
Poster Abstracts at Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

D. Auber, G. Melançon, T. Munzner, and D. Weiskopf (Chairs)

SolidSX: A Visual Analysis Tool for Software Maintenance

D. Reniers1 and L. Voinea1 and A. Telea2

1SolidSource BV, Eindhoven, the Netherlands 2University of Groningen, the Netherlands

Abstract

We present SolidSX, an integrated tool for visual analysis of large software systems. SolidSX integrates static

code analysis (parsing and metric computation) and multiple linked views such as treemaps, table lenses, and

hierarchical edge bundles in a single environment, thereby simplifying the work of software developers interested

in correlating several structure and metric aspects in understanding large software projects. We outline the fea-

tures of SolidSX which make it an effective instrument in contexts where tool integration and ease-of-use are key

requirements.

1. Introduction

Software maintenance accounts for over 80% of the costs

of the lifecycle of modern software systems. Of these,

over 40% represent understanding the software. Many vi-

sualization tools support software understanding by tech-

niques such as compound graph layouts for hierarchy-and-

dependency data; treemaps and tables for software quality

metrics; and annotated text views for source code. Yet, most

such tools know very limited acceptance in the software in-

dustry. Key reasons for this are limited scalability in terms of

visualization and/or size of handled code bases, long learn-

ing curves, and poor integration with software analysis and

development toolchains.

We present here SolidSX, a visual tool for software un-

derstanding in maintenance which attempts to remove the

above-mentioned difficulties. SolidSX follows a visual ana-

lytics approach. It tightly integrates several visual techniques

(hierarchical edge bundles (HEBs), treemaps, table lenses,

and annotated code views) with several reverse-engineering

and analysis techniques (code parsers and code quality met-

ric engines) in a single environment. We present next the

main features of our tool and outline the design decisions

taken which ensure the scalability, ease of use, and integra-

tion requirements.

2. Data Acquisition and Analysis

SolidSX uses a simple dataflow architecture (Fig. 1, for

details see the tool’s manual [Sol09]). Input source code,

.NET assemblies, or Java bytecode, are processed by sev-

eral built-in analyzers to extract a compound (hierarchy-

and-dependency) attributed graph. Nodes model software ar-

tifacts: modules, assemblies, files, directories, classes, and

functions. Edges model both aggregation (containment) and

a wide range of dependency types: calls, type uses, vari-

able reads/writes, inheritance, interface implementation, and

header/package inclusion. Nodes and edges may have a vari-

able number of key-value attributes, e.g. names, types, sig-

natures, and software metrics. No restriction is put on the

graph’s structure or attributes, e.g. several hierarchies can

co-exist. Extracted data is persistently stored in a simple,

fixed-schema, SQLite database or XML file, which allows

fast retrieval, user-defined searching, and interoperability

with other tools.

Input code
- C, C++

- Java

- .NET/C#)

SolidSX Visual Analysis Tool

Code analyzers
- parsers

- disassemblers

- metric engines

Visualizations
- edge bundles

- treemaps

- table lenses

- annotated text

- SQLite database

- XML text files

Persistent storage

Fact database
- compound graphs

- node/edge attributes

- selections

Figure 1: SolidSX tool dataflow architecture

Setting up static code analysis is notoriously complex,

error-prone, and time consuming. We succeeded in com-

pletely automating this process by using customized ver-

sions of several static analyzers: Recoder (for Java) [Lud09],

Reflector (for .NET/C#) [Red09], and our own SolidFX

parser (for C/C++) [TV08]. Besides structural information,

we modified these analyzers to compute code quality met-

rics, such as complexity, cohesion, coupling, fan-in, and fan-

c© The Eurographics Association 2010.



D. Reniers and L. Voinea and A. Telea / SolidSX: Visual Software Analytics

out. This allows end users to generate visualizations com-

bining structure, dependency, and quality metrics data in a

matter of seconds up to minutes from code bases of up to

hundreds of thousands of lines by simply providing an input

directory with source code. This design decision proved key

to user acceptance.

3. Visualizations

SolidSX offers several views (Fig. 2 top): classical tree

browsers, table lenses of node/edge attributes, treemaps, and

the novel HEB compound graph layout [Hol06]. All visual-

izations have carefully designed presets which allow one to

use them with no additional customization, and are imple-

mented in C++ using OpenGL 1.1. They all depict the same

fact database created by the code analysis step. Users can

also create node/edge selections in any view by either direct

interaction or custom queries (implemented as SQL/XML

queries). These two mechanisms realize the linked view con-

cept, which enables users to easily create complex analy-

ses of correlations of structure, dependencies, and metrics

along different viewpoints. Figure 2 top) illustrates this on

a C# system of around 45000 lines of code (provided with

the tool distribution [Sol09]). The HEB view shows function

calls over system structure: caller edge ends are blue, callee

edge ends are gray. Node colors show McCabe’s code com-

plexity metric on a green-to-red colormap, thereby enabling

complexity correlation with the system structure. We see that

the most complex functions (warm colors) are in the module

and classes located top-left in the radial layout. The table

lens view shows several function-level code metrics, and is

sorted on decreasing complexity. This allows one to see how

the different metrics correlate with each other. Alternatively,

one can select e.g. the most complex or largest functions and

see them highlighted in the other views. The treemap view

shows a flattened system hierarchy (modules and functions

only), with functions ordered top-down and left-to-right in

their parent modules on code size, and colored on complex-

ity. The visible ’hot spot’ indicates that complexity corre-

lates well with size. Constructing the entire scenario, includ-

ing the code analysis, takes about 2 minutes and under 20

mouse clicks.

4. Integration in Development Pipelines

Arguably the most important feature for user acceptance of

SolidSX is integration ease: The tool comes can be used

fully standalone on C, C++, .NET/c#, and Java code bases,

but is also integrated in the Visual Studio IDE (Fig. 2 bot-

tom). The latter links code editors and views in both ways

by mouse clicks, and is one of the first (and few) examples

of truly integrated visual analytics solutions in software de-

velopment. The tool provides a simple Python scripting in-

terface which allows integration in other IDEs or toolchains,

such as Eclipse, KDevelop, or Qt Creator. The open SQL

and XML data interchange formats further simplify integra-

tion at data exchange level. SolidSX was used in several

Treemap view

Radial view

Tree browser

Table lens
code size complexity

Figure 2: Top: SolidSX views; Bottom: Visual Studio inte-

gration

industrial reverse-engineering and program comprehension

projects, as described on the tool’s webpage [Sol09]. Ongo-

ing work includes integrating multiscale bundling features,

a recent research result [TE10], in the HEB view. SolidSX is

freely available for academic and research users.

References

[Hol06] HOLTEN D.: Hierarchical edge bundles: visualization
of adjacency relations in hierarchical data. IEEE TVCG (2006),
741–748.

[Lud09] LUDWIG A.: Recoder java analyzer, 2009.
http:recoder.sourceforge.net.

[Red09] REDGATE INC.: Reflector .NET api, 2009. http:www.

red-gate.com/products/reflector.

[Sol09] SOLIDSOURCE: SolidSX software explorer,
2009. http:www.solidsourceit.com/products/

SolidSX-source-code-dependency-analysis.html.

[TE10] TELEA A., ERSOY O.: Image-based edge bundles: Sim-
plified visualization of large graphs. Comp. Graph. Forum (Proc.

EuroVis’10) 29, 3 (2010). to appear.

[TV08] TELEA A., VOINEA L.: SolidFX: An integrated reverse-
engineering environment for c++. In Proc. ACM SOFTVIS
(2008), pp. 165–172.

c© The Eurographics Association 2010.

http:recoder.sourceforge.net
http:www.red-gate.com/products/reflector
http:www.solidsourceit.com/products/SolidSX-source-code-dependency-analysis.html

