multiscale Visualization of Dynamic Software Logs

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7

bin 8 bin 9 bin 10 bin 11 bin 12 bin 13 heap

free memory in each bin

bin occupancy in time

Figure 8: Bins and heap occupancy visualization for the dynamic memory allocator log

one (less compact blocks at top of all bin views). Figure 7 d
shows a detail view of the occupancy bars. The ’flat shaded’,
non-cushioned parts of the occupancy bars indicate high-
frequency, short-lived, subpixel-size allocations, i.e. a high
activity. During the second third of the monitored period,
memory occupancy suddenly increases. Yet, an overall oc-
cupancy drop (Figure 7 d A) splits the occupancy patterns of
bins 0,5,7 and 9 into two near-constant-occupancy ’plateaus’
(Figure 7 d) B). In the last third of the monitored period, oc-
cupancy decreases. Yet, there are three very short periods
where memory occupancy bursts to a maximum in the heap
(Figure 7 d C). Using the importance-based antialiasing re-
vealed this dangerous moments which would otherwise have
passed undetected. In the heap (Fig. 8 lower-right) blocks get
allocated from high to low addresses, conversely than for the
bins, which is indeed correct for this allocator. Finally, the
heap shows a higher block size variation (cushion height)
as compared to all bins. This validates the best-fit allocator
policy explained above.

Figure 7 a-c shows a hierarchical clustering with inter-
leaved cushions for the memory log data. Figure 7 a shows
the cluster tree leaves, i.e. all allocated blocks, using ran-
dom colors from a small color set. There is little structure
in this image. Figure 7 b shows a same-error section of the
cluster tree built with the y-adjacent metric (d3, Sec. 5.1).
We see here some large blocks at the bottom (A) and a
vertical strip in the middle (B). Figure 7 c shows a same-
error section in the same tree, further simplified. We see here
four large, clearly delineated clusters (A-D). These indicate
blocks allocated and freed almost at the same time. Details-
on-demand by mouse brushing revealed their meaning: A
contains global variables, whose lifetime equals that of the
whole process; B is a dynamic array of equal-sized elements;
C and D hold local function variables.

6.2. Software evolution analysis

In the second application, we analyze the evolution of the
VTK code base. Our clustering and interleaved cushions let

c© The Eurographics Association 2007.



S. Moreta and A. Telea / Multiscale Visualization of Dynamic Software Logs

us push the analysis further than with tools such as CVS-
grab [VT06b]. Figure 7 e shows the unclustered VTK soft-
ware repository log. Clearly, there is little structure to see.
Figure 7 f shows a same-error section of the VTK log clus-
tering using the y-adjacent metric (d3, Sec. 5.1). We see sev-
eral large same-color clusters. These are files which were
changed together for given periods of time and are located
in the same directory. For example, cluster A contains the
"Python examples" of the VTK code base. Finding such
clusters means obtaining an evolution-based system decom-
position. However, often files located in different directories
may evolve together. To find these, we can use the d1 or
d2 metrics (Sec. 5.1). Figures 7 g-h show two same-error
sections of a clustering using the d2 metric. The interleaved
cushions make several vertical stripes visible. These corre-
spond to aligned (interleaved) cluster borders. The stripes in
Fig. 7 h are broader than in Fig. 7 g, as we decrease the level-
of-detail. These stripes correspond to stable development pe-
riods (when few files change), separated by "releases" (mo-
ments when many files change together). We validated this
by comparing these moments inferred by our clustering with
the actual release moments recorded in the repository as ex-
tracted by CVSgrab [VT06b].

This visualization differs in two main respects from CVS-
grab’s hierarchical visual clustering [VT06b]. Given the arti-
facts ei, each having the versions ei

j , we cluster here the indi-
vidual versions e j

i , whereas CVSgrab clusters entire artifact
evolutions ei. Thus, we can detect which files evolve simi-
larly and also during which time period this happens. This
is the exact meaning of the cushions in Fig. 7. This is useful,
as the CVSgrab users complained in the past that clustering
entire evolutions is too restrictive. Indeed, given some files
A, B and C, A and B can evolve similarly for a while, after
which B evolves similarly with C. Obtaining images such
as Fig. 7i, which show system releases as vertical stripes, is
not possible with CVSgrab. Stronger, CVSgrab changes the
layout to group similar files together, as it can render only
rectangular clusters. Our interleaved cushions support clus-
ters with arbitrary borders and even non-compact clusters,
thereby keeping the layout unchanged.

7. Acknowledgements
We are grateful to Christian del Rosso, from Nokia Re-
search, for providing us with the case study information and
with useful feedback on the results of our visualization.

8. Conclusions
We have presented several new techniques for visualizing
dynamic software log data. Our importance-based antialias-
ing guarantees visibility of rapid (isolated) events rendered
as subpixel items in large datasets. We discuss a hierarchical
clustering method that reveals structure from "flat" log data,
thereby answering questions such as "show array alloca-
tions" in memory allocation logs and "show system releases"

in code repository logs. We proposed interleaved cushions,
a simple but effective way to visualize non-compact clusters
on a 2D layout. We illustrated the above on two real-world
applications: the monitoring of a dynamic memory allocator
and the analysis of a large software repository. We plan to
apply our techniques to different domains and also extend
them to visualize higher multivariate datasets.

References
[ACS90] ALPERN B., CARTER L., SELKER T.: Visualiz-

ing computer memory architectures. In Proc. IEEE Visu-
alization (1990), IEEE Press, pp. 107–113.

[Bos01] BOSCH R.: Using Visualization to Understand
the Behavior of Computer Systems. PhD thesis, Stanford
University, 2001.

[BST∗00] BOSCH R., STOLTE C., TANG D., GERTH J.,
ROSENBLUM M., HANRAHAN P.: Rivet: A flexible en-
vironment for computer systems visualization. Computer
Graphics 34, 1 (2000).

[GT89] GRISWOLD R., TOWNSEND R.: The visualization
of dynamic memory management in the icon program-
ming language. In Tech. Report 89-30 (Dec. 1989), Dept.
of Comp. Science, Univ. of Arizona.

[JG94] JEFFERY C., GRISWOLD R.: A framework for ex-
ecution monitoring in icon. Software - Practice and Ex-
perience 24, 11 (1994), 1025–1049.

[LNVT05] LOMMERSE G., NOSSIN F., VOINEA L.,
TELEA A.: The visual code navigator: An interactive
toolset for source code investigation. In Proc. InfoVis
(2005), IEEE Press, pp. 4–11.

[Lyn06] LYNUXWORKS: The lynxinsure++ analysis and
visualization toolkit, 2006.

[SK93] STASKO J., KRAEMER E.: A methodology
for building application-specific visualizations of parallel
programs. J. of Parallel and Distributed Computing 18, 2
(1993), 258–264.

[Sta92] STASKO J.: Animating algorithms with x-tango.
SIGACT News 23, 2 (1992), 67–71.

[VT06a] VOINEA L., TELEA A.: Cvsgrab: Mining the
history of large software projects. In Proc. IEEE EuroVis
(2006), pp. 187–194.

[VT06b] VOINEA L., TELEA A.: Multiscale and multi-
variate visualizations of software evolution. In Proc. ACM
SoftVis (2006), pp. 47–56.

[vWvdW99] VAN WIJK J., VAN DE WETERING H.: Cush-
ion treemaps: Visualization of hierarchical information.
In Proc. IEEE InfoVis (1999), IEEE Press, pp. 73–78.

[WKT04] WEIDENDORFER J., KOWARSCHIK M.,
TRINITIS C.: A tool suite for simulation based analysis
of memory access behavior. In Proc. ICCS (2004),
pp. 440–447.

c© The Eurographics Association 2007.


