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1. Introduction

Multidimensional projections (MPs) visualize high-dimensional
data by mapping a set X = {xi} ⊂ Rn of such observations to a
lower-dimensional space. Formally put, a projection P is a function

P : Rn→ Rm, m� n.

If m = 2, we can represent the projected data by a traditional scatter-
plot. Many MP methods exist, offering various trade-offs between
ease of use (automation), accuracy of representing n-dimensional
distances [PVG∗17] or neighbourhoods [vdMH08], computational
scalability [JCC∗11], and robustness with respect to small changes
in the data [RFT16]. For a very large number of observations
N = |X | and a large number of dimensions n, computing a single
high-accuracy projection P(X) of the entire dataset X becomes ei-
ther too expensive or creates too large inaccuracies. In the limit,
very large N values make even the rendering of P(X) hard to follow,
due to clutter. Such problems are partially solved by so-called land-
mark methods, such as LAMP [JCC∗11], LSP [PNML08], or Land-
markMDS [DST03]. These methods select a small subset Xl ⊂ X
of so-called landmarks, representatives, control points, or anchors.
Next, Xl is projected to Yl ⊂Rm using a—typically high-accuracy—
method P or manual placement [JCC∗11], and the projections of re-
maining observations X \Xl are arranged around points in Yl based
on a local low-cost stress minimization principle. Landmark MPs
can thus be described by

P̂ : Rn×Rn×Rm→ Rm,

P̂(X ,Xl ,P(Xl)) = Y.

While faster than classical methods, landmark MPs cannot directly
handle very large datasets X : A single subsampling Xl may not be
enough, as this yields either too many landmarks for the expensive
landmark-projection P to work quickly, or too few landmarks in
which case P has a large error. Also, it is not evident how to control
the level-of-detail in Y so as to emphasize specific data patterns with
controlled error.

We propose a framework for the exploration of large high-
dimensional datasets via MPs that addresses the above challenges,
with the following key contributions Ci:

Scalability (C1): We handle large datasets X in time linear to |X |.
Level-of-detail (C2): We propose a multiscale view on P which

ranges between overviews of the full X (with higher errors) and
detailed views on subsets of X (with lower errors).

Continuity (C3): Navigation between our multiscale levels is con-
tinuous in the projection space R2. This helps users maintaining
their mental map.

Control (C4): For navigation, we extend classical 2D zoom-and-
pan, familiar to most users, to handle Rn space. Intuitively put, we
allow exploring a high-dimensional space via a ‘Google Earth’
metaphor of navigating point clouds, where more details—i.e.,
more points—are automatically added, on-demand.

2. Method

Our method can be compactly described in terms of three
operations—subsampling, projection, and exploration—as follows.

Subsampling: We handle very large input datasets X by subsam-
pling these by an operator SM : Rn → Rn, SM(X) ⊂ X . Subsam-

pling allows us to construct a smaller dataset
∣∣∣SM(X)

∣∣∣ = M� |X |
which we can next project by landmark MPs (Sec. 1). Simple sub-
sampling methods that are linear in |X | include random sampling
[Vit85, Knu81], which we denote as SM

RND.

Projection: With Xv = SMv
RND(X) computed as above, we project Xv

by LAMP [JCC∗11], with metric MDS [PVG∗17] used for accurate
projection of Xl ⊂ Xv, where landmarks Xl are selected by further
subsampling Xv. In detail, we define

Xv = SMv
RND(X),

Xl = SMl
RND(Xv),

Yl = PMDS(Xl),

Yv = P̂LAMP(Xv,Xl ,Yl),

(1)

that is, we subsample X to Mv = 1000 observations, of which we
next select Ml = 50 landmarks to project via MDS, and using this,
construct the projection Yv of Xv using LAMP.

Exploration: Our method’s main strength becomes apparent when
we consider interactive exploration. Applying Eq. (1) to our whole
input data X yields an overview scatterplot Yv which shows the gen-
eral structure of X . However, we do not have details, since Xv is a
coarse subsampling of X . We next enable interactive level-of-detail
exploration of the data by multiscale projections (see also Fig. 2):
The user selects a focus point y ∈ R2, e.g., at the mouse location.
We next select all observations Xk ⊂ Xv whose projections in Yv are
the k-nearest neighbours of y in the 2D space, where k defines the
zoom level - e.g., setting k to 90% of Mv yields a zoom of roughly
10%. Points outside Xk are discarded. There is now room for Mv−k
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Figure 1: Multiscale projection exploration. From the overview of X (a), we zoom three times to get details in the orange cluster, yielding
views (c), (e), and (g). As we zoom, points are added on-demand—(g) has about Mv = 1000 orange points as compared to only 100 in (a).
Images (b), (d), and (f) show intermediate interpolation stages during the zooming. Dashed lines show the regions of interest (ROIs) Yk.

more points, so we compute the set Xc of Mv− k observations from
X \ Xk that are closest to Xk. Next, we define the new set of ob-
servations X ′v = Xk∪Xc, and project it using as landmarks X ′l a set
of Ml randomly chosen points from Xk, i.e., X ′l = SMl

RND(Xk). The
projection Y ′l of the landmarks is not re-computed, to preserve vi-
sual continuity, but is set to the points from Yk that map the ob-
servations in X ′l . The new set of landmarks yields a new projection
Y ′v = P̂LAMP(X

′
v ,X
′
l ,Y
′
l ), analogous to Eq. (1). Finally, we interpolate

between the current scatterplot Yv and the new one Y ′v by linearly in-
terpolating the positions of the points common to the two plots and
also fading out points that exist in Yv (but not in Y ′v ) and fading in
points that exist in Y ′v (but not in Yv). This ensures a smooth transi-
tion during zooming (see also the additional material).
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Figure 2: Multiscale projection exploration. a) Subsampling the
dataset X ⊂Rn. b) Projecting S(X) to 2D. c) User selects ROI in 2D.
d) Landmarks are sampled from ROI points. e) Rn observations are
selected as nearest-neighbors of observations mapped to ROI points.
Newly selected points are projected with the other remaining points
using landmarks from (d).

Results: Our method has several key advantages vs. state-of-the-
art MP methods. Following Sec. 1, these are as follows. (C1): We
can rapidly project datasets of any size by controlling the parame-

ters Mv and Ml (Eq. (1)); this gives a trade-off between speed and
level-of-detail. Since we use subsampling, and LAMP scales well
in Ml and Mv, our method is real-time for datasets with millions of
observations. (C2): We can smoothly navigate between coarse views
of large datasets X and detailed views of subsets Xk of such datasets.
(C3): We ensure continuity during navigation, by the consistent use
of landmarks Xl during zooming (Sec. 2), and by the linear interpo-
lation of the scatterplot positions. (C4): Navigating Rn data spaces
is simple—just use classical point-and-zoom 2D tools. This is the
first time, to our knowledge, that this mechanism has been used
for the navigation of Rn spaces. Simply put: our proposal lets users
zoom in/out in Rn datasets as easily, and intuitively, as when doing
it in 2D space. We coded the proposed framework in Python 3 using
SciPy [JOP∗17]. Our implementation can easily handle datasets of
over a million observations with real-time zoom exploration.
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