
EuroVis 2017
M. Meyer, S. Takahashi, A. Vilanova
(Guest Editors)

Volume 36 (2017), Number 3
STAR – State of The Art Report

State of the Art in Edge and Trail Bundling Techniques

A. Lhuillier1, C. Hurter1 and A. Telea2

1ENAC, Toulouse, France
2Institute Johann Bernoulli, Univ. of Groningen, the Netherlands

Abstract
Bundling techniques provide a visual simplification of a graph drawing or trail set, by spatially grouping similar graph edges
or trails. This way, the structure of the visualization becomes simpler and thereby easier to comprehend in terms of assessing
relations that are encoded by such paths, such as finding groups of strongly interrelated nodes in a graph, finding connections
between spatial regions on a map linked by a number of vehicle trails, or discerning the motion structure of a set of objects by
analyzing their paths. In this state of the art report, we aim to improve the understanding of graph and trail bundling via the
following main contributions. First, we propose a data-based taxonomy that organizes bundling methods on the type of data
they work on (graphs vs trails, which we refer to as paths). Based on a formal definition of path bundling, we propose a generic
framework that describes the typical steps of all bundling algorithms in terms of high-level operations and show how existing
method classes implement these steps. Next, we propose a description of tasks that bundling aims to address. Finally, we provide
a wide set of example applications of bundling techniques and relate these to the above-mentioned taxonomies. Through these
contributions, we aim to help both researchers and users to understand the bundling landscape as well as its technicalities.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computing Methodologies—
Picture/Image Generation; I.3.6 [Computer Graphics]: Computing Methodologies—Methodology and Techniques

1. Introduction

Bundling techniques provide a visual simplification of a graph draw-
ing or a set of trails, by spatially grouping graph edges or trails
(which we next globally call paths). This way, the structure of the
visualization becomes simpler and thereby easier to comprehend
in terms of assessing relations that are encoded by such paths,
such as finding groups of strongly interrelated nodes in a graph
drawing, finding connections between spatial regions on a map
linked by a number of vehicle trails, or discerning the motion struc-
ture of a set of objects by analyzing their trajectories. Bundling
techniques started with graph simplification by edge concentration
[New89] in 1989 and extensions of Sankey graphs [Tuf92]. Graph
drawing simplification has since then been a major focus of edge
bundling, a term introduced by Dickerson et al. for the reduction
of clutter in a graph drawing via node placement [DEGM03]. The
method was next extended to handle hierarchical graphs drawn in
2D [Hol06] and 3D [CC07, GBE08]; general graphs [HVW09,
DMW07]; spatial trail sets in 2D [CZQ∗08, EHP∗11, LBA10b] and
on curved surfaces [LBA10b]; sequence graphs [HET13] and dy-
namic graphs and eye tracks [NEH12, HEF∗14]; directed graphs
[SHH11, Mou15, PHT15]; attributed graphs [TE10, PHT15]; par-
allel coordinate plots [MM08, PBO∗14, PW16]; multidimensional
projections [MCMT14, RFFT17]; and 3D vector and tensor fields
[YWSC12, BSL∗14, EBB∗15]. Along the growing interest to apply
bundling for many data types, a wide array of bundling techniques
has been proposed, based on control structures [Hol06], force-
directed models [HVW09, DMW07, NEH12, EBB∗15]; computa-
tional geometry techniques [PXY∗05, CZQ∗08, LBA10b, EHP∗11];
image-based techniques [HET12, BSL∗14, Mou15, vdZCT16]; and
graph simplification techniques [GHNS11, TE10]. Recent develop-
ments using GPU parallelization have made bundling efficiently ap-
plicable to datasets of millions of paths [vdZCT16, LHT17].

Bundling goals largely follow those of early methods for simplify-
ing graph drawings [HMM00]. Since then, bundling has become an
established tool for the creation of simplified visualizations of edge
and trail datasets. However, the rapid development of the field, cou-
pled with the diversity of its application domains, data types han-
dled (e.g., graphs, vehicle trails, eye tracking data, vector and ten-
sor fields, all of them attributed or not and time-dependent or not),
and a plethora of algorithmic approaches, make it hard for users to
choose the suitable method for a given use-case, and for researchers
to focus on important areas of improvement. Bundling is featured,
though with limited detail, in a recent survey on image-based infor-
mation visualization [Hur15], and has gained a prominent place in
the set of practical clutter-reduction methods for large graph visu-
alization [SH13]. Another recent survey on large graph visualiza-
tion [LKS∗11] only tangentially touches graph bundling. All above
make the case for a dedicated survey on graph and trail bundling.

These challenges have been acknowledged in a recent work
[ZXYQ13], which, to our knowledge, is the only survey dedicated
to bundling so far. Yet, critical elements for understanding bundling
are not covered by [ZXYQ13], such as a large number of existing
bundling methods; bundling attributed and time-dependent data; 3D
bundling; and interaction techniques for exploring bundled layouts.
More generally, the bundling literature lacks a formal discussion on
what bundling precisely is and which are its exact advantages and
limitations. There is so far no framework that allows comparing the
different algorithmic solutions from a technical perspective. Rela-
tions of bundling with other simplification techniques such as data
clustering [JMF99] and image simplification [CM02, SP09] exist
but are not fully analyzed. Understanding these can help simplified
graph visualization in general. Finally, we lack a taxonomy of all
bundling methods, including recent and less mainstream ones. All
these issues are frequently mentioned in recent bundling papers and

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

in discussions in the community. The general perception is that solv-
ing such questions is an important step to make bundling evolve from
a set of ad-hoc techniques to a more mature sub-field.

In this report, we aim to overcome the above mentioned issues, by
the following contributions:

1. Taxonomy: We propose a data-based taxonomy that organizes
bundling methods on the type of data they work on (graphs vs
trails, which we jointly refer to as paths). We show how this
taxonomy is more clear-cut than the usual technique-based tax-
onomies that group bundling methods into data-driven, geomet-
ric, and image-based (see e.g. [vdZCT16, ZXYQ13, HET12]).
Moreover, our taxonomy helps users choose suitable algorithms
for their data without having to dive into algorithmic details;

2. Framework: We propose a formal definition of path bundling,
which we next specialize for graph and trail bundling. Next, we
propose a generic framework that describes the typical steps of
all bundling methods in terms of high-level operations. We next
show how such methods implement these steps. This helps one to
compare in detail specific steps of specific algorithms, and com-
plements the above-mentioned high-level taxonomy of bundling
algorithms with technical insights. Our framework also helps out-
lining technical limitations of existing algorithms, suggesting fu-
ture improvement areas.

3. Task support: As outlined already, comparing bundling tech-
niques is hard. We address this by proposing a description of
tasks that bundling aims to address, following [LPP∗06, BM13].
We discuss how bundling can address these tasks, and also where
salient limitations exist, in terms of the operations of our pro-
posed framework. We also discuss ways (and challenges) to com-
pare the results of different bundling methods. By this, we aim to
provide a guide to the practitioner in selecting, customizing, test-
ing, and possibly extending existing bundling methods to support
optimally a given task set.

4. Applications: Bundling has gone far beyond simplified graph
drawing. We overview a wide set of bundling applications and
relate these to the above-mentioned tasks. By this, we address
limitations of papers which usually focus either on proposing a
new technique or discussing a single application.

We start by introducing the main definitions and notations we will
work with (Sec. 2). Section 3 presents our data-driven taxonomy and
how existing methods fit in it. Section 4 presents a bundling frame-
work that unifies the technical explanation, discussion, and com-
parison of bundling methods. Section 5 discusses how bundling ad-
dresses its main task – clutter reduction – and the further sub-tasks it
covers. Section 6 presents a sample of bundling applications that, we
argue, covers well the current bundling arena. Section 7 discusses the
main advantages, limitations, and potential future work in bundling.
Section 8 concludes the report.

2. Definitions

Bundling Objectives: Large-scale, strongly connected, real-world
graphs have many more edges than nodes. Hence, classical straight-
line node-link drawings thereof quickly become ineffective for most,
if not all, tasks they address. This is often referred to as the edge con-
gestion [CR01, WCG03, LKS∗11], visual clutter [ED07, BVKW11,
NEH13], or hairball problem [SH13]. Bundling is one class of meth-
ods that aims to alleviate this problem, along graph clustering and
interaction, as further outlined in Sec. 3.1.

Informally put, bundling trades clutter for overdraw [TE10]. How-
ever, although there are tens of papers on bundling in the literature,
there is – interestingly enough – no formal definition of bundling.
We argue that such a definition is needed to be able to understand
the process, compare methods, reason about guarantees and limita-
tions, and push further research. We propose such a definition next.

Bundling definition: Let G= (V,E ⊂V×V) be a graph with nodes
V = {vi} and edges E = {ei}. Let d be the dimensionality of the
drawing space where the bundled visualization will occur, which
is usually 2 or 3. Separately, let T = {ti} be a so-called trail-set
[PXY∗05,ZXYQ13]. A trail ti ⊂Rd is an oriented curve. Trails typi-
cally describe the motion of shapes in space, e.g. airplanes [HTC09],
eye tracks [PHT15], ships [SWvdW∗11], or persons [NPD16]. How-
ever, trails can also be curves unrelated to motion, e.g. polylines in a
parallel coordinate plot (PCP) [Ins09] or DTI tracts [EBB∗15]. Note
that, in graph theory, the term trail has a different meaning, i.e, a type
of walk on a graph in which all edges are distinct [HHM08]. Let G
and T be the spaces of all graphs, respectively trail-sets.

The key unifying element of graphs and trail-sets is a so-called
drawing operator D. For graphs, D : G → Rd is a typical graph lay-
out, or graph drawing, method [TBET99]. By analogy, let D(ei) and
D(vi) be the embedding (drawing) of edges ei ⊂ E, respectively
nodes vi ⊂ V . For trails, the drawing operator is the identity func-
tion, i.e., D(ti) = ti, since trails are already spatially embedded. Let
P denote either a graph G or a trail-set T , called a path-set, and D(P)
the drawing thereof. A path p ∈ P is thus either a graph edge e or
a trail t. Paths can have n additional data attributes, e.g. direction,
weight, timestamps, name, or type [PHT15, DT14]. Hence, a path p
can be seen as a n+ d dimensional, with n data dimensions and d
spatial dimensions.

Let D ⊂ Rd be the space of all path drawings D(P). Let B : D →
D be an operator denoting the bundling of a path-set; and finally let
B(D(p)) denote the curve representing the bundling of path p. B is a
bundling method if

∀(pi,p j) ∈ P ×P|pi 6= p j ∧κ(pi,p j)< κmax→
δ (B(D(pi)),B(D(p j)))� δ (D(pi),D(p j)). (1)

Here, δ is a distance metric between Rd curves, e.g. the Hausdorff
distance [dBCvKO10]. κ : P×P→ R+ is a so-called compatibility
function that captures how dissimilar paths are. That is, low κ val-
ues indicate very similar paths, and high κ values indicate dissimilar
paths, respectively. κ must, in any case, account for spatial simi-
larity in D(P), i.e., when κ(pi,p j) is small, then δ (D(pi),D(p j)) is
small too. In addition, κ can incorporate any of the other n path data-
attributes mentioned above, i.e., it can model distance in the n+ d
layout-plus-attribute space of paths p [PHT15, LHT17]. Only paths
more similar than a threshold κmax should be bundled – otherwise
the input drawing D(P) can get too severely distorted to be of any
use. Simply put, Eqn. 1 states that the bundled drawings B(D(pi)) of
highly compatible paths are much spatially closer than their unbun-
dled drawings D(pi).

Bundling literature often refers to ‘edge bundling’ or ‘graph
bundling’ indiscriminately, even when the actual data being bundled
are trail-sets. It is thus important to clarify both differences and sim-
ilarities between (the bundling of) graphs and trail-sets:

Graphs vs trail-sets – data differences:

• A graph G does not have a given spatial embedding. Only a graph
drawing does. So, one bundles graph drawings, not graphs. The
distinction is crucial, as the drawing D(G) is an extra degree
of freedom – the same G can have multiple drawings D(G). Of
course, one can use graph information, e.g. edge attributes, to
influence bundling – see discussion of compatibility function κ

above. Yet, having a layout D(G) is mandatory; without it, we
cannot bundle a graph as a non-spatial, abstract, object;

• In contrast to graphs, a trail-set T is always spatially embed-
ded, by definition. This embedding encodes relevant data, e.g.,
geo-positions of vehicle movements, or variable values in a PCP.
Hence, bundling a T is far more delicate than bundling a D(G):
Deforming the former can distort spatially-encoded information;

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

deforming the latter only distorts decisions of the graph-drawing
algorithm, but none of the raw data G;

• Both graphs G and trail-sets T can be directed or not. However,
most trail-sets are directed, as they represent motion trajetories;

• Nodes vi in a graph G are typically shared by multiple edges ei.
After all, this defines a graph. In contrast, endpoints of trails ti do
not have to match. Hence, a trail-set T is a less structured dataset
than a graph G.

Graphs and trail-sets – bundling similarities:

• Bundling both graph drawings and trail-sets can be expressed by
the same formalism (Eqn. 1). Of course, the meaning of the func-
tions δ and κ can be different for graphs vs trail-sets, but the same
can hold for two use-cases featuring both graphs or trail-sets;

• Given the above, the same algorithm B can be used to bundle
graphs and trail-sets, if it delivers a visual simplification (and im-
plicitly, path deformation) which is suitable for the problem at
hand. This is well visible in many bundling papers which propose
the same bundling method for both graphs and trail-sets;

• The overarching goal of bundling – reducing clutter in a path
drawing so that its core structure stands out – is common to both
graph drawing and trail-set bundling.

Summarizing: Graphs and trails are completely different data
types – the former is not spatially embedded data (for that, we need a
graph drawing); the latter is spatial by definition. Trails are typically
directed, while graphs may not be. Many algorithms can technically
bundle both graph drawings and trail-sets, the choice of an algorithm
being suitable or not being driven by more subtle application factors
like definition of compatibilities, amount of bundling deformation,
and types of emphasized patterns. All these aspects matter for un-
derstanding (and optimally using) bundling, as we shall see next.

2.1. Bundling requirements

To discuss and compare bundling methods next (Secs. 3,4), we need
a few general requirements on bundling. Distilled from the bundling
techniques reviewed in this paper, these requirements are as follows:

Input: A bundling method B accepts a path-set drawing D(P) as in-
put – that is, a set of spatial positions connected by curves. This is
in contrast with graph layout methods which typically compute such
positions from a graph G;
Output: The output B(D(P)) of a bundling method is a path drawing
having the same endpoints as the input D(P). No bundling method
that we are aware of (except [YWSC12], see Sec. 3.3.1.2) changes
path endpoints, as these are assumed to store important information;
Bundle definition: Bundling methods do not explicitly define what
a bundle is. Bundles are defined implicitly, as sets of paths that
share sufficient similarity so as to be represented as a compact
graphical shape. Interestingly, this matches the definition of cluster-
ing [JMF99] or image segmentation [Sze10] – a segment or cluster
shares precisely the same properties. So, bundling can be seen as
a clustering or segmentation of the drawing D(P). A constraining
criterion in the above is that bundles are assumed to be spatially thin
(to reduce edge congestion, see Sec. 2) and reasonably low-curvature
(so as to be easily visually traceable, see Sec. 5);
Density sharpening: All bundling methods we know of aim, im-
plicitly or explicitly, to sharpen the spatial edge density ρ of D(P),
i.e., the number of paths D(p) drawn per unit screen space. Simply
put: In areas where ρ is low (few paths), these paths are shifted to
make extra empty space, which declutters the overall image; paths
are shifted to close regions where ρ is already high (many paths ex-
ist). This essentially trades off clutter for overdraw – the number of
intersections of bundles should be significantly lower than the num-
ber of intersections of input paths. This matches the known principle
of ink minimization in information visualization [Tuf92]. Overall,

Figure 1: Early techniques related to bundling: Flow map of French
wine exports (Minard, 1864).

this makes visual end-to-end tracing of bundles easier than end-to-
end tracing of individual paths;
Scalability: Bundling becomes interesting for large path-sets (tens
of thousands up to millions of paths). For small(er) path sets, clas-
sical graph drawing methods suffice [GN00, HMM00, LKS∗11], as
there are too few edges to create the infamous visual clutter dis-
cussed above. Bundling must thus cope with large path-sets, other-
wise its reason to be is not warranted.

3. Taxonomy of Bundling Methods

3.1. Preliminaries

Graph and trail-set bundling have a long history, stemming from ap-
plications related to the visual simplification and clutter reduction
in the drawing of graphs using node-link diagram metaphors. We
outline next early efforts in the area and how they relate to what is
currently understood by bundling.

Graph simplification: An early approach to simplification and
clutter reduction was to simplify the structure of G, by creating a
smaller G′ (with fewer nodes and/or edges) that captures the main
structure of G. Edge concentration is such a method [New89] used to
simplify Sugiyama-style layouts [STT81]. Here, edge sets having the
same set of start and end nodes are replaced by a so-called concentra-
tion node, which effectively presents a simple form of polyline-style
bundling. Many other graph simplification methods exist, as sur-
veyed in [Sch07]. However, such methods display a smaller and/or
different graph than G, and as such specific nodes of potential in-
terest are omitted in the drawing. Finding these requires additional
interactive exploration [AvHK06,AMA08,APP10]. Moreover, most
graph simplification methods do not fit the scope of bundling, as cur-
rently understood by the infovis or graph drawing communities, or
as defined in Sec. 2, so we do not explore these further.

Graph drawing simplification: A separate way was proposed by
methods that change the graph drawing G(D) (as opposed to the
graph G) to reduce clutter. These can be seen as bundling precur-
sors. For example, Brandes et al. use a mix of straight lines and
Bézier splines to draw a general undirected graph where nodes are
train stations and edges are train routes, respectively [BW98]. Spline
control points of spatially close train routes are grouped together.
This also introduces the concept of a ‘control mesh’ which is com-
puted to further bundle edges. Dickerson et al. introduce the notion
of confluent drawing, where “groups of edges are merged together
and drawn as tracks” [DEGM03]. Compared to modern bundling
methods, this approach can only handle a subset of all possible gen-
eral graphs. Flow maps extend the idea by hierarchically clustering
a set of nodes v ∈ V , positions D(v), and directed edges e ∈ E of
a graph (V,E) [PXY∗05], yielding organic, branch-rich images of
the graph structure which are similar to early hand-drawn Sankey
diagrams showing flows over a geographical map (Fig. 1).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

Graph drawings Trail sets
Static Dynamic Static Dynamic

Hierarchical General 3D Sequence Streaming 2D 3D (streaming)
compound undirected directed flowmaps confluent drawing undirected directed PCP

[Hol06, TE10] [HVW09, LBA10b] [SHH11] [PXY∗05] [DEGM03, DEGM05] [CZB11] [HEF∗14] [NEH12] [HET12] [PHT15] [MM08, TA08] [EBB∗15] [HEF∗14]
[PNK10, TDT13] [CZQ∗08, GHNS11] [LDB11] [VBS11] [VBS11, NB13] [BSL∗14] [HET13] [vdZCT16] [LHT17] [HLK∗12, ZYQ∗08] [LBA10a] [HET13]
[HvW08, TA08] [NHE11, LLCM12] [BSV11] [BSV11, BRH∗16] [GBE08] [Han13] [EHP∗11] [Mou15] [PBO∗14, PW16] [YWSC12]

Table 1: Data-based taxonomy of graph and trail-set bundling methods. For space reasons, only the main methods in each class are listed.
Bundling papers that present applications, but do not introduce a new bundling technique, are not listed here.

Interaction: A third way to alleviate clutter is to use interaction,
e.g. to navigate a simplification hierarchy [DS13, AvHK06, vHP09,
HFM07] or interactively declutter focus areas of interest by remov-
ing or bending drawn edges [WCG03,GKN04,TAvHS06,WC07]. In
contrast to bundling, methods offer a local, on-demand, decluttering
and simplification, rather than a global, automatic, one.

In 2006, several papers that introduce bundling as we under-
stand it today were published. Gansner and Koren’s improved cir-
cular layouts by clustering edges (drawn as straight-lines) based
on spatial proximity, and next bending edges in a cluster towards
the cluster’s centroid line [GK06]. Qu et al. propose bundling for
general straight-line graph drawings using NURBS splines whose
control points are constructed from a Delaunay triangulation of the
graph nodes [QZW06]. Most notably, Holten presented hierarchical
edge bundling which was able, for the first time, to bundle com-
pound graphs of thousands of edges and having arbitrary node lay-
outs [Hol06]. With this, the age of modern bundling had begun.

Taxonomy: We propose a data-based taxonomy that organizes
bundling methods along the type of data they work on – i.e., graphs
vs trails. We argue that this taxonomy is more clear-cut than existing
technique-based taxonomies that group bundling methods into data-
driven, geometric, and image-based (see e.g. [vdZCT16, ZXYQ13,
HET12]). Moreover, our taxonomy helps both researchers and users
to understand the bundling landscape without having to dive into the
technicalities of specific methods. A data-based taxonomy (though, a
different one) has also been used in a recent survey to classify graph
visualization methods [LKS∗11].

We organize bundling methods based on the type of data they
work on. At the highest level, such data can be split into graphs
(Sec. 3.2) and trail-sets (Sec. 3.3). Further taxonomy levels refine
graphs and trail-sets based on additional data characteristics, such as
type of graph, direction information, time-dependency, and dimen-
sionality d of the drawing space (see Tab. 1). The proposed taxon-
omy is detailed next.

3.2. Graph Bundling Methods

Graph bundling methods expect as input a graph drawing G(D).
Edges D(e ∈ G) in such drawings are typically straight lines. When
this is not the case, edge drawings do carry information, so de-
forming them by bundling should be done with great care. Such
cases fit better in the class of trail-set bundling, which is discussed
separately (Sec. 3.3).

3.2.1. Static graphs

Static graphs have nodes V and edges E which do not change in
time. For such graphs, bundling methods can be further classified as
follows.

3.2.1.1. Hierarchical compound graphs Hierarchical compound
graphs are graphs G = (V,E) where V are the leafs of a separate
tree T = (V T ,ET). Such graphs are often encountered in relational
datasets whose items can be organized via a hierarchy, such as de-
pendencies between software components [Die08]. Edges in E are
typically called associations.

The most famous bundling method for hierarchical compound
graphs is Hierarchical Edge Bundles (HEB) [Hol06]. HEB draws
the tree T using e.g. a radial (also called a chord diagram [Mun14]),
balloon, or treemap layout. In case of the radial layout (Fig. 2a), the
hierarchy T is shown by a technique known as icicle plots [KL83].
This yields a tree drawing D(T) where nodes v ∈ E that have a
close common ancestor (e.g., father or grandparent) are close to each
other. Next, edges e∈ E are drawn as B-splines whose control points
are the node positions in D(T) – in other words, D(T) serves as a
bundling control mesh (see Sec. 3.1). Since control points are shared,
the drawn (curved) edges get closer to each other than the original
straight-line edges, thus the second part of Eqn. 1 is respected.

Given the relation between node closeness in the hierarchy T
and their placement in D(T), association edges starting or ending
in the same subtree of T are bundled together – in other words,
the compatibility function κ(p1,p2) (Eqn. 1) reflects how close the
endpoints of two edges p1 and p2 are in T . HEB is very sim-
ple to implement and scales very well with the sizes of G and T .
HEB has been used in many applications in software engineering
[HvW08,CZH∗08,DT14,RVET14], social sciences [KS10,JGH11],

a) HEB

c) IBEB

b) hierarchy comparison

d) CodeFlows

e) 3D-HEB

Figure 2: Hierarchical bundling methods.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

web ontologies [HdRFH12], text data [CC07], and life sciences
[BSL∗14,AP08,EBB∗15]. HEB enhancements that simplify the bun-
dled drawings [TE10] (Fig. 2c) are further discussed in Sec. 4.3.3.

The hierarchy T required by HEB can be part of the input data or
can be constructed from this data. For the latter, Jia et al. use bottom-
up graph and data clustering techniques [Sch07, JMF99] to iden-
tify strongly-related node groups, thereby extending HEB to gen-
eral attributed graphs. In other words, when T is given, κ reflects
its structure (as explained earlier); while, when T is computed, this
is done based on a given κ defined on the data. Other HEB exten-
sions include the comparison of two hierarchies T1 and T2. Here,
association edges E link leaf pairs in T1 and T2 rather than leafs in
the same tree. Applications include the comparison of two [HvW08]
(Fig.2b) or multiple [TA08] software hierarchies (in a kind of ‘struc-
tural diff’ metaphor, Fig. 2d), where T1,T2 are given by the soft-
ware structure; comparison of program execution traces [TDT13];
and linking related items in coordinated multiple views to show mul-
tiple relations and datasets; here, the hierarchies Ti are computed
by similarity-based node clustering, as discussed earlier. HEB was
also used for 3D bundling (Fig. 2e), further detailed in Sec. 3.2.1.3.
Image-based simplification of HEB drawings (Fig. 2c) is further
discussed in Sec. 4.3.3.

Pupyrev et al. [PNK10] improve the classical Sugiyama-style
graph drawing algorithm [STT81] for directed acyclic graphs
(DAGs) by bundling the curved edges created by Sugiyama in case
these have the same start and end nodes. Hence κ reflects the simi-
larity of endpoints of edges. The method is tested on relatively small
graphs (tens of nodes). Although this method, strictly speaking, re-
quires a DAG (which is more general than the hierarchical com-
pound graphs required by HEB), we put this method in the same
class as HEB, since the Sugiyama algorithm operates by extracting
a tree from the input DAG.

Hierarchical compound graph bundling methods are arguably the
most successful (and best known) use-case for graph bundling. Key
to this is the ability of bundling to summarize groups of similar re-
lations (edges) and the fact that a hierarchy allows a simple, con-
sistent, and scalable way to compute and/or encode the similarity κ .
However, the quality of drawings produced by such methods visi-
bly depends on the way the tree T is laid out, as this next influences
how bundles are routed. Yet, most papers in this area comment little
on different ways to lay out T , beyond the fact that standard force-
directed or radial tree-drawing algorithms [TBET99] can be used.
As an exception, the original HEB method [Hol06] and several of its
refinements [RVET14, RVT11] propose controlling of the distances
between the circles on which the same-depth-from-leaves layers of
T get laid out, thereby allowing one to spread or compress the bun-
dled drawing in the available visual space. However, which layouts
for T are best for certain tasks or drawing styles, is still a topic for
further research study.

3.2.1.2. General graphs General graphs do not have a hierarchy
structure. Bundling methods are further specialized on directed vs
undirected graphs, as follows.

Undirected graphs Undirected graphs are the most general class
of static graphs targeted by bundling. The key challenge here is to
define the compatibility function κ to take into account both spatial
information present in the graph layout D(G) and attribute informa-
tion present in G itself.

Force-directed edge bundling (FDEB, Fig. 4b), the earliest
method in this class, defines κ to include only geometric informa-
tion in D(E) [HVW09]. Given two segments D(e1) and D(e2) rep-
resented the drawings of two edges e1 and e2, κ includes their angle,
relative distance in R2, ratio of lengths ‖D(e1)‖ and ‖D(e2)‖, and
skewness (for more details, see Sec. 4.1.2.1). Next, edges are sam-
pled into sample points xi ∈D(E), and each xi is iteratively displaced

to get closer to all other sample points x j of compatible edges. Inter-
estingly, FDEB did not cover the case of directed graphs, although
this would have been reasonably easy to do.

Nguyen et al. propose TGI-EB to extend the compatibility mea-
sures in FDEB to account for importance-based compatibility (de-
fined in terms of a function κ based on the Euclidean distance of n-
dimensional edge attributes), and topology compatibility, based on
the position of an edge in the graph G [NHE11]. This richer palette
of compatibilities allows more precise control of which edges get
bundled, which in turn supports application-dependent analyses and
a rich set of drawing styles.

Both FDEB and TGI-EB have no explicit control mesh – edges
are drawn closer to each other rather than to a unique skeleton. Con-
trasting this, Geometry-Based Edge Bundling (GBEB, Fig. 4g) uses
the control mesh strategy [CZQ∗08]: Edges in a graph drawing are
clustered in a bottom-up fashion, based on the edges’ positions and
orientations, yielding a control mesh whose edges tend to orthog-
onally ‘cut’ across regions having many similar-orientation edges.
Mesh-edge intersections are furthered clustered to yield the shared
control points through which the curved edges are finally routed.
GBEB allows control meshes to be generated either automatically or
with user input, the latter allowing local spatial control over which
regions of G(D) one wants to bundle. However, it has been noted
that the result quality highly depends on the control mesh’s quality,
which in turn is hard to guarantee [LLCM12].

Luo et al. further refine the idea of control meshes to produce
a so-called ambiguity-free bundling [LLCM12]. They observe that
highly bundled images, such as produced e.g. by HEB or FDEB,
have difficulties in tracing edges end-to-end. To alleviate this, they
propose a simple compatibility κ which is non-null only for edges
sharing a node and which are also close in D(G). They also remove
ambiguities caused by the bundled edges B(D(e)) passing close to
unrelated nodes in D(G) by re-routing (repelling) the former from
the latter. Finally, by using a small number of control points, the
smoothness and low-curvature of edges is favored, which also allows
their visual following. To reason about the relative positions of nodes
and edges, a special quadtree, built from node positions, but storing
also which cells are crossed by which edges, is built. The method
produces easy-to-follow bundlings on small graphs (under hundred
nodes and edges). For large graphs (thousands of nodes or edges),
the method is arguably less effective, as its relatively weak bundling
will still cause visual clutter.

Related to [CZQ∗08] and [LLCM12], Winding Roads (WR,
Fig. 4c) computes a control mesh using quadtrees and Voronoi di-
agrams [LBA10b]. WR also supports routing bundles to avoid unre-
lated nodes, being the first general-graph method that demonstrates
such results for relatively large graphs (thousands of edges).

All general-graph methods discussed so far are quite limited in
scalability, either computationally [HVW09, NHE11, CZQ∗08] or
in terms of the largest graph they can bundle with limited clut-
ter [LLCM12]. MINGLE [GHNS11] addresses the former by a
computationally-scalable ink-saving principle, similar to [GK06]:
The ink for drawing a bundle

⋃
i B(D(ei)), i.e. number of pixels cov-

ered by
⋃

i B(D(ei)), should be smaller than the ink used for drawing
the same unbundled edges

⋃
i D(ei). Note that the latter is roughly

equal to ∑i ‖D(ei)‖, as edges overlap very little in a typical straight-
line graph drawing. MINGLE proceeds bottom-up, by finding close
edges (that have a high bundling chance, see Eqn. 1 and related text),
and bundle these in a greedy way as long as ink is saved. The process
is repeated recursively by adding parts of the so far unbundled edges
to existing bundle parts. A polygonal control mesh is thus created,
based on the centroids of the edge-sets identified as compatible. The
process is very similar to bottom-up hierarchical clustering using av-
erage linkage [JMF99]. MINGLE can bundle graphs of up to a mil-

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

lion edges that no other general-graph method discussed so far can
handle. However, it creates less smooth, and thus harder to visually
follow, overall results (see Fig. 4a).

Directed graphs An already early criticism of general-graph
bundling methods is that they do not take into account edges’ di-
rections: For many applications, finding if two groups of nodes
V1 ⊂ D(G) and V2 ⊂ D(G) are connected by a bundle is not suf-
ficient; we want to specifically see if there are edges from V1 to
V2, or conversely, or both. This is essential when edge directions
carry semantics, such as when exploring a software system’s call
graph to assess modularity [DT14]. A simple way to do this is to
color-code edges using a source-to-destination categorical color gra-
dient [Hol06, CZH∗08, RVET14]. However, when edges of opposite
directions co-exist in a bundle, color mixing occurs, which makes
the assessment of categorical colors very hard, let alone seeing how
many edges of each direction the bundle has (see further Sec. 4.3.1).

a) FDEB

b) DEB

color:
edge
direction

color:
edge
direction

Figure 3: Comparison of FDEB and DEB for the US airlines graph
(|N|=235,|E|=2101). See Sec. 3.2.1.2.

To solve this, methods for directed graphs have been proposed.
Key to these is that the compatibility κ(ei,e j) includes the direc-
tions of edges ei and e j. The first method of this type is Divided Edge
Bundling (DEB) [SHH11]. Simply put, DEB extends FDEB to incor-
porate edge direction in κ: Same-direction edges have a positive κ ,
while opposed direction ones have a negative κ , respectively. Since
FDEB uses κ as the amount to shift edge sample points during its it-
erative bundling process (see above in Sec. 3.2.1.2), same-direction
edges are treated as in FDEB, whereas opposed direction ones are
repelled from each other. Atop the above, DEB also enhances κ

to include edge weights, so that more important edges are bundled
less, thus determine the outcoming B(D(E)) more than less impor-
tant ones. Finally, DEB adds a connectivity compatibility term equal
to 1/(1+∆(ei,e j)) for two edges ei and e j, where ∆ : E ×E → N
is the shortest-path distance in G between the nodes of e1 and e2.
Overall, DEB can separate opposed direction edges quite well, and
makes direction color-coding effective; however, in contrast to undi-
rected methods, e.g. FDEB, DEB takes more screen space, and thus
increases clutter (Fig. 3). Separately, WR (introduced earlier) is re-
fined by using a quadtree-only control mesh, as opposed to its more
general triangle control mesh, to create directed and orthogonal bun-
dles [LDB11] following the style of metro map drawing [Wol07].

Flow maps Flow maps can be seen as a particular subcase of di-
rected graphs. More specifically, these are directed acyclic graphs
(DAGs) having a single (or a very few) source node(s). In a trans-
portation or data flow network, they describe how information flows

from the source to reach all nodes in the graph. Since the source
is unique, flow maps do not need to show edge directions explic-
itly such as in directed graph bundlings – the direction of data flow
can be inferred by doing a visual path tracing from the source to ev-
ery node of interest. Another feature of flow maps is the ability to
show the amout of flow between adjacent nodes, quantified as the
(weighted) number of edges linking such nodes. This allows dis-
covering how the total amount of data outflowing from a source is
spread over the graph. This is usually done by scaling the thickness
of a bundle by the amount of information flowing through it, a tech-
nique pioneered by Sankey diagrams [Tuf92]. The first automated
flow map generation used a straight-line single-level tree drawing
linking a source with all destinations, using edge thicknesses to in-
dicate flow amounts [Tob81].

The first, and most known, flow map algorithm using bundling
[PXY∗05] was already mentioned in Sec. 3.1. Given a DAG draw-
ing D(G) and a source node s ∈ G, a spanning tree ST (s,G) ⊂ G
rooted at s is constructed. Next, curved edges linking s to all other
nodes in G are created and routed along ST (s,G), using a control
point technique similar to HEB (Sec. 3.2.1.1). Edge fragments shar-
ing the same path are coalesced to yield bundles of variable thick-
ness. Multiple sources si can be treated by superimposing the flow
maps created by each of them – note, though, that this is not the same
as having a true multiple source flow. Verbeek et al. [VBS11] fur-
ther reduce the confusing bundle crossings produced by [PXY∗05],
and produce overall lower-curvature bundles, by using the spiral tree
drawing algorithm of Buchin et al. [BSV11] to compute the skele-
ton to route edges along. Computation of the optimal tree is done by
moving its nodes to optimize a cost function that accounts for avoid-
ing obstacles and producing smooth bundles. Bundled flow maps
have been found to scale less well with respect to the number of
trails as compared to other visualizations of geographical trail sets,
such as OD Maps [WDS10] and MapTrix [YDGM17].

Confluent drawings Confluent drawings have closely related aims
to flow maps, i.e., show end-to-end relations between nodes in a
graph drawing with as little ambiguity as possible. They inher-
ently propose bundling in the sense of merging parts of edges
that (a) simplify the drawing but (b) do not adversely affect the
above-mentioned edge tracing task. Early methods can handle rela-
tively small graphs of a particular category called confluently draw-
able [DEGM03, DEGM05]. Latter methods use a help structure, the
power graph [RRAS08], which can be computed by various heuris-
tics [DMM∗14,DHRMM13]. In this sense, they resemble flow maps
which also use a tree (e.g. spanning [PXY∗05], Steiner [BSV11] or
spiral [VBS11]) to route edge bundles. In brief, power graphs pro-
vide a way to group nodes and edges in a graph in terms of how
they are connected. Power graph nodes are next used to route edges
between node groups so as to make the group-level interconnec-
tions easier separable visually than when using standard bundling.
Although older confluent drawings have been restrictied to planar
graphs, recent work proposed a confluent bundling technique that
can effectively handle general graphs [BRH∗16]. Separately, the spi-
ral trees in [BSV11] are further refined in [NB13] to allow for more
inflection points along a bundle, which in turn allows easily tracing
bundles end-to-end.

3.2.1.3. 3D graph layouts All bundling techniques discussed so
far expect as input a two-dimensional (2D) graph drawing, i.e.,
D(V) ⊂ R2. However, graph layouts can also produce 3D node po-
sitions. These are particularly useful when the underlying graph at-
tributes, or problem to be solved, has a 3D nature. In such cases, one
needs to bundle a 3D graph drawing. In theory, all bundling methods
presented so far could be extended to handle 3D layouts. However,
the many design and implementation decisions they are based on
make this impractical from a computational complexity and/or im-

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

plementation simplicity perspective. As such, specific 3D bundling
algorithms have emerged.

A first way to bundle in 3D is to extend HEB [Hol06] to handle
3D node positions [GBE08]. This has a low computational complex-
ity, but only works for compound graphs, as outlined in Sec. 3.2.1.1.
In [GBE08], the 3D layout is given by a treemap augmented with bar
charts to show the structure, respectively quality metrics, of a soft-
ware system, a metaphor known as a ‘code city’ [WL07]. A similar
idea, called 3D-HEB, used also to visualize compound graphs from
software engineering, is described in [CZB11] (Fig. 2e). In contrast
to [GBE08], the third dimension is used here to pull the bundles
above the 2D treemap layout so as to reduce occlusion. 3D bundling
is used also to visualize bike journeys in a city [NPD16]: Given two
drawings of the same city map, placed parallel to each other in 3D,
straight lines connecting the start and end of journeys (one end in
each map) are bundled to yield a simplified traffic view.

In contrast to the above, Böttger et al. consider a graph capturing
functional brain connectivity [BSL∗14]. Here, nodes represent 3D
positions in a human brain. Straight-line edges are bundled using the
3D kernel-density bundling method (KDEEB [HET12]) discussed
next in Sec. 3.3.1.1 adapted to 3D. In contrast to 3D path bundling
(Sec. 3.3.1.2, edge deformation is not a problem, as these edges rep-
resent only abstract connections. The method produces convincing
results, but is relatively slow, due to the high complexity of 3D ker-
nel density estimation. A similar method is proposed in [ZWHK16].
Here, FDEB is used instead of KDEEB for bundling, and bundling
speed is increased by adding a similar edge pre-clustering step,
thereby reducing the number of pairs (pi,p j) on which the compati-
bility κ needs to be computed (Eqn. 1).

3.2.2. Dynamic graphs

A dynamic graph G(t) = (V (t),E(t)), t ∈ R+ is a graph where both
nodes and edges are time-dependent. That is, at each moment t, we
have a potentially different graph G(t) to explore. G(t) is also called
a frame, by analogy with motion video. Two different forms of dy-
namic graphs are known: streaming graphs and sequence graphs.
The difference between them, and bundling methods targeted at
them, are outlined in Secs. 3.2.2.1 and 3.2.2.2.

However, several aspects are common to bundling both stream-
ing and sequence graphs, so we outline these commonalities first.
First, bundling dynamic graphs is strongly related to drawing dy-
namic graphs [HEW98, SFPY07, BBD∗10]. A recent survey on the
field was proposed by Beck et al. [BBDW14]. Two main classes
of methods exist here: Small multiple methods draw graphs G(ti)
at a user-selected set of sample moments {ti} side-by-side, using
the same visual mapping. To allow comparison, the layout algo-
rithm used to construct D(G(ti)) should be stable – that is, small
changes in G(ti), as opposed to close time moments t j, should corre-
spond to small changes in the drawing G(ti) as opposed to D(G(t j)).
This requirement is also known as maintaining the user’s mental
map [BBDW14]. Animated methods continuously display D(G(t))
for ranges of interest of t, again using the same visual mapping. Lay-
out stability is also required; if met, it allows users to see changes
in areas where D(G(t)) changes and stable data where the draw-
ing stays unchanged, respectively. Small multiple methods have the
advantage that they allow, in principle, comparing any two frames
G(ti) and G(t j). However, they typically do not scale to more than
a few tens of frames. Animated approaches scale, in theory, to an
unbounded number of frames. However, users cannot memorize a
drawing’s evolution over long periods of time, so comparing frames
far apart in time requires interactive seek-and-replay of the anima-
tion. Separately, animation should be smooth, as too many sharp
transitions between consecutive frames are perceived as disruptive.

3.2.2.1. Streaming graphs In a streaming graph G = (V,E), each
edge ei ∈ E has a so-called lifetime [tstart

i , tend
i], of duration λ j =

tend
i − tstart

i , where tstart
i < tend

i . That, is, ei exists only between tstart
i

and tend
i . The dynamic graph G(t) thus contains all edges ei ∈ E that

are alive at t, i.e. for which tstart
i ≤ t ≤ tend

i . The same holds for the
streaming graph’s nodes vi ∈ V . Streaming graphs can be available
in an online manner – that is, one does not know upfront all moments
tstart
i and tend

i .

Nguyen et al. proposes StreamEB to deal with streaming graphs.
Given two edges ei and e j of a streaming graph, StreamEB ex-
tends the TGI-EB method for undirected graphs [NHE11] to add
to the compatibility κ a temporal term, based on the lifetime overlap
|tstart

i −tstart
j | · |tend

i −tend
j | and the duration difference |λi−λ j| of the

two edges. After this, FDEB is applied on all edges falling in a time-
window [t, t +∆t] that slides to cover the entire time-range of G(t).
Here, ∆t is a time interval small enough so G(t) doesn not exhibit too
many changes, but large enough to show enough interesting changes
to the user. If the speed of change of G(t) is small in comparison with
the speed of advancing of the sliding window, and the underlying
static bundling method B(·) being used is continuous (in a Cauchy
or Lipschitz sense) with respect to small changes in the graph, i.e.
adding or removing a few edges from D(G) only slightly changes
B(D(G)), then the dynamic bundling B(·, t) proposed by StreamEB
will also be continuous in time. As explained earlier, this is a desir-
able property for maintaining the user’s mental map. However suc-
cessful in this respect, StreamEB has a very high computational cost:
Stable bundling static methods, such as FDEB [HVW09] or GBEB
[CZQ∗08] are quite expensive, as already explained. Faster bundling
algorithms, e.g. MINGLE [GHNS11] or [LBA10b,EHP∗11] are sig-
nificantly more sensitive with respect to small changes in the input
graph drawing. These problems are solved by more recent bundling
methods for dynamic graphs and trail-sets, see Sec. 3.3.2.

3.2.2.2. Sequence graphs Sequence graphs are, as their name
says, ordered sets G = {Gi} of static graphs Gi = (V i,E i). In con-
trast to streaming graphs, edges Ei do not have a lifetime, but be-
long to a single frame i. They typically capture a system’s structure
at several discrete time moments ti. Well-known examples are the
set of call graphs mined from the several revisions of software sys-
tem stored in a software repository [DT14,RVET14]. In practice, the
frames Gi are usually not unrelated, but have nodes and edges which
capture the evolution in time of the same items. For instance, two
edges ei

a ∈ E i and ei+1
b ∈ E i+1 can represent the same call relation

in two consecutive frames of a software system. Such links relating
information between different sequence frames can be modeled by a
so-called correspondence function c : E i→{E i+1}. Here, c(e ∈ E i)
yields an edge e′ ∈ E i+1 which logically corresponds to e, if such an
edge exists in E i+1, or the empty set, if there is no correspondence,
i.e. if e disappears (dies) in the transition from Gi to Gi+1.

Sequence graphs can be bundled by using the sliding-window
technique in StreamEB described earlier. A much simpler and faster
method is proposed in [HET13]: A static bundling method is ap-
plied to each Gi independently, yielding a sequence of bundled lay-
outs {B(Gi)}. Next, for each e ∈ Gi, if c(e) 6= ∅, the bundled edge
B(D(e)), represented as a polyline, is linearly interpolated towards
B(D(c(e))), else B(D(e)) is interpolated towards the straight-line
segment linking the endpoints of D(e) and the interpolated edge
drawing is faded out. This signals that e disappears from Gi to Gi+1.
A symmetric procedure is applied to interpolate edges that appear
from Gi to Gi+1. Linear interpolation guarantees smooth (piecewise
first-order continuous) changes in the bundled edges’ positions and
opacities, which preserves the mental map. To account for changes
in the node set V i, a single global layout of the union graph ∪iGi

is done upfront, so node positions D(V i) do not change. If a sta-
ble static bundling technique B is used, the method thus guaran-
tees that big changes in the visualization correspond to appearing

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

d) KDEEB

h) CUBug) GBEB

i) FFTEB

e) SBEB

b) FDEB

c) WR

f) HistEB

color:
edge
clusters

k) CUBU directional (tracks style) l) CUBu directional (inline style)

color:
edge
direction

color:
edge
direction

j) 3DHEB directional

color:
edge
direction

n) FFTEB directional

color:
edge
direction

m) ADEB (directional)

color:
edge
direction

a) MINGLE

Figure 4: General undirected (a-h) and directed (i-k) bundling methods, US migrations dataset (|N|=1715,|E|=9780). See Sec. 3.2.1.2.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

(progressively bundled) and disappearing (progressively unbundled)
edges. Edges that do not appear nor disappear move less in the dy-
namic bundling. Hence, the amount of visual change encodes well
the amount of change in the graph. However simple and scalable,
this method cannot directly handle streaming graphs, where edges
have arbitrary lifetimes, and no explicit frames nor inter-frame cor-
respondence data exists. Hanjalić further adapted this method for the
visualization of code clones from software repositories [Han13].

3.3. Trail-set Bundling Methods

As introduced in Sec. 2, trail-sets consist of (typically non-straight)
oriented curves t that describe the motion of objects in Euclidean
R2 or R3 space. Hence, trail-set bundling methods have extra infor-
mation and constraints to consider as compared to graph bundling
methods. Conversely, the only family of graph bundling methods that
uses graph-specific information not present in trail-sets are the hi-
erarchical ones (Sec. 3.2.1.1). Hence, apart from hierarchical graph
bundling, trail-set bundling can be seen as a superset of general graph
bundling – one can use trail-set bundling methods to bundle general
graph drawings, but, in general, not conversely. We next group trail-
set bundling methods based on the data type they work on.

3.3.1. Static trail-sets

Static trail-sets are trails which do not change in time. However,
time information can be present on such trails, e.g., the time mo-
ments when a vehicle has reached each point of a trail t [HTC09,
SWvdW∗11,SHVDWVW16]. We distinguish the bundling of 2D vs
3D trail sets, as follows.

3.3.1.1. 2D trail-sets 2D trail sets can be further classified in undi-
rected and directed ones, as follows.

Undirected trails: Kernel density estimation edge bundling
(KDEEB, Fig.4d) [HET12] observed, first, that a bundled draw-
ing B(D(T)) has a locally either lower (outside bundles) or higher
(within bundles) spatial trail density than the unbundled drawing
D(T). Hence, B can be cast as a density-sharpening operator, like the
well-known mean shift [CM02]. Following this analogy, bundling
consists of repeatedly computing the gradient of the density of
D(T) and shifting trails D(t) upstream in this gradient until con-
vergence (tight bundles) has been achieved. The method parallelizes
well on graphics hardware (GPUs), leading performance increases
of over one magnitude order as compared to all earlier general-graph
bundling methods. KDEEB also opened the area of so-called image-
based bundling methods, where B is implemented via image pro-
cessing operations, as opposed to purely geometry techniques as in
earlier methods (see further Sec. 4.1.2.2).

Skeleton-Based Edge Bundling (SBEB, Fig. 4e) is another image-
based method [EHP∗11]. SBEB computes a kernel density estima-
tion of the drawing D(T) using GPU texture splatting. Next, the
KDE map is segmented to obtain a morphologically dilated ver-
sion Ddil(T) of D(T) [Har94]. Following the observation that bun-
dles should gather trails towards their local center, 2D medial axes,
or skeletons [SP09], of Ddil(T) are next computed, and trails in
B(T) are attracted to the skeleton. SBEB yields smooth and highly-
branching bundles, following known properties of 2D medial axes.
However, the method relies on a pre-clustering of similar trails in
B(T), which is a relatively expensive and parameter-sensitive step.

Directed trails: Following the need outlined by DEB (Sec. 3.2.1.2),
directional bundling is also considered, especially for trails captur-
ing vehicle motion, where it is very important to distinguish opposite
flows. Attribute-Driven Edge Bundling (ADEB, Fig. 4m) extends
KDEEB by taking edge attributes (direction and/or time) in the def-
inition of the compatibility κ , while keeping KDEEB’s high speed
[PHT15]. Histogram Edge Bundling (HistEB, Fig. 4f) also performs

directional bundling, but computes κ by binning the tangent direc-
tion space of trails t and applying KDEEB to each bin separately
[Mou15]. CUDA Universal Bundling (CUBu, Fig. 4h,k,l) further en-
hances KDEEB and ADEB by proposing a far more efficient density
estimation, also implemented on the GPU, making it possible for
the first time to bundle sets of up to a million trails at interactive
framerates [vdZCT16]. Separately, Texture Edge Bundling (TEB)
proposes a GPU-based implementation making heavy use of tex-
ture synthesis and processing, optimized for web access [WYY15].
Lastly, Fast Fourier Transform Edge Bundling (FFTEB, Fig. 4i,n)
refines CUBu to use the FFT for an even more efficient KDE, allow-
ing one to bundle trail-sets whose sampling does not fit in the GPU
memory [LHT17]. With this, bundling can now effectively handle
‘big data’ collections.

Parallel Coordinate Plots: Parallel coordinate plots (PCPs) [Ins09]
can be seen as trail-sets Given a n-dimensional dataset of N observa-
tions xi, each trail ti has n control points representing the n attribute
values of observation xi. For large N, PCPs suffer from the same
clutter as large straight-line graph or trail-set drawings. Bundling
can effectively reduce this and also help one to find clusters of simi-
lar observations easier [HLK∗12,HvW10]. For this, Zhou et al. used
a method similar to FDEB (Sec. 3.2.1.2), where PCP trail compat-
ibility (κ , Eqn. 1) considers PCP trail distance and angular simi-
larity [ZYQ∗08]. In contrast to FDEB, the bundling solution is not
computed by iterative gradient descent of the cost function κ , but by
linear programming. Illustrative parallel coordinates (IPCs) bundle
PCPs by first clustering D(T) via k-means, and next bundle the trails
ti in the same cluster as B-splines [PT97] which use shared con-
trol points computed from the cluster’s average trail [MM08]. More
recently, Palmas et al. bundle PCPs by explicitly computing aver-
ages for each PCP axis and next linking these, for neighbor axes,
by compact tubes, whose widths indicate the number of bundled
lines [PBO∗14]. This produces a highly summarized, but largely
clutter-free, visualization, which reminds the code flow metaphor
used in [TA08] (see also Sec. 3.2.1.1). A variant of this technique
is also available for Continuous Parallel Coordinates (CPCs), where
the trail density is drawn instead of individual trails [PW16], much
like it was used elsewhere to show vessel routes [SWvdW∗11].

Bundling is not the only way to reduce clutter and enhance PCP
readability. PCP trails can be rendered as smooth cubic curves, al-
lowing one to trace them end-to-end easier [GK03]. Alternatively,
parametric transformations can be used to yield similar smooth
curves [MW02]. While yielding smooth curves similar to bundles,
these techniques do not explicitly aim at grouping PCP trails follow-
ing the bundling definition in Eqn. 1.

3.3.1.2. 3D trail-sets 3D trail sets are spatial curves embedded
in R3. A good example are Diffusion Tensor Imaging (DTI) trails,
or tracts, that show anatomical brain structures [ALLF07]. DTI
tracts form a highly complex 3D structure consisting of multi-
ply intersecting surfaces, fanning out into many-direction fibers, so
abstraction of such visualizations is highly needed to reveal the
brain’s white matter structure [TWHW07]. Originally done by fiber
clustering [MVvW05], bundling offers advantages in terms of a
finer-level simplification control. For this, Everts et al. [EBB∗15]
adapt the compatibility κ and iterative bundling process pro-
posed by FDEB (Sec. 3.2.1.2) to include nearest-neighbor distance
minxi∈ti,x j∈t j ‖xi − x j‖ between two tracts ti and t j in D(T). A
similar approach is illustrated in [Tel15] (Ch. 7), where KDEEB
(Sec. 3.3.1.1) is used to bundle DTI fibers by constraining motion to
follow the DTI field anisotropy. Trail bundling is also used to bundle
3D streamlines for multiscale flow visualization [YWSC12] and 3D
geographical routes over a height map [TP15]. A salient difference
of this use-case as compared to most other bundling cases discussed
here is that a streamline’s endpoints are not fixed, as they do not
represent important spatial information that needs to be preserved in

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

the visualization. Compared to 3D graph bundling, additional care
is taken by all 3D trail approaches above to constrain trail displace-
ment so as to respect, as much as possible, the original data – zones
of high linear or planar anisotropy for DTI fields, tancency to the
flow for vector fields, and trail fit to a 3D landscape for geographical
routes, respectively.

Besides true 3D bundling, methods also exist that bundle trails
defined over a curved surface. WR extends the 2D bundling proposed
in [LBA10b] to cover the case of 3D trails representing flight routes
[LBA10a]. The bundles are displayed over the surface of the Earth,
offering a better estimation of distances than when a 2D cartographic
projection is used. A good review of the challenges of 3D geospatial
trail visualization, including a discussion of bundling, is given in
[BTD12]. 3D trail bundling is also prominently featured in a review
of visualization methods for climate networks [NBD∗15].

3.3.2. Dynamic Trail Sets

Dynamic trail sets parallel the concept of streaming graphs
(Sec. 3.2.2.1) but add explicit spatial information along trails. Ex-
amples are paths of vehicles over a given space-time range, such
as ships [SWvdW∗11,SHVDWVW16], airplanes [HTC09,EHP∗11,
HEF∗14], or eye tracks [PHT15]. Compared to static trail bundling,
one wants here to show how the set of trails being live at a given
time moment changes in time. For this, Hurter et al. extend KDEEB
(Sec. 3.3.1.1) to use the sliding time-window technique of StreamEB
(Sec. 3.2.2.1) [HET13]. Compared to StreamEB, this approach is
much faster, as it continuously bundles, in a loop, the trails present in
the current time-window, rather than restating bundling from scratch
each time the window is shifted. The method is extended to cover
use-cases considering eye tracking trails, and animation to show
point-like textures flowing in the direction of the trails ti, to indicate
direction [HEF∗14, KvdZT14].

4. Bundling Framework

Given their large number and diversity, comparing all bundling
methods listed in Sec. 3 from a technical viewpoint is clearly chal-
lenging. Yet, this is necessary for developers interested to understand
how such methods work, and for researchers who aim to extend ex-
isting methods. To help this, we propose next a generic bundling
framework. Our framework, which is based on the notations intro-
duced in Sec. 2, describes the main steps and technical choices of
most bundling methods, and outlines specific advantages and limita-
tions of such choices. The framework has four steps (see Fig. 5). It
starts with either a graph G or a trail-set T . In the former case, a graph
layout method is used to construct a graph drawing; in the latter case,
the trail-set is its own drawing, as explained in Sec. 2. The bundling
proper thus starts having a path-set drawing D(P) as input. Next,
the similarity functions κ and δ must be defined (Sec. 4.1). Having
these, a bundling operator B can be defined following Eqn. 1 and ap-
plied on D(P) to yield the bundled drawing B(D(P)), as discussed in
Sec. 4.2. Finally, this drawing is visually explored (Sec. 4.3).

4.1. Similarity Definition

To bundle a path-set, we need, first and foremost, to specify which
edges are compatible (to be bundled), and how much to bundle.

trail-set T

path-set drawing

D(P) Bundling

B

Visual

exploration

κ,δSimilarity

definition

graph G Graph

layout

bundled drawing

B(D(P))

Figure 5: Bundling framework steps.

These steps are achieved by defining the functions κ and δ , respec-
tively (see Eqn. 1 and related text). As explained in Sec. 2, κ can
account for similarities in the data (e.g. graph structure and trail at-
tributes), and must in any case account for similarities in the draw-
ing. These two components of κ are discussed next.

4.1.1. Data-based similarities

Given two paths pi and p j, data-based similarity quantifies the dif-
ference between pi and p j over the space of all possible paths. This
can be done in several ways, as follows.

Structure-based: In contrast to trail-sets, graphs have additional
structure (topology). This structure can be used to define the
similarity of edges. For instance, hierarchical bundling methods
(Sec. 3.2.1.1) use the explicit structure of the graph’s hierarchy to
define edge similarity in terms of distance, in this hierarchy, of the
nodes of the two edges pi and p j. Intuitively put, edges that start
and end at nodes which are close in the hierarchy, are deemed
to be close, and thus bundled. Other methods extract such struc-
tural data from the input graph, and use it to define edge similarity.
These include flow maps which extract a tree (spanning [PXY∗05],
Steiner [BSV11] or spiral [VBS11]); and confluent drawings, which
compute a power graph to find out which edges in the original
graph are strongly related [DMM∗14, DHRMM13, BRH∗16]. Sep-
arately, TGI-EB [NHE11] adds new graph-theoretic metrics to de-
fine edge compatibility, such as the centrality of edges in a graph
[WF94, vHW08], or the fact that edges belong to the same clus-
ter in a simplified version of the graph. Similarly, DEB [SHH11]
proposes a connectivity term based on the graph-theoretic distance
between the endpoints of two edges. A similar term, called trace
compatibility, appears in StreamEB [NEH12]. Finally, StreamEB in-
troduces a so-called ego compatibility: For a node v ∈ V , ego(v)
is defined as a small neighborhood in G of v, nodes and edges in-
cluded. For an edge e = (vi,v j), ego(e) = ego(vi ∪ v j). Next, the
ego compatibility of two edges ei and e j is a decreasing function of
ego(ei)∩ ego(e j). This prevents bundling edges which link weakly-
connected communities in G.

Structure-based similarity serves two independent goals. First,
it allows specifying which edges are compatible from an applica-
tion perspective, and thus may end in the same bundle, as outlined
above. Separately, it allows constructing groups of possibly compat-
ible edges which are next examined for actual bundling. This es-
sentially reduces the bundling complexity from analyzing all edge
pairs in G to only analyzing pairs within a cluster. Clustering can
be done using k cores [BE05], see [NHE11]; bottom-up hierarchical
aggregation [dHINM04], see [TE10, EHP∗11, ZWHK16]; k means,
see [PT97]; or kd-trees, see [GHNS11].

Attribute based: When edge or trail data attributes are available,
these can be used to compute additional similarity terms. This is im-
portant when one does not want to bundle edges of different types
together. Good examples are software engineering graphs which
contain edges of various kinds, such as inheritance, call, or depen-
dency [CZH∗08, RVET14, DT14]; and airline trail-sets which con-
tain trails representing flights with different IDs or types [HCGT14].
Each edge type has a different meaning, so edges of different types
should arguably not be bundled together. To model this, a simple
similarity function based on the edge’s categorical attribute ‘type’
can be used [RVET14, TE10]. Edges can also have quantitative at-
tributes, such as duration and starting-time for calls in program
traces [TDT13, KTD13], or timestamps for eye tracks [PHT15]
which can be used to define similarities. Separately, for dynamic
path-sets, time provides an additional compatibility factor, used to
bundle only paths that fall within the same (usually small) time-
window [NEH12, HEF∗14, KvdZT14]. This makes bundling com-
putationally and visually scalable to very large streaming datasets.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

4.1.2. Drawing-based similarities

While incorporating data-based similarity in the compatibility κ is
optional, all bundling methods must account for the spatial similar-
ity of paths to bundle. This can be done by using either geometric
methods (Sec. 4.1.2.1) or image-based methods (Sec. 4.1.2.2).

4.1.2.1. Geometric-based similarity: These methods use a
piecewise-polygonal sampled representation of the path drawings
D(p) to evaluate their similarity. As such, various aspects of a
curve can be taken into account, as follows. Let di ⊂ Rd and
d j ⊂ Rd be two such polyline path drawings. Similarity δ typically
is a product (or, in [NEH12], a weighted sum) of the following terms:

Distance: First, the distance between di and d j is considered, as
one does not want to bundle far-away path drawings (see Eqn. 1 and
related text). In turn, this distance can be computed as the sum of
distances of the closest endpoints of di and d j [GHNS11]; or the
distance between the midpoints of di and d j (see FDEB [HVW09]
and its refinements [NEH12, NHE11, BSL∗14, ZWHK16], and
WR [LBA10b]). However simple, such similarities cannot be used
for trail bundling, as trails are usualy not straight lines.

Angle: The absolute value of the cosine of the angle formed by
the straight-line segments di and d j is used to prevent bundling of
orthogonal edges [HVW09, NHE11, NEH12]. This idea is refined
by DEB [SHH11] to consider the actual signed angle, which allows
directional bundling.

Scale: The length difference of the two segments di and d j is used
to prevent bundling very long and very short edges, and therefore
minimizes the deformation of the latter, which are best drawn
as (almost) straight [HVW09]. The same effect is achieved by
CUBu [vdZCT16] by limiting the deformation factor of paths based
on their length.

Visibility: FDEB proposes that edge-pairs which would create a
skewed parallellogram should be bundled less than those which
create a rectangle [HVW09]. This produces smoother, but less
tight, bundles, and as such this similarity term has not been widely
adopted by later methods.

Area and ink: Compatible edges can also be defined implicitly as
those edges which, when bundled, optimize a global cost func-
tion describing the quality of the bundling B(D(T)). For instance,
Gansner et al. [GK06] recursively cluster paths bottom-up as long as
the resulting bundling improves the usage of the drawing area. Sim-
ilarly, MINGLE [GHNS11] groups edges as long as the amount of
ink being used to draw B(D(T)) is lower than the amount used to
draw the unbundled D(T) (see also Sec. 3.2.1.2). Both methods are
greedy, so they cannot guarantee a global minimum.

4.1.2.2. Image-based similarity: Apart from assessing which
paths can be bundled (κ), one needs to make sure that bundled paths
are closer than the unbundled ones. To measure bundled path dis-
tance, we need thus to define the function δ introduced in Eqn. 1.
As stated there, δ is typically a form of Hausdorff distance: Given
two sampled paths di = (xk

i) and d j = (xk
j) which are compatible,

i.e. make sense to be bundled, we have

δ (di,d j) = ∑
xk

i ∈di

min
xk

j∈d j

‖xk
i −xk

j‖+ ∑
xk

j∈d j

min
xk

i ∈di

‖xk
i −xk

j‖. (2)

If we do not know upfront which paths are compatible with each
other, we thus need to find, for each sample point of a path, the
closest sample point of all other paths. While this can be acceler-
ated by using various spatial structures such as kd-trees [GHNS11],
quadtrees [LBA10b], this process is very expensive.

Image-based methods address the evaluation of Eqn. 2 and the
finding of compatible paths (evaluation of κ) by using imaging

and/or GPU methods. The first method in this class is SBEB
[EHP∗11] (Sec. 3.3.1.1). Here, δ (di,d j) is evaluated as the sum
δ (di,S)+ δ (d j,S) where S is the medial axis of the group of com-
patible paths that di and d j are part of. Path-to-skeleton distances are
evaluated as

δ (di,S) = ∑
xk

i ∈di

DTS(xk
i) (3)

where DTS : Z2 → R+ is a pixel map (image) capturing the so-
called Euclidean distance transform of the shape S [FCTB08]. Since
there are far fewer clusters (thus skeletons) than paths in D(T), and
Eqn. 3 can be efficiently implemented using fast-marching meth-
ods [TvW02, Set02], but also GPU methods [CTMT10], δ can be
efficiently computed.

An alternative is proposed by kernel density estimation (KDE)
methods. As stated in Sec. 3.3.1.1, a path density map ρ : Z2→ R+

is computed from D(T). Next, path sampling points x j
i are moved

upstream in ∇ρ . This implicitly minimizes δ by gradient ascent
without having to explicitly find closest sample point-pairs. The ba-
sic KDEEB method [HET12] supports only undirected bundling.
KDEEB was enhanced by weighting the computation of ρ by various
attributes like path directions and data attributes [PHT15, Mou15,
vdZCT16, LHT17]. Moreover, computation speed-ups of ρ are pro-
posed: CUBu improves with respect to KDEEB by using a gather-
ing, rather than scattering, convolution strategy, which parallelizes
much more efficiently on GPUs [vdZCT16]; and FFTEB improves
on CUBu by up to an order of magnitude by executing the convo-
lution in frequency space (using the properties of the Fast Fourier
Transform) rather than in image space.

4.2. Bundling Operator Definition

Having the functions δ and κ implemented as described in Sec. 4.1,
one can now define the core of a bundling method – the bundling
operator B, i.e., propose an implementation of Eqn. 1. We classify
existing bundling methods in explicit and implicit ones, as follows.

We discuss next implicit methods which define B recursively by
an iterative optimization process. Methods in this class are all force-
directed techniques working in geometry space I ⊂ R2 and image-
based techniques working in discrete image space I ⊂ Z2.

4.2.1. Explicit Methods

Explicit methods compute an intermediary structure I from D(T)
and define B based on I. The structure I is computed typically only
once, after which paths are routed according to it. As such, explicit
methods are in general fast and predictable, but less flexible in terms
of bundling control.

As already outlined, different types of structured I exist. Hier-
archical methods use the explicit hierarchy provided by a com-
pound graph [Hol06, CZH∗08, WL07, GBE08, CZB11] or a tree ex-
tracted from a DAG [PNK10]. General-graph methods extract span-
ning trees [PXY∗05], Steiner trees [BSV11], spiral trees [VBS11],
Voronoi diagrams [LBA10b, CZQ∗08], and Delaunay triangulations
[QZW06, CZQ∗08]. Once I exists, edges are simply routed along it,
using various forms of smooth curves, e.g. B-splines [Hol06,WL07,
GBE08,CZB11,PT97]; Bézier splines [BW98]; NURBS [QZW06];
and cubic curves [GK03].

4.2.2. Implicit Methods

Implicit methods work in a self-organizing way, without computing
an explicit control structure I upfront. As such, they avoid the prob-
lems of explicit methods due to computation of a suboptimal I –
bundling can ‘self-correct’ itself during the process. These methods
work typically in an iterative way, similar to optimization processes
which aim to find the extremum of a global cost function.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

Force-based techniques are the first, and best known, class
[HVW09,NHE11,NEH12,SHH11,BSL∗14]. They compute the gra-
dient of a cost function of the form

C(D(T)) = ∑
di∈D(T),d j∈D(T),κ(di,d j)<κmin

δ (di,d j), (4)

with δ given by Eqn. 2), and iteratively shift, or advect, sample
points x j

i to minimize C, i.e., yield tight bundles. This idea is very
similar to force-based graph layouts [KKH89], albeit using a dif-
ferent cost function. These methods are much slower than implicit
ones, as the cost C (Eqn.4) has to be recomputed at each iteration,
and computation of δ is expensive, as explained in Sec. 4.1.2.2. Us-
ing spatial search or clustering structures (Sec. 4.1.2) does not alle-
viate this, as path sampling points are continuously changing over
iterations, so such structures would need repeated re-initialization.

Image-based methods are very similar to force-based methods, with
the key difference that the cost computation (Eqn. 4) is much lower
due to the fast GPU-based evaluation of δ (Sec. 4.1.2.2). Various up-
date ideas are proposed here: Sample points are shifted upstream in
the gradient of the skeleton’s distance transform ∇DTS by SBEB; and
in the gradient of the density map ∇ρ by KDEEB, ADEB, CUBu,
and FFTEB, respectively. Additionally, recent implicit image-based
methods (CUBu,FFTEB) implement B fully on the GPU (sampling
paths di to points x j

i ; computation of the density map ρ; shifting
sample points in ∇ρ; and rendering the final results). This yields
speed-ups of up to two order of magnitude with respect to earlier
image-based methods (KDEEB,ADEB).

Implicit methods add the extra capability of producing multiscale
bundling in a scale space sense [Koe84]: Given the κmin constraint
in Eqn. 4, only edges closer than a certain distance δmax are consid-
ered to interact. Setting δmax to small values produces fine-grained
bundles, where the amount of deformation of any path point is lower
than δmax. Setting δmax to large valus produces coarse bundles which
exhibit more deformation but reduce clutter more too. Using a δmax
bound also massively reduces the costs of computing the all-pair path
similarities δ (di,d j) to a small subset. Image-based methods imple-
ment multiscale bundling efficiently, as κmax is essentially controlled
by the KDE kernel radius R (Sec. 4.1.2.2). Multiscale bundling is
much harder to achieve by explicit methods, as these do not provide
a continuous parameter to control the scale of the simplification.

4.3. Bundling Visualization

After bundling B computes a bundled drawing B(D(T)) of a path-
set D(T), several mechanisms are available for visually presenting
B(D(T)). These serve multiple purposes: display the bundling, en-
hance important structural elements thereof, add attribute data atop
it, further reduce visual clutter, simplify the displayed image, and ger
details on demand. Visualization techniques for bundled data can be
grouped into the following classes: blending, data color mapping,
shading, smoothing and deformation, animation, and interaction, as
described next.

4.3.1. Blending

As outlined in Sec. 2, bundling trades clutter for overdraw. Multiple
paths (or path fragments) of D(P) become overlapping in B(D(P)).
However, many tasks require assessing the connection strength, or
number of paths, between groups of nodes or endpoints in P. To
support this, blending can be used: B(D(P)) is drawn using al-
pha blending or variations thereof. This renders bundles contain-
ing many paths more opaque than sparse ones, thereby attracting
the user’s attention more [Hol06]. Essentially, this maps the local
bundle density ρ (Sec. 4.1.2.2) to opacity, color, or shading, an idea
pioneerd first by Van Liere and De Leeuw for drawing unbundled

Figure 6: Usage of blending [Hol06]. Left: Drawing B(D(P)) with-
out blending. Right: Same drawing, with blending.

straight-line graphs [vLdL03], and used next in many other con-
texts [SWvdW∗11,SWvdWvW11,LH11]. All examples in Fig. 4 are
rendered using density-based blending. Figure 6 shows blending for
a detail of HEB [Hol06].

While conceptually simple, blending requires some care: Simply
drawing the bundled paths B(D(P)) with OpenGL alpha blending
will not work, as the typical resolution of an OpenGL alpha channel
is 8 bits, which can capture only 256 different values. As many more
paths can overlap, the result can easily be fully saturated (opaque).
The solution is to map the local bundled-path density ρ , computed
using accurate floating-point operations (Sec. 4.1.2.2), to the 8-bit
alpha channel [vdZCT16]. Separately, short paths can be easily ob-
scured by long ones. The solution to this is to set path opacity in-
versely proportional to path length [Hol06,vdZCT16]. Additionally,
CUBu [vdZCT16] draws short paths atop longer ones, so that the
former get a fairer chance to stand out in the final image (Fig. 4k,l).
However, this requires sorting paths by length, which can be costly
(O(NlogN) for N paths in D(P)).

4.3.2. Data color mapping

Bundled path colors can map various path attributes, i.e. map data
from P to the color visual variable in B(D(P)) [Ber83]. Data in-
cludes path spatial density (extends the blending idea in Sec. 4.3.1
to multiple-hue colormaps); path start-to-end direction using a color
gradient (Fig. 2a [Hol06], Fig. 11b [CZH∗08]) following earlier
methods used for the same goal when drawing straight-line graphs
[Die08]; cluster containing the path (Fig. 2c and 8 [EHP∗11]; see
also [MM08]); type of path (Fig. 11a [RVET14]); path spatial ori-
entation, before bundling, using an angle-to-color map (Fig. 2k-l
[vdZCT16] and 4m-n [LHT17], Fig. 14a-c [PHT15] and 14d
[KvdZT14]); and local height along spatial airline trails [HCGT14].
Path directions are rarely indicated by arrows [RVT11, CZH∗08], as
these clutter quite easily and become hard to discern when many
paths end at the same (small) node, as also discussed in [HIVWF11].

A serious issue here is color blending: When paths overlap, what
should be the resulting color? This is especially hard to solve if color
maps categorical attributes, which cannot be averaged [TE10]. To
date, no conclusive answer exists to this issue. This is further dis-
cussed in [HEF∗14, KvdZT14, vdZCT16].

4.3.3. Shading

Although bundling reduces the visual complexity of a drawing, it is
still hard to discern salient (important) connections, even when us-
ing alpha blending (Sec. 4.3.1). To emphasize the spatial extent of a
bundle (group of spatially close paths in B(D(T))), pseudo-shading
can be used, whih was pioneered by Image-Based Edge Bundles
(IBEB) [TE10], see Fig. 2c. For this, IBEB, but also WR, SBEB,
and CUBu create a false height map increasing parabolically from
the borders of a bundle to its center, and then shade this by classical
Phong shading, yielding similar effects to the well-known cushion
treemaps [VWvdW99]. This allows better visual separation of cross-
ing bundles, which show up as shaded tubes, based on the luminance
variation from the tube borders to their centers, given a 3D stacking

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

a)

b)

c)

sparse dense

short long

short long

Figure 7: Color mapping and shading using CUBu [vdZCT16].

effect (see Figs. 2c and 14a,b). To do this, IBEB and SBEB need to
explicitly cluster the bundled paths, which, as discussed in Sec. 4, is
delicate. The same explicit path clustering is used by the geometric-
shaded bundles in [TDT13] (Fig. 11c). WR and CUBu do the path
grouping implicitly, which makes them the methods of choice. A
different approach is to use bump mapping to highlight high-density
bundles based on the slope of the density map ρ (Sec. 4.1.2.2). While
simple to implement, this yields less well-separated bundles, and cre-
ates artificial visual discontinuities in their middle [HET12]. Shading
and color mapping can be both combined (Fig. 7): We can use colors
to map either local edge density (Fig. 7a) or edge length (Fig. 7b),
thereby emphasizing dense regions, respectively long edges, respec-
tively. Adding shading to the latter combines the effects – salient
shaded tubes show dense regions, while color maps edge length, re-
spectively.

4.3.4. Smoothing and deformation

Explicit bundling techniques control well the local curvature of re-
sulting bundles, as they route the bundled paths along a precom-
puted global structure I (Sec. 4.2.1). Implicit techniques (Sec. 4.2.2)
have less control, so they postprocess B(D(T)) to achieve smooth-
ness. The by far most common way for this is to apply 1D Lapla-
cian smoothing [HDZ05] on the bundled paths, as introduced in
[HVW09]. This technique is simple, fast (O(N) for a drawing
B(D(T)) sampled with N points), and easily controllable.

Bundling can also include deformation constraints. For instance,
SBEB [EHP∗11] can route bundles to avoid landmarks in the draw-
ing space Z2, by using essentially the same principle as ‘dust & mag-
nets’ [YMSJ06], but with repulsion instead of attraction (Fig. 8a).
The technique can be easily integrated in any image-based implicit
bundling method, either during the iterative bundling or as a postpro-
cessing step. WR [LBA10b] and TGI-EB [NHE11] can include bun-
dle orientation constraints, yielding results that follow the so-called
‘metro map’ drawing style (Fig. 8b,c). Other deformation mecha-
nisms support interactive exploration (see Sec. 4.3.6 further).

a)

b) c)

Figure 8: Bundle deformation to (a) avoid landmarks [HET12] and
(b,c) favor orthogonal drawing [LDB11, NHE11].

4.3.5. Animation

Animation can be used for two main goals. First, it can convey
path directions in a trail-set. For this, small point-like textures, also
called particle systems, encode the local path direction [HIVWF11]
and are drawn at regular intervals along the bundled paths and
temporally shifted in the path direction [HEF∗14, KvdZT14]. This
yields a moving effect along bundles (several such textures coher-
ently move in the same direction) that conveys a bundle’s direc-
tion. This design is related to older methods for visualizing flow
fields [vW02]. Figure 9a shows an example using tapered arrow-
like textures [HIVWF11] that encode path directions. However, as
for data color-mapping (Sec. 4.3.2), animation has the issue that, if
a bundle contains paths having different directions, the result can
show random noise patterns from which we cannot discern the frac-
tion of paths going one way vs the opposite way. Note that this is
not a problem for the underlying technique (IBFV [vW02]) since,
for that case, a 2D vector field has a single data value per location.
Secondly, animation can show changes in a time-dependent path-
set P(t), by interpolating the bundled trails either during keyframes
(for sequence graphs, see Sec. 3.2.2.2) or by continuously morph-
ing a trail-set to account for incoming and leaving trails (for stream-
ing graphs, see Sec. 3.2.2.1). Figure 9b shows three frames from
a bundled sequence-graph depicting code clones between software
components in three revisions of a software system [HET13]. Red
edges show newly appearing clone relations, which are bad for sys-
tem maintenance, and thus should be spotted and removed.

4.3.6. Interaction

Interaction is a key technique to the analysis of bundled drawings.
Following [BM13], interaction allows answering how-type ques-
tions; and enables bundled drawing B(D(P)) to support select, nav-
igate, filter and arrange tasks. Several types of interaction exist in
this context, as follows:

Relaxation: Linear interpolation between the input drawing D(P)
and its bundling B(D(P)) is used by virtually all bundling methods,
starting with [Hol06], to control the bundling ‘tightness’. Interac-
tively changing the interpolation parameter to-and-fro allows users
to visually link paths in D(P) and B(D(P)) and thus resolve (parts of)
the bundling ambiguities created by overlap. Similar techniques are
used to link items in other visualizations [HTCT14]. Figure 10a-d
shows four frames from a relaxation process;

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

a)

b)

revision 1 revision 2 revision 3

Figure 9: Animation techniques: (a) Textures showing bundle direc-
tions [HEF∗14]. (b) Sequence graphs [HET13].

Lenses: Bundling can be applied (or prevented) locally on D(P).
This way, one can combine views of the unbundled D(P) with
the bundled B(D(P)). This is essentially a local relaxation variant.
Figure 10e-g shows three frames from such a local lens, used to
get detail on a road-traffic dataset [HET11]. Lambert et al. pro-
pose additional variants, such as fisheye and bring & go techniques
[TAvHS06], using GPU-computed splines for interaction fluidity
[LAM10] (Fig. 10h). Techniques such as edge plucking [WC07]
can be easily added. The digging lens [TE10] alleviates occlusion
in shaded-tube bundle renderings (Sec. 4.3.3): Bundles are thinned
close to the interaction focus using image-processing techniques
(Fig. 10i) so that one can see, and bring to front, occluded bundles
from beneath (Fig. 10j).
Brushing: Brushing bundles can reveal aggregated attributes of the
overlapping paths in B(D(P)), thereby alleviating the problem out-
lined in Sec. 4.3.2 [CZH∗08, RVET14];
Navigation: HEB-like methods (Sec. 3.2.1.1) can support naviga-
tion of the hierarchy T by interactively collapsing (clustering) or
opening (refining) nodes in T . Such operations trigger the display
of a different set of bundled edges [CZH∗08, RVET14, Han13].

Riche et al. define interactions and design guideline to support
node and edge manipulations in bundled drawings [RDLC12]. Sep-
arately, Luo et al. propose interactive techniques to decrease path
ovelapping issues [LLCM12].

5. Task Support

Using bundling fits very well into Shneiderman’s “overview first,
zoom and filter, then details-on-demand" [Shn96] metaphor. The key
task a bundled drawing B(D(P)) supports is to present an overview
of D(P) – thus, implicitly of P too – which trades off clutter for over-
draw. If users find interesting patterns in it, they can next zoom and
filter on such patterns, and next get details on demand on them using
the interaction techniques discussed in Sec. 4.3.6. We analyze this
further by first discussing how bundling reduces clutter (Sec. 5.1).
Next, we detail the tasks supported by bundled drawings (Sec. 5.2).

unbundled D(P) bundled B(D(P))

a) b) c) d)

e) f)

i)h)

g)

j)

Figure 10: Interacting with bundled drawings: (a-d) Global bundle
relaxation [HET12] and (e-g) local relaxation [HET11]. (h) Magic
lens [LAM10]. (i,j) Digging lens [TE10].

5.1. Bundling Clutter Reduction Taxonomy

To understand how (well) bundling reduces clutter, we analyze it fol-
lowing Ellis and Dix’s clutter reduction taxonomy [ED07]. From all
clutter reduction techniques (see [ED07], Tab. 1), bundling uses path
([ED07] refer to ‘point/line’; as our input is a (possibly curved) path
drawing D(P), we use the term path) displacement, clustering, and
opacity techniques. Indeed, B displaces paths to create path-clusters
and renders them using opacity. Separately, Tab. 3 in [ED07] outlines
eight key benefits given by clutter reduction. Table 2, columns 2 . . .4
lists them, showing how opacity, clustering and displacement con-
tribute to each. Column 5 in Tab. 2 shows our (arguably subjective)
view on how well bundling does this, as detailed below.

op
ac

ity

cl
us

te
ri

ng

pa
th

di
sp

la
ce

m
en

t

bu
nd

lin
g

avoids overlap partly possibly X partly
keeps spatial information X partly 7 partly
can be localized X 7 X partly
is scalable 7 X 7 X
is adjustable X X possibly X
can show path attributes 7 partly X X
can discriminate paths X X possibly partly
can see overlap density X possibly 7 X

Table 2: Bundling compared with opacity, clustering, and displace-
ment techniques vs yielded clutter-reduction benefits [ED07].

a) Avoids overlap: Bundling avoids overlap of coarse-scale pat-
terns: Take a set of unbundled, but highly-similar, paths H ⊂ D(P).
Following Eqn. 1, their bundling B(H) contains much closer paths
(cf. the spatial distance δ) than H. Hence, for two such disjoint sets
Hi and H j of D(P), the chance that their bundled versions B(Hi) and
B(H j) overlap is (much) smaller than that of the unbundled sets Hi
and H j to overlap. Bundling yields more overlap of compatible edges
(cf. the compatibility κ), but less overlap for incompatible ones;
b) Keeps spatial information: B does not change path endpoints,
so this type of spatial information is kept. Spatial information

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

of other path points is distorted. However, bundle scale control
(Sec. 4.2.2), smoothing (Sec. 4.3.4), and relaxation (Sec. 4.3.6) limit
the deformation amount;
c) Can be localized: In general, clutter is locally inversely propor-
tional to the bundling amount: Strongly bundled areas exhibit less
clutter than weakly bundled ones, assuming an input D(P) with uni-
form spatial clutter distribution. Hence, local control of the bundling
amount can localize the presence of clutter [HET11];
d) Is scalable: Image-based bundling is clearly scalable to large
million-size path-sets (Sec. 4.1.2.2);
e) Is adjustable: Bundles can be widely adjusted in terms of path
similarity, tightness, smoothness, shape, obstacle avoidance, and vi-
sual appearance (Sec. 4);
f) Can show path attributes: Bundling can show path local density,
direction, and several other data attributes, either implicitly (by their
presence in the compatibility κ (Sec. 2)) or explicitly (by mapping
them to opacity, color, shading, and animation (Sec. 4.3));
g) Can discriminate paths: Directional and confluent bundling
techniques do precisely that, favoring different types of paths to dis-
criminate [PNK10, SHH11, LLCM12, ZYC∗08, BISP16];
h) Can show overlap density: Virtually all bundling techniques
map local bundled-path density to opacity or color to show precisely
that (Sec. 4.3.1,4.3.2).

Overall, we see that bundling supports well the intended benefits
of clutter reduction mentioned in [ED07]. This helps understand-
ing next which tasks bundling can support, and how much. For in-
stance, [ED07] (Sec. 3) mentions that the ‘avoid overlap’ benefit sup-
ports the ability to see and identify patterns [AS94]; ‘being localized’
helps examining small details while keeping context.

5.2. Task Taxonomy

We analyze which tasks bundling supports using two well-known
taxonomies, as follows.

A) Lee et al. [LPP∗06]: Bundling focuses on links and clusters. For
these data types, bundling supports:

a) Path following: Specific bundling techniques support path fol-
lowing, see Sec. 5.1, point (g);
b) Edge density visualization: Bundling clearly covers this, see
Sec. 5.1, point (h);
c) Identify edge clusters: If edge (or, more generally, path) simi-
larity can be captured by a function κ , then bundling does this by
default, see its definition (Eqn. 1);
d) Identify strongly connected cliques: This is indeed possible. See
Sec. 5.1, point (a), last sentence;
e) Overview: As already explained, B can be seen as a coarsen-
ing/simplification operator that keeps and enhances the core struc-
ture of a drawing D(P);
f) Find patterns: Since B enhances the density distribution of D(P),
it follows that patterns which are (vaguely) visible in D(P) will only
become clearer in B(D(P)). For a formal discussion, see [CM02];
for practical examples, see e.g. Sec. 6.2. Yet, the converse is not al-
ways true: A D(P) having no salient patterns can yield a B(D(P))
showing false patterns (see next Sec. 7.2.2);
g) Compare flows: Directional bundling combined with directional
coloring supports this task, see e.g. Fig. 4k-n.

B) Brehmer and Munzer [BM13]: Following this typology,
bundling can:

a) answer the why part of queries related to the above tasks (A). This
is typically done by interaction, see Sec. 4.3.6;
b) identify, compare and summarize: Bundling hepls finding salient
connection patterns; comparing path-sets from a sequence or stream
(Secs. 3.2.2.2, 3.2.2.1, 3.3.2) and summarizing complex path draw-
ings D(P), as clear from all discussions so far;

c) present, discover and enjoy: Bundling can e.g. present big world-
wide flight datasets [KvdZT14]; help discover user patterns in eye-
track data [PHT15]; and enjoy organic presentations of complex, ab-
stract data (see [Tel15], cover). In this typology, how tasks answered
by bundling are summed up as encoding, aggregating and recording.

6. Applications

We next illustrate the application of graph and trail bundling in sev-
eral application areas – software engineering (Sec. 6.1), vehicle tra-
jectory analysis (Sec. 6.2), eye track analysis (Sec. 6.3), multidimen-
sional visualization (Sec. 6.4), and vector and tensor field visualiza-
tion (Sec. 6.5). For each area, we outline a few relevant use-cases,
including the goals to be addressed, examples of bundling results,
and outline some limitations.

6.1. Software engineering and data mining

Some of the earliest applications of graph bundling emerged from
program comprehension. A key aim of program comprehension is to
help developers understand the structure and execution of large pro-
grams. This helps various types of maintenance, such as discover-
ing and fixing performance problems and bugs, refactoring the soft-
ware, and recovering its architecture [CHK∗01]. Static and dynamic
program mining produces a wealth of data, of which an important
component are attributed compound graphs, whose nodes describe
software entities (e.g. methods, classes, and packages) and edges de-
scribe inter-entity relations (e.g. call, inherit, data transfer, compi-
lation dependency) [EN08, CZvD∗09]. Such graphs can have up to
hundreds of thousands of nodes and edges, so displaying them using
classical straight-line node-link drawings is not effective [TEHR09].
Drawing software graphs is an important subfield of software visual-
ization, for which good surveys exist [Kos03, Die08]. Bundling pro-
duces simplified drawings, where tasks such as finding how groups
of related software entities (e.g., in the same package) are connected
with other similar groups.

Early applications include the simplified visualization of rela-
tively small state diagrams, based on a DAG layout, such as the
bundling method of Pupyrev et al. [PNK10] (Fig. 11d, see also
Sec. 3.2.1.1). HEB yielded a major breakthrough, allowing tens of
thousands of edges to be bundled [HvW08]. The original method
(Fig. 2a) was next enhanced to handle graphs of hundreds of thou-
sands of elements by allowing for interactive opening and collaps-
ing of hierarchy nodes and automatic aggregation of children edges
[TEHR09, RVET14]. Besides using a radial layout for the graph
nodes, treemaps were also used, with edges bundled in 3D (Fig. 2e
[WL07,CZB11]). The main advantage here is that treemap cells can
be used to show more data, such as software metrics, than the (small)
cells in a radial icicle plot. Another extension allowed for the com-
parison of two code bases [HvW08] or multiple versions of the same
code base [TA08] (Figs. 2b,d). The key task here is to find how el-
ements in one code base correspond to the other one, and thus spot
structural changes. HEB was also used to visualize code duplica-
tion (clones) in a software system [VT14, RVET14] and how these
evolve in time [Han13,HEF∗14]. This supports the planning of clone
removal with minimal impact on system architecture.

HEB-like bundling has also been used to visualize program exe-
cution, e.g. to compare two or more traces of a program [TDT13]
(to detect anomalous behavior) or to visualize the behavior of multi-
threaded programs [KTD13] (to find performance problems).

In data mining, Bothorel et al. [BSH13] used a general-graph
bundling method (KDEEB) to display frequent itemsets. These
are arranged on multiple (rather than a single) circular layout,
so as to minimize edge lengths. Bundling was used to high-
light groups of strongly-connected itemsets (Fig. 12). The method
was found to help knowledge engineers in extracting association
rules from the itemsets.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

a) b)

c) d)

Figure 11: Bundling in program comprehension. See Sec. 6.1.

Figure 12: Nested circular layout and KDEEB bundling for frequent
itemsets [BSH13].

6.2. Vehicle trajectory analysis

Vehicle trajectory analysis is important in many applications such
as air-traffic [WHS90], nautical vessel [SWvdW∗11,SWvdWvW11,
SHVDWVW16], and roadmap [TP15] planning and control. Early
on, bundling was used to simplify the depiction of large trail-
sets so as to help inferring the main vehicle routes over a coun-
try [HVW09]. This use-case, as well as the US airlines dataset fea-
tured in [HVW09] (Fig. 3), stayed visible in most trail-bundling
papers since then [CZQ∗08, LBA10b, EHP∗11, GHNS11, HET12,
vdZCT16, LHT17]. To support source-to-target trail analysis, direc-
tional bundling methods were proposed [SHH11, Mou15].

Hurter et al. [HEF∗14] extend the above to handle streaming trail-
sets, obtained from monitoring flights over a given spatial region
over a period of time (US territory, 6 days). The obtained anima-
tion allows the detection of variations in position and density of the
main flight routes depending on the time of the day, and comparing

same-time patterns over several days. Recently, this method was ex-
tended, by using the fast GPU-based CUBu technique [vdZCT16],
to visualize around 800K flights collected from the entire world
over June 2013 [KvdZT14], see Fig. 13d. Given the streaming na-
ture of [HEF∗14], this approach can be used to visualize large-
scale trail-sets that evolve over unbounded time ranges. A more in-
volved use-case is described in [PHT15]. The data consists of 24
hours of flight traffic over France (18K trails). The bundled visu-
alization (Fig. 13a-c) helps air-traffic controllers to cross-reference
actual flows with known theoretical air routes (on a global scale)
and theoretical approach routes to the Paris airports (locally). This
way, problems can be spotted early on, and traffic planning can be
adjusted next.

d

Figure 13: Aircraft trail analysis. (a-c) Raw trails, directional
bundling over France, and zoom-in over Paris area [PHT15]. (d)
Worldwide flights [KvdZT14].

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

a) b)

c)

Figure 14: 3D bundling of 2000 worldwide flight trails (a), and de-
tail (b) [LBA10a]; Bundling commuter trails along the Swiss road
network [TP15] (detail top-right).

For the same use-case (worldwide flight analysis), Lambert et
al. [LBA10b] extend WR to bundle 2000 flight trails over the Earth
surface. They show how 3D bundling is superior to bundling on a
2D map for assessing flight lengths and for more exact trail-to-trail
distance assessment (Fig. 14a,b). Finally, Vector Maps [TP15] bun-
dle commuter paths on the 3D Swiss road network. The key parts
of the road network are used as a ‘skeleton’ to attract bundles. The
visualization shows which main routes (e.g. highways) are important
for which parts of the traffic (Fig. 14c).

6.3. Eye-track analysis

Eye tracking delivers datasets consisting of 2D points (so-called fix-
ation points of the human gaze) linked by transitions (called sac-
cades) [TWK∗10]. Analyzing such tracks is important for many ap-
plications, e.g. assessing user performance when using new inter-
faces [CFL10, KPAA10] and finding how users read a display and
whether they do it efficiently [SL87, KRDC97]. An important part
of the analysis of eye trails is detecting the so-called fixation areas
(FA’s), defined as groups of many close fixation points; and finding
how FA’s are linked by saccades.

Trail bundling perfectly suits such tasks. Recent works in eye-
tracking also strongly consider bundling as a viable solution to
reduce clutter induced by the large amount of ocular trail sets
[BKR∗14]. Application-wise, ADEB [PHT15] was used to show
how bundled trails can be used to assess the proficiency of users
(Fig. 15a,b). Here, the ocular behavior of a novice and expert user
during a multi-task experiment are compared. The background im-
age shows the GUI that the users had to monitor and interact with
during the experiment. From this, the authors show how and where
the expert performed better, which can lead to improvements in ei-
ther the training procedure or the GUI being proposed to users.
Separately, Hurter et al. considered the time information present
in eye trails, by bundling only trails that are compatible with re-
spect to occurring close to each other in time using a streaming
method [HEF∗14]. Figure 15c,d shows how dynamic bundling high-
lights salient eye-movement patterns of an aircraft pilot during a
landing sequence. the background images show actual views from
the cockpit, with dashboard instruments in focus. Bundles show the
pilot’s so called main visual strategies during landing. This helps
pilots to analyze and correct their behavior (improves training) but
also designers of new aircraft landing-assisting cockpit instruments
in finding if such instruments have been effectively used by pilots.

b)

c) d)

L1

L2

H1

H2

L1

L2

H1

H2

a)

Figure 15: Bundled eye-tracking trails of novice (a) and expert (b)
users in a multitask experiment [PHT15]. (c) Visual analysis of pilot
eye-tracking data with dynamic bundling [HEF∗14].

6.4. Multidimensional data exploration

Multidimensional data exploration is a very challenging field:
Datasets whose samples have many dimensions (tens or even hun-
dreds) have to be mapped to 2D or 3D. Relevant tasks include find-
ing groups of similar samples, outlier samples, and correlations and
trends of subsets of the existing dimensions.

Such data can be visualized by Parallel Coordinate Plots (PCPs)
(see Sec. 3.3.1.1). As explained there, PCPs for thousands of sam-
ples or more quickly become cluttered. Bundling can help here,
much in the same way it helps declutter straight-line graph draw-
ings. Figure 16 shows four bundling methods for PCPs discussed in
Sec. 3.3.1.1. As visible, each method targets different tasks: McDon-
nell et al. (Fig. 16a) separate the data into compact clusters, empha-
sizing data cluster differences (which sample groups are different).
Coloring and shading are very similar to IBEB [TE10] (Sec. 4.3.3).
Heinrich et al. (Fig. 16b) emphasize the continuity of the PCP poly-
lines, helping end-to-end tracing, as opposed to all other methods.
Zhou et al. offer a proposition similar to [MM08], but with less over-
lap. Finally, Palmas et al. offer the strongest clutter reduction (but
overdraw increase) (Fig. 16d). Their visual design is very similar to
HEB [Hol06] – just as HEB lets one see how groups of nodes in a
graph are connected, so do they show how ranges of variables occur
together in a multidimensional dataset.

Dimensionality-reduction (DR) methods are another way to dis-
play high-dimensional data. Given an n-dimensional dataset, a DR
method creates a 2D scatterplot where inter-point distances reflect
the corresponding nD distances [SVPM14]. It is well known that DR
techniques cannot perfectly map nD distances to 2D. So, ways are
needed to assess errors in such 2D scatterplots. Martins et al. clas-
sify such errors into false neighbors (points too close in 2D vs nD and
missing neighbors (points too far in 2D vs nD) [MCMT14,MMT15].
They next extend these notions to groups (clusters) of points rep-
resenting concepts. Bundling, done with CUBu [vdZCT16] helps
showing missing (group) neighbors: All 2D scatterplot point-pairs
which are farther apart, as compared to their nD counterparts, than
a given value, are connected by edges, whose opacity reflects the
2D-nD distancec discrepancy. Next, these edges are bundled. This
effectively shows which zones in a DR plot miss information, and
where this information is. For example, in Fig. 17a, bundles show
that many of the elements of the group Γle f t in the scatterplot miss
neighbors which the DR method erroneously places in group Γtop,
but miss no neighbors with respect to the group Γbottom. Bundling is
also used to compare two plots created by different DR methods.

Bundling is also used to visualize training of artificial deep neu-
ral networks (DNNs). Understanding how such networks learn from

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

a) b)

c) d)

Figure 16: PCP bundling with four methods. (a) [MM08], (b) [HLK∗12], (c) [ZYQ∗08], (d) [PBO∗14].

examples is notoriously hard, as they usually operate as black boxes
[MPG∗14]. Rauber et al. [RFFT17] use bundling to help this: Imag-
ine that all neurons of a DNN are points in nD space, with coordi-
nates given by their so-called activations. Such a DNN is typically
trained by feeding it a sequence of N examples. Hence, activations
change with each learned example. This can be visualized by pro-
jecting all neuron activations to 2D (using the well-known t-SNE DR
technique [vdMH08]) and next constructing trails linking the N 2D
positions of the same neuron. This yields a streaming trail-set, which
next can be bundled, as in Fig. 17b. Here, luminance encodes train-
ing time, and color encodes neurons specialized for the same task
(in [RFFT17], this is classifying images). The bundle structure, high-
lighted by the arrows, shows how originally untrained neurons (im-
age center, dark) progressively diverge from each other. This serves
in assessing the training performance: For a DNN, we want indeed
that neurons progressively differentiate from each other and special-
ize for doing different tasks.

a) b)

Γ
top

Γ
bottom

Figure 17: a) Visualizing errors in multidimensional projections
[MCMT14]. b) Visualizing learning in a neural network [RFFT17].

6.5. Vector and Tensor Fields

Trail bundling has also been used to simplify displays of vector and
tensor fields. For vector fields, Yu et al. [YWSC12] bundle 2D and
3D streamlines to produce simplified visualizations of the respective
fields. The tasks addressed cover reduction of clutter and occlusion
(in 3D) and easily spotting salient field patterns such as separatrices,
laminar flow regions, and turbulent regions [PVH∗03]. Compared to
other hierarchical vector field simplification methods [TvW99], this
approach can better capture salient vector field structures at similar
levels of detail. It is however important to note that bundling is done
here purely to find groups of very similar streamlines (following a
similarity definition analogous to δ , Eqn. 2). After such groups are
found, an actual physically correct streamline best representing each
group is rendered. Thus, no geometric deformation takes place.

Böttger et al. [BSL∗14] bundle 3D trails to help neuroscientists
visualize brain connectivity captured by fMRI techniques. The input

data is a graph G, with nodes V representing 3D locations in the brain
and edges E linking locations that are related with respect to func-
tion. Straight-line drawings of G produces highly cluttered pictures
(Fig. 18c). KDEEB bundling (adapted to 3D) on G massively re-
duces occlusion and allows one to see how groups of spatially close
nodes inter-relate (Fig. 18d). For this use-case, edge deformation is
not an issue, as edges only carry connectivity information.

a) b)

c) d)c) d)

e) f)

Figure 18: Vector and tensor fields. 3D streamlines, raw (a) and
(b) bundled [YWSC12]. Functional brain connectivity [BSL∗14], (c)
raw and (d) bundled. DTI tracts [EBB∗15], (e) raw and (f) bundled.

Bundling is also applied to Diffusion Tensor Imaging (DTI) fields.
From these fields, trail (or tract) sets indicating the locations of
important white-matter neural fibers are extracted by tractography
[AP08]. Rendering the raw tracts yields relatively cluttered images,
depending on actual tract extraction settings (Fig. 18d). Everts et
al. bundle tracts (for details, see Sec. 3.3.1.2) to yield simplified,
less cluttered, images (Fig. 18e). Tracts are next colored to indi-
cate 3D orientation (for details, see [Tel15], Ch. 7). In contrast to
[BSL∗14], deformations are now constrained, as actual track loca-
tions are important. The bundled views are typically used to assess
how (strongly) different anatomical regions in the brain are con-
nected, which can next help planning minimally disruptive surgery.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

7. Discussion

We now discuss several aspects related to the state of graph and trail
bundling. We focus on current capabilities (Sec. 7.1) and challenges
(Sec. 7.2), and also outline gaps and future work directions.

7.1. Current State of Bundling

Bundling methods have become quite mature and widely used since
their inception over a decade ago. Several aspects are relevant here:
Scalability: We distinguish five ‘generations’ of bundling tech-
niques. Pre-HEB bundling techniques were able to handle graphs
of hundreds of edges and worked solely on the CPU [New89,
BW98, DEGM03, PXY∗05]. Following HEB [Hol06], the second
generation targeted graphs and trail-sets having thousands (up to
roughly 10K) paths; MINGLE [GHNS11] is an exception here,
as it targeted graphs up to 1 million edges. These techniques
worked mostly geometrically [HVW09, NEH12, CZQ∗08, NHE11,
LLCM12, SHH11] and on the CPU. Starting with SBEB [EHP∗11]
and KDEEB [HET12], third-generation techniques are image-based,
using a mixed CPU-GPU implementation to massively parallelize
both similarity computation (Sec. 4.1.2.2) and the bundling it-
self (Sec. 4.2, and can bundle tens of thousands of paths in sec-
onds [LBA10b, LBA10a, Mou15]. Fifth-generation techniques work
solely on the GPU, can handle multiple GPUs (CUBu [vdZCT16]),
can bundle up to a million paths in subsecond time, and remove GPU
RAM limitations by data streaming(FFTEB [LHT17]). With even
faster and larger-memory GPUs emerging continuously, we believe
that the scalability problem of path bundling has been sufficiently
addressed, so that bundling can approach ‘big data’ sets.
Data coverage: Following our taxonomy in Sec. 3, bundling meth-
ods can cover a wide spectrum of data types: graph drawings (trees,
compound, DAGs, general oriented or not); 2D trails (vehicle move-
ments, eye tracks, streamlines); and 3D trails (vehicle movements,
DTI fibers, streamlines). All these can be either attributed (with
several attributes per path) or not, and time dependent or not (see
also Tab. 1). As such, we believe that most data types amenable to
bundling are covered by existing methods.
Adoption: The development of bundling techniques has grown par-
allel to widening their application. Bundling has been arguably
best accepted in software engineering and geospatial trail analysis
(Sec. 6). Other salient application fields are eye-tracking analysis,
DTI tract visualization, and network visualization. Several mature
software tools offer bundling, e.g. GraphViz [G∗17], Tulip [A∗17],
Gephi [Gep17], D3 [Bos17], and Protégé [T∗17,HdRFH12]. Yet, ex-
cept a few methods like HEB [Hol06], FDEB [HVW09], and MIN-
GLE [GHNS11], most other bundling methods have still not been
integrated in such mainstream packages.

7.2. Bundling Challenges

Despite its success, bundling techniques haves still unsolved chal-
lenges. Of these, we discuss next the quality assessment of bundled
drawings (Sec. 7.2.1), the issue of faithfulness, or how much infor-
mation is kept (or not) in a bundled drawing (Sec. 7.2.1), and how
one can control the result of bundling (Sec. 7.2.3).

7.2.1. Quality assessment

There is no accepted way to measure the quality of a bundling. The
problem core is that it is hard to define objective criteria for what a
‘good’ bundling is. Quality metrics have been discussed, and advo-
cated for, since long in information visualization [Bra97,MHNW97,
EG06]. Closer to our scope, these include the ink-ratio and ‘lie fac-
tor’ of a visualization [Tuf92]; defining visual clutter [ED07]; and
measuring edge congestion [CR01], edge crossings [KPS14], read-
ability [DS09, EHKN15], aesthetics [PCJ95, WPCM02], and faith-
fulness [NEH13, NEH17] in graph visualizations. However, no such

set of metrics fully covers path bundling. For bundled drawings qual-
ity, only a handful of studies exist, touching upon the visual nav-
igability of small bundled drawings [PNK10], comparing the ef-
fectiveness of bundled vs unbundled drawings [TEHR09], studying
the comprehensibility [MD12] and ambiguity [BRH∗16] of bundled
drawings, and visualizing edge deformation [HET12].

Quality assessment can be approached by defining what qual-
ity is. Following well-established principles in software engineer-
ing [Ken03], we can define the quality of a bundled drawing by ei-
ther measuring its ‘fitness for purpose’ (how well it helps solving a
certain problem) or by comparing it to a ground-truth whose quality
is known. Both paths have, however, challenges, as outlined next.

Fitness for purpose: To quantify this, we need first to define what
the goal(s) of a bundled drawing are. Section 5.2 outlines the tasks
that bundling aims to cover. This (or a similar) proposal could be
next used to scope, and assess the value of, their contributions. This
can be done by user studies where the percentage, correctness, and
time of completing, a given task is measured. Besides the know chal-
lenges that organizing large-scale user studies (and generalizing their
results) have, an extra difficulty is that the same method B can gener-
ate a wealth of different drawing styles from the same dataset D(P),
see e.g. [vdZCT16]. The data-based taxonomy proposed in Sec. 3
can help here in narrowing the focus of methods to be compared
against each other based on the type of input data they work on.

Ground truth comparison: Quality can be measured by computing
the difference between a bundling B(D(P)) produced by the method
under study and a so-called ground truth Bg(D(P)), i.e., a bundled
drawing known to be good for a certain task. Most existing bundling
papers do this implicitly, by comparing their results with earlier
methods on the same dataset D(P). Yet, in most (if not all) cases,
the comparison is only visual, such as shown in Fig. 4. This can be
improved by using quantitative metrics to compare two bundled im-
ages, e.g. by measuring their Hausdorff distance, or metrics to assess
global quality parameters of a drawing B(D(P)), e.g. amount of over-
draw, spread of path displacements, spatial path-density distribution,
amount of overlap of different-direction bundles, amount of bundle
crossings, and bundle curvature distribution. We can next infer good
values for such metrics e.g. by extrapolating from the graph-drawing
and graph-aesthetic principles mentioned earlier, and compare actual
metric values with the desired good values. Another way to measure
quality is to compare B(D(P)) with the unbundled drawing D(P),
using a similar set of quality metrics. A good bundling is, in this
case, one that increases the metrics’ values.

A separate problem for ground truth comparison is that there is, so
far, no established benchmark of graphs and trail-sets (and bundling
method implementations) that the infovis community could use. Cre-
ating such a benchmark is reasonably easy and should be highly use-
ful for the community. A starting point for graphs (including node
layouts) can be the well-known Florida collection [DH11].

7.2.2. Bundling faithfulness

A separate issue regards the information alteration or loss produced
by bundling, or the so-called faithfulness of the produced drawings
[NEH13,NEH17]. Simply put, we need to measure (a) how much of
the original information conveyed by D(P) is kept by B(D(P)), and
(b) how much incorrect information B(D(P)) adds as compared to
D(P). In other words, we need to measure the precision and recall
for B. The above are related to the concept of inferrence affordance
that measures the informational equivalence of two displays [SL87,
CFL10, TWK∗10] – in our case, D(P) and B(D(P)).

Concerning (a), it is clear that bundling looses some of the infor-
mation present in the original D(P). This is a higher problem for
trail-sets than for graphs, since the former contain relevant spatial
information. To assess this, we can measure (1) the amount of trail

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

distortion created by B, i.e., ∑pi∈D(P) δ (pi,B(pi)), with δ given by
Eqn. 2. Next, depending on the task, we can decide whether this
amount is acceptable or not. To help this, distortion can be visual-
ized on B(D(P)) [HET12]. When distortion is too large, relaxation
can be used (Sec. 4.3.6), or bundling can be selectively stopped when
it reaches a (local or global) maximum value. Further, a ratio of clut-
ter reduction to amount of distortion can be computed, analogously
to Tufte’s ink-space ratio [Tuf92] to measure the faithfulness of B.
Another way to increase faithfulness is to animate D(P) towards
B(D(P)) during the bundling [HEF∗14]. This helps users match the
input and output of B, and thus reduce the information loss.

Concerning (b), it has been shown that, for some datasets,
bundling can yield false insights. Figure 19 illustrates this for
KDEEB [HET12]: A random graph whose nodes and edges are uni-
formly spread over a 2D region is bundled. The result shows emerg-
ing structures which, however, do not reflect any actual patterns in
the input data. This effect is mainly due to the fact that implicit
bundling methods expect that their input has salient structures; when
this is not the case, the bundling’s underlying density-sharpening
principle (Sec. 2) will simply accentuate small-scale noise.

a) b)

Figure 19: Pseudo-random graph (a) and its KDEEB bundling (b).
Red dots represents graph nodes [HET12].

7.2.3. Bundling control

Controlling bundling methods is our final challenge. Earlier bundling
methods have a relatively small, and intuitive, set of parameters.
For instance, HEB (Sec. 3.2.1.1) allows controlling the strength of
bundling, the amount of relaxation, detection of the common an-
cestor in the hierarchy that bundles are routed through, and type of
edge blending (for full details, we refer to [Hol06]). Recent bundling
methods have a higher number of parameters. For instance, CUBu
(Sec. 3.3.1.1) allows controlling the resolution of the image used for
kernel density estimation, radius of the kernel, number of sampling
points along paths, advection step size, number of bundling itera-
tions, directional bundling style, type of bundle shading, and offers
additionally four drawing styles (full details in [vdZCT16]). Con-
cerning parameters, we see the following challenges:

Semantics: Existing parameters have semantics which are typically
bound to a specific bundling technique. This makes it hard for users
to reproduce results when changing techniques. Our mathematical
framework presented in this survey helps this by identifying param-
eters having identical meanings over different methods, but of course
cannot fully solve the problem. A promising direction would be to
provide parameters linked to user tasks rather than method techni-
calities. For instance, if one wants to bundle trails so that a given
subset thereof is easily followable, the method could automatically
select suitable technical parameter values.

Impact: Changing any of the many bundling parameters produces
a different result. While reasonable parameter presets exist, these
are not always optimal for all datasets and/or visual insights sought.
This issue is less critical with modern bundling methods which work
near-real-time (Sec. 3.3.1.1), as trial-and-error parameter exploration

is less costly. Still, supporting users to express their interest more
effectively, by offering high(er) level parameter control, similar to
work done elsewhere in infovis [SvW08, SvW09], is a potential im-
provement direction for bundling. Another solution would be setting
parameter values based on the characteristics of the input data D(P)
to bundle.

Coupling: The same bundling result can be, usually, obtained
by setting different parameters to different values. For example,
the same bundle tightness in implicit methods [HVW09, HET12,
Mou15,vdZCT16] can be obtained by changing either the number of
bundling iterations or the advection step size. We call such param-
eters coupled. Few papers discuss coupling, making the parameter
space unnecessarily large. This can be alleviated by grouping cou-
pled parameters under a single high-level parameter, similarly to the
idea discussed above for impact.

8. Conclusion

We have presented a survey of the state-of-the-art in graph and trail
bundling techniques. We organize such techniques via a data-based
taxonomy, which allows readers to find the types of techniques that
best fit their specific data at hand. Next, we propose a mathematical
framework to define bundling, which allows one to compare spe-
cific technical aspects of the different existing bundling algorithms
in a detailed way. Based on this framework, we discuss a wide set
of bundling techniques, spanning the whole spectrum present in the
literature. We next discuss how bundling supports clutter reduction
and proposed a taxonomy for the tasks it supports. We present a
wide sample of applications that rely on bundling from five domains
(software engineering, vehicle trajectory analysis, eye track analysis,
multidimensional data visualization, and vector and tensor visual-
ization). Finally, we outline the key aspects which modern bundling
methods have solved and also the main open issues the field has,
thereby highlighting important directions for future research.

We believe our survey systematizes and clarifies several so-far
open points in the bundling literature and will serve both practition-
ers in understanding how to choose, parameterize, and use bundling
techniques to solve concrete problems, and also researchers to com-
pare, discuss, understand, and refine future bundling algorithms.

9. Acknowledgments

The authors acknowledge the support of the Federal University of
Toulouse (Université Fédérale Toulouse Midi-Pyrénées – UFTMiP)
under the grant "MEMOIRE", the French National Agency for Re-
search (Agence Nationale de la Recherche – ANR) under the grant
ANR-14-CE24-0006-01 project "TERANOVA" and the SESAR Re-
search and Innovation Action Horizon 2020 under project "MOTO"
(The embodied reMOte TOwer).

References
[A∗17] AUBER D., ET AL.: Tulip visualization framework, 2017. tulip.
labri.fr. 19

[ALLF07] ALEXANDER A. L., LEE J. E., LAZAR M., FIELD A. S.: Dif-
fusion tensor imaging of the brain. Neurotherapeutics 4, 3 (2007), 316–
329. 9

[AMA08] ARCHAMBAULT D., MUNZNER T., AUBER D.: Grouseflocks:
Steerable exploration of graph hierarchy space. IEEE TVCG 14, 4 (2008),
900–913. 3

[AP08] ASSAF Ï., PASTERNAK O.: Diffusion tensor imaging DTI-based
white matter mapping in brain research: A review. J Mol Neurosci 34
(2008), 51–61. 5, 18

[APP10] ARCHAMBAULT D., PURCHASE H. C., PINAUD B.: The read-
ability of path-preserving clusterings of graphs. CGF 29 (2010), 1173–
1182. 3

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

tulip.labri.fr
tulip.labri.fr

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

[AS94] AHLBERG C., SHNEIDERMAN B.: Visual information seeking:
Tight coupling of dynamic query filters with starfield displays. In Pro-
ceedings of the SIGCHI conference on Human factors in computing sys-
tems (1994), ACM, pp. 313–317. 15

[AvHK06] ABELLO J., VAN HAM F., KRISHNAN N.: ASK-GraphView:
A large scale graph visualization system. IEEE TVCG 12, 5 (2006), 669–
676. 3, 4

[BBD∗10] BINUCCI C., BRANDES U., DIBATTISTA G., DIDIMO W.,
GAERTLER M., PALLADINO P., PATRIGNANI M., SYMVONIS A.,
ZWEIG K.: Drawing trees in a streaming model. In Proc. Graph Drawing
(2010), Springer, pp. 292–303. 7

[BBDW14] BECK F., BURCH M., DIEHL S., WEISKOPF D.: The state of
the art in visualizing dynamic graphs. EuroVis STAR (2014). 7

[BE05] BRANDES U., ERLEBACH T.: Network analysis: methodological
foundations. Springer, 2005. 10

[Ber83] BERTIN J.: Semiology of Graphics. University of Wisconsin Press,
1983. 12

[BISP16] BOURQUI R., IENCO D., SALLABERRY A., PONCELET P.:
Multilayer graph edge bundling. In Proc. IEEE PacificVis (2016), pp. 184–
188. 15

[BKR∗14] BLASCHECK T., KURZHALS K., RASCHKE M., BURCH M.,
WEISKOPF D., ERTL T.: State-of-the-art of visualization for eye tracking
data. In EuroVis - STARs (2014). 17

[BM13] BREHMER M., MUNZNER T.: A multi-level typology of abstract
visualization tasks. IEEE TVCG 19, 12 (2013), 2376–2385. 2, 13, 15

[Bos17] BOSTOCK M.: Hierarchical edge bundling implementation in D3,
2017. https://gist.github.com/mbostock. 19

[Bra97] BRATH R.: Metrics for effective information visualization. In
Proc. IEEE InfoVis (1997), pp. 55–63. 19

[BRH∗16] BACH B., RICHE N., HURTER C., MARRIOTT K., DWYER
T.: Towards unambiguous edge bundling: Investigating confluent draw-
ings for network visualization. IEEE TVCG 23, 1 (2016), 541–550. 4, 6,
10, 19

[BSH13] BOTHOREL G., SERRURIER M., HURTER C.: Visualization of
frequent itemsets with nested circular layout and bundling algorithm. In
Proc. ISVC (2013), Springer, pp. 396–405. 15, 16

[BSL∗14] BÖTTGER J., SCHÄFER A., LOHMANN G., VILLRINGER A.,
MARGULIES D. S.: Three-dimensional mean-shift edge bundling for the
visualization of functional connectivity in the brain. IEEE TVCG 20, 3
(2014), 471–480. 1, 4, 5, 7, 11, 12, 18

[BSV11] BUCHIN K., SPECKMANN B., VERBEEK K.: Angle restricted
Steiner arborescences for flow map layout. In Proc. ISAAC (2011),
pp. 250–259. 4, 6, 10, 11

[BTD12] BUSCHMANN S., TRAPP M., DÖLLNER J.: Challenges and ap-
proaches for the visualization of movement trajectories in 3D geovirtual
environments. In Proc. GIScience Workshop on GeoVisual Analytics –
Time to Focus on Time (2012). 10

[BVKW11] BURCH M., VEHLOW C., KONEVTSOVA N., WEISKOPF D.:
Evaluating partially drawn links for directed graph edges. In Proc. Graph
Drawing (2011), pp. 56–67. 2

[BW98] BRANDES U., WAGNER D.: Using graph layout to visualize train
interconnection data. In Proc. Graph Drawing (1998), Springer, pp. 44–
56. 3, 11, 19

[CC07] COLLINS C., CARPENDALE S.: VisLink: Revealing relationships
amongst visualizations. IEEE TVCG 13, 6 (2007), 1192–1199. 1, 5

[CFL10] CÖTELKIN A., FABRIKANT S. I., LACAYO M.: Exploring the
efficiency of users visual analytics strategies based on sequence analysis
of eye movement recordings. Int. J. Geogr. Inf. Sci. 24, 10 (2010), 1559–
1575. 17, 19

[CHK∗01] CHAPIN N., HALE J. E., KHAN K. M., RAMIL J. F., TAN W.-
G.: Types of software evolution and software maintenance. J. Soft. Maint.
Evol. Res. Pract. 13 (2001), 3–30. 15

[CM02] COMANICIU D., MEER P.: Mean shift: A robust approach toward
feature space analysis. IEEE TPAMI 24, 5 (2002), 603–619. 1, 9, 15

[CR01] CARPENDALE M. S. T., RONG X.: Examining edge congestion.
In Proc. ACM CHI (2001), pp. 115–116. 2, 19

[CTMT10] CAO T., TANG K., MOHAMED A., TAN T.: Parallel banding
algorithm to compute exact distance transform with the GPU. In Proc.
ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games (2010),
pp. 134–141. 11

[CZB11] CASERTA P., ZENDRA O., BODÉNÈS D.: 3D hierarchical edge
bundles to visualize relations in a software city metaphor. In Proc. IEEE
VISSOFT (2011), pp. 34–42. 4, 7, 11, 15

[CZH∗08] CORNELISSEN B., ZAIDMAN A., HOLTEN D., MOONEN L.,
VAN DEURSEN A., VAN WIJK J. J.: Execution trace analysis through
massive sequence and circular bundle views. Journal of Systems and Soft-
ware 81, 12 (2008), 2252–2268. 4, 6, 10, 11, 12, 14

[CZQ∗08] CUI W., ZHOU H., QU H., WONG P. C., LI X.: Geometry-
based edge clustering for graph visualization. IEEE TVCG 14, 6 (2008),
1277–1284. 1, 4, 5, 7, 11, 16, 19

[CZvD∗09] CORNELISSEN B., ZAIDMAN A., VAN DEURSEN A., MOO-
NEN L., KOSCHKE R.: A systematic survey of program comprehension
through dynamic analysis. IEEE Trans Softw Eng 35, 5 (2009), 684–702.
15

[dBCvKO10] DE BERG M., CHEONG O., VAN KREVELD M., OVER-
MARS M.: Computational Geometry: Algorithms and Applications.
Springer, 2010. 2

[DEGM03] DICKERSON M., EPPSTEIN D., GOODRICH M. T., MENG
J. Y.: Confluent drawings: Visualizing non-planar diagrams in a planar
way. In Proc. Graph Drawing (2003), Springer, pp. 1–12. 1, 3, 4, 6, 19

[DEGM05] DICKERSON M., EPPSTEIN D., GOODRICH M., MENG J.:
Confluent drawings: Visualizing non-planar diagrams in a planar way.
Journal of Graph Algorithms and Applications 9, 1 (2005), 31–52. 4,
6

[DH11] DAVIS T. A., HU Y.: The university of florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38,
1 (2011), 1. http://www.cise.ufl.edu/research/sparse/
matrices. 19

[dHINM04] DE HOON M., IMOTO S., NOLAN J., MYIANO S.: Open
source clustering software. Bioinformatics 20, 9 (2004), 1453–1454. 10

[DHRMM13] DWYER T., HENRY RICHE N., MARRIOTT K., MEARS C.:
Edge compression techniques for visualization of dense directed graphs.
IEEE TVCG 19, 12 (2013), 2596–2605. 6, 10

[Die08] DIEHL S.: Software Visualization: Visualizing the Structure, Be-
haviour, and Evolution of Software. Springer, 2008. 4, 12, 15

[DMM∗14] DWYER T., MEARS C., MORGAN K., NIVEN T., MARRIOTT
K., WALLACE M.: Improved optimal and approximate power graph com-
pression for clearer visualisation of dense graphs. In Proc. IEEE PacificVis
(2014), pp. 105–112. 6, 10

[DMW07] DWYER T., MARRIOTT K., WYBROW M.: Integrating edge
routing into force-directed layout. In Proc. Graph Drawing (2007), pp. 8–
19. 1

[DS09] DUNNE C., SHNEIDERMAN B.: Improving graph drawing read-
ability by incorporating readability metrics: A software tool for network
analysts. Tech. rep., Technical Report HCIL-2009-13, University of Mary-
land, 2009. 19

[DS13] DUNNE C., SHNEIDERMAN B.: Motif simplification: Improving
network visualization readability with fan, connector, and clique glyphs.
In Proc. ACM CHI (2013), p. 3247âĂŞ3256. 4

[DT14] DIEHL S., TELEA A.: Multivariate networks in software engineer-
ing. In Multivariate Network Visualization (2014), Kerren A., Purchase H.,
Ward M., (Eds.), Springer, pp. 13–35. 2, 4, 6, 7, 10

[EBB∗15] EVERTS M. H., BEGUE E., BEKKER H., ROERDINK J. B.
T. M., ISENBERG T.: Exploration of the brain’s white matter structure
through visual abstraction and multi-scale local fiber tract contraction.
IEEE TVCG 21, 7 (2015), 808–821. 1, 2, 4, 5, 9, 18

[ED07] ELLIS G., DIX A.: A taxonomy of clutter reduction for informa-
tion visualisation. IEEE TVCG 13, 6 (2007), 1216–1223. 2, 14, 15, 19

[EG06] E.BERTINI, G.SANTUCCI: Visual quality metrics. In Proc. AVI
BELIV (2006). 19

[EHKN15] EADES P., HONG S.-H., KLEIN K., NGUYEN A.: Shape-
based quality metrics for large graph visualization. In Proc. Graph Draw-
ing (2015), pp. 502–514. 19

[EHP∗11] ERSOY O., HURTER C., PAULOVICH F., CANTAREIRO G.,
TELEA A.: Skeleton-based edge bundles for graph visualization. IEEE
TVCG 17, 2 (2011), 2364–2373. 1, 4, 7, 9, 10, 11, 12, 13, 16, 19

[EN08] EMANUELSSON P., NILSSON U.: A comparative study of indus-
trial static analysis tools. Electronic Notes in Theoretical Computer Sci-
ence 217 (2008), 5–21. 15

[FCTB08] FABBRI R., COSTA L. D. F., TORELLI J. C., BRUNO O. M.:
2D Euclidean distance transform algorithms: A comparative survey. ACM
Comput Surv 40, 1 (2008). 11

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

https://gist.github.com/mbostock
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

[G∗17] GANSNER E., ET AL.: GraphViz graph drawing framework, 2017.
www.graphviz.org. 19

[GBE08] GIERETH M., BOSCH H., ERTL T.: A 3D treemap approach for
analyzing the classificatory distribution in patent portfolios. In Proc. IEEE
VAST (2008), pp. 189–193. 1, 4, 7, 11

[Gep17] GEPHI CONSORTIUM: Gephi large network visualization frame-
work, 2017. gephi.org. 19

[GHNS11] GANSNER E., HU Y., NORTH S., SCHEIDEGGER C.: Multi-
level agglomerative edge bundling for visualizing large graphs. In Proc.
IEEE PacificVis (2011), pp. 187–194. 1, 4, 5, 7, 10, 11, 16, 19

[GK03] GRAHAM M., KENNEDY J.: Using curves to enhance parallel
coordinate visualisations. In Proc. IEEE Information Visualisation (2003),
pp. 163–171. 9, 11

[GK06] GANSNER E., KOREN Y.: Improved circular layouts. In Proc.
Graph Drawing (2006), pp. 386–398. 4, 5, 11

[GKN04] GANSNER E., KOREN Y., NORTH S.: Topological fisheye views
for visualizing large graphs. In Proc. IEEE InfoVis (2004), pp. 175–182.
4

[GN00] GANSNER E. R., NORTH S. C.: An open graph visualization
system and its applications to software engineering. Software – Practice
and Eperience 30, 11 (2000), 1203–1233. 3

[Han13] HANJALIĆ A.: ClonEvol: Visualizing software evolution with
code clones. In Proc. IEEE VISSOFT (2013). 4, 9, 14, 15

[Har94] HARALICK R. M.: Mathematical Morphology: Theory and Hard-
ware. Oxford University Press, 1994. 9

[HCGT14] HURTER C., CONVERSY S., GIANAZZA D., TELEA A.: Inter-
active image-based information visualization for aircraft trajectory analy-
sis. Transportation Research C 47, 2 (2014), 207–227. 10, 12

[HdRFH12] HOP W., DE RIDDER S., FRASINCAR F., HOGENBOOM
F.: Using hierarchical edge bundles to visualize complex ontologies in
GLOW. In Proc. ACM Applied Computing (2012), pp. 304–311. 5, 19

[HDZ05] HANSEN G. A., DOUGLASS R. W., ZARDECKI A.: Mesh en-
hancement. Imperial College Press, 2005. 13

[HEF∗14] HURTER C., ERSOY O., FABRIKANT S., KLEIN T., TELEA A.:
Bundled visualization of dynamic graph and trail data. IEEE TVCG 20, 8
(2014), 1141–1157. 1, 4, 10, 12, 13, 14, 15, 16, 17, 20

[HET11] HURTER C., ERSOY O., TELEA A.: MoleView: An attribute and
structure-based semantic lens for large element-based plots. IEEE TVCG
17, 12 (2011), 2600–2609. 14, 15

[HET12] HURTER C., ERSOY O., TELEA A.: Graph bundling by kernel
density estimation. CGF 31, 3 (2012), 865–874. 1, 2, 4, 7, 9, 11, 13, 14,
16, 19, 20

[HET13] HURTER C., ERSOY O., TELEA A.: Smooth bundling of large
streaming and sequence graphs. In Proc. IEEE PacificVis (2013). 1, 4, 7,
10, 13, 14

[HEW98] HUANG M., EADES P., WANG J.: On-line animated visualiza-
tion of huge graphs using a modified spring algorithm. JVLC 9, 6 (1998),
623–645. 7

[HFM07] HENRY N., FEKETE J.-D., MCGUFFIN M. J.: Nodetrix: a hy-
brid visualization of social networks. IEEE TVCG 13, 6 (2007), 1302–
1309. 4

[HHM08] HARRIS J., HIRST J. L., MOSSINGHOFF M.: Combinatorics
and Graph Theory. Springer, 2008. 2nd edition. 2

[HIVWF11] HOLTEN D., ISENBERG P., VAN WIJK J. J., FEKETE J.-D.:
An extended evaluation of the readability of tapered, animated, and tex-
tured directed-edge representations in node-link graphs. In Proc. IEEE
PacificVis (2011), pp. 195–202. 12, 13

[HLK∗12] HEINRICH J., LUO Y., KIRKPATRICK A. E., ZHANG H.,
WEISKOPF D.: Evaluation of a bundling technique for parallel coordi-
nates. In Proc. Information Visualization (2012), pp. 240–248. 4, 9, 18

[HMM00] HERMAN I., MELAN CON G., MARSHALL M. S.: Graph vi-
sualization and navigation in information visualization: A survey. IEEE
TVCG 6, 1 (2000), 24–43. 1, 3

[Hol06] HOLTEN D.: Hierarchical edge bundles: Visualization of adja-
cency relations in hierarchical data. IEEE TVCG 12, 5 (2006), 741–748.
1, 4, 5, 6, 7, 11, 12, 13, 17, 19, 20

[HTC09] HURTER C., TISSOIRES B., CONVERSY S.: FromDaDy:
Spreading data across views to support iterative exploration of aircraft tra-
jectories. IEEE TVCG 15, 6 (2009), 1017–1024. 2, 9, 10

[HTCT14] HURTER C., TAYLOR R., CARPENDALE S., TELEA A.: Color
tunneling: Interactive exploration and selection in volumetric datasets. In
Proc. IEEE PacificVis (2014), pp. 225–232. 13

[Hur15] HURTER C.: Image-Based Visualization: Interactive Multidimen-
sional Data Exploration. Morgan & Claypool Publishers, 2015. 1

[HvW08] HOLTEN D., VAN WIJK J. J.: Visual comparison of hierarchi-
cally organized data. CGF 27, 3 (2008), 759–766. 4, 5, 15

[HVW09] HOLTEN D., VAN WIJK J. J.: Force-directed edge bundling for
graph visualization. CGF 28, 3 (2009), 983–990. 1, 4, 5, 7, 11, 12, 13, 16,
19, 20

[HvW10] HOLTEN D., VAN WIJK J. J.: Evaluation of cluster identification
performance for different PCP variants. CGF 29, 3 (2010), 793–802. 9

[Ins09] INSELBERG A.: Parallel Coordinates: Visual Multidimensional
Geometry and its Applications. Springer, 2009. 2, 9

[JGH11] JIA Y., GARLAND M., HART J. C.: Social network clustering
and visualization using hierarchical edge bundles. CGF 30, 8 (2011),
2314–2327. 4

[JMF99] JAIN A., MURTY M., FLYNN P.: Data clustering: a review. ACM
Comput Surv (CSUR) 31, 3 (1999), 264–323. 1, 3, 5

[Ken03] KEN S. H.: Metrics and Models in Software Quality Engineering.
Addison-Wesley, 2003. 19

[KKH89] KAMADA T., KAWAI S., HEHNER E.: An algorithm for drawing
general undirected graphs. Inform Process Lett 31, April (1989), 7–15. 12

[KL83] KRUSKAL J. B., LANDWEHR J. M.: Icicle plots: Better displays
for hierarchical clustering. JSTOR 37, 2 (1983), 162–168. 4

[Koe84] KOENDERINK J.: The structure of images. Biological Cybernetics
50 (1984), 363–370. 12

[Kos03] KOSCHKE R.: Software visualization in software maintenance,
reverse engineering, and re-engineering: a research survey. J Softw Maint
Evol: Research and Practice 15, 2 (2003), 87–109. 15

[KPAA10] KIM J., PALMISANO S. A., ASH A., ALLISON R. S.: Pilot
gaze and glideslope control. ACM Trans. Appl. Perception 7, 3 (2010). 17

[KPS14] KOBOUROV S., PUPYREV S., SAKET B.: Are crossings impor-
tant for drawing large graphs? In Proc. Graph Drawing (2014). 19

[KRDC97] KRYGIER J. B., REEVES C., DIBIASE D., CUPP J.: Multi-
media in geographic education: Design, implementation, and evaluation.
J. Geogr. Higher Educ. 21, 1 (1997), 17–39. 17

[KS10] KIENREICH W., SEIFERT C.: An application of edge bundling
techniques to the visualization of media analysis results. In Proc. IEEE
Information Visualisation (2010). 4

[KTD13] KARRAN B., TRÜMPER J., DÖLLNER J.: SyncTrace: Visual
thread-interplay analysis. In Proc. IEEE VISSOFT (2013). 10, 15

[KvdZT14] KLEIN T., VAN DER ZWAN M., TELEA A.: Dynamic multi-
scale visualization of flight data. In Proc. VISAPP (2014). 10, 12, 13, 15,
16

[LAM10] LAMBERT A., AUBER D., MELAN CON G.: Living flows: en-
hanced exploration of edge-bundled graphs based on GPU-intensive edge
rendering. In Proc. Information Visualisation (2010), IEEE, pp. 523–530.
14

[LBA10a] LAMBERT A., BOURQUI R., AUBER D.: 3D edge bundling
for geographical data visualization. In Proc. Information Visualisation
(2010), pp. 329–335. 4, 10, 17, 19

[LBA10b] LAMBERT A., BOURQUI R., AUBER D.: Winding roads: Rout-
ing edges into bundles. CGF 29, 3 (2010), 853–862. 1, 4, 5, 7, 10, 11, 13,
16, 17, 19

[LDB11] LAMBERT A., DUBOIS J., BOURQUI R.: Pathway preserving
representation of metabolic networks. CGF 30, 3 (2011), 1021–1030. 4,
6, 13

[LH11] LAMPE O. D., HAUSER H.: Interactive visualization of stream-
ing data with kernel density estimation. In Proc. IEEE PacificVis (2011),
pp. 171–178. 12

[LHT17] LHUILLIER A., HURTER C., TELEA A.: FFTEB: Edge bundling
of huge graphs by the Fast Fourier Transform. In Proc. IEEE PacificVis
(2017). 1, 2, 4, 9, 11, 12, 16, 19

[LKS∗11] LANDESBERGER T. V., KUIJPER A., SCHRECK T.,
KOHLHAMMER J., VAN WIJK J., FEKETE J. D., FELLNER D.:
Visual analysis of large graphs: State-of-the-art and future research
challenges. CGF 30, 6 (2011), 1719–1749. 1, 2, 3, 4

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

www.graphviz.org
gephi.org

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

[LLCM12] LUO S. J., LIU C. L., CHEN B. Y., MA K. L.: Ambiguity-
free edge-bundling for interactive graph visualization. IEEE TVCG 18, 5
(2012), 810–821. 4, 5, 14, 15, 19

[LPP∗06] LEE B., PLAISANT C., PARR C. S., FEKETE J.-D., HENRY N.:
Task taxonomy for graph visualization. In Proc. AVI BELIV (2006), ACM,
pp. 1–5. 2, 15

[MCMT14] MARTINS R., COIMBRA D., MINGHIM R., TELEA A.: Vi-
sual analysis of dimensionality reduction quality for parameterized pro-
jections. Computers & Graphics 41 (2014), 26–42. 1, 17, 18

[MD12] MCGEE F., DINGLIANA J.: An empirical study on the impact
of edge bundling on user comprehension of graphs. In Proc. ACM AVI
(2012), pp. 620–627. 19

[MHNW97] MILLER N., HETZLER B., NAKAMURA G., WHITNEY P.:
The need for metrics in visual information analysis. In Proc. ACM Work-
shop on New Paradigms in Information Visualization and Manipulation
(1997). 19

[MM08] MCDONNELL K., MUELLER K.: Illustrative parallel coordi-
nates. CGF 27, 3 (2008), 1031–1038. 1, 4, 9, 12, 17, 18

[MMT15] MARTINS R. M., MINGHIM1 R., TELEA A.: Explaining
neighborhood preservation for multidimensional projections. In Proc.
Computer Graphics & Visual Computing (CGVC) (2015), Eurographics.
17

[Mou15] MOURA D.: 3D density histograms for criteria-driven edge
bundling. arXiv:1504.02687v1 [cs.GR] (2015). 1, 4, 9, 11, 16, 19, 20

[MPG∗14] MÜHLBACHER T., PIRINGER H., GRATZL S., SEDLMAIR M.,
STREIT M.: Opening the black box: Strategies for increased user involve-
ment in existing algorithm implementations. IEEE TVCG 20, 12 (2014),
1643–1652. 18

[Mun14] MUNZNER T.: Visualization Analysis and Design. CRC Press,
2014. 4

[MVvW05] MOBERTS B., VILANOVA A., VAN WIJK J. J.: Evaluation
of fiber clustering methods for diffusion tensor imaging. In Proc. IEEE
Visualization (2005), p. 65âĂŞ72. 9

[MW02] MOUSTAFA R., WEGMAN E.: On some generalizations of par-
allel coordinate plots, seeing a million. In Proc. Data Visualization Work-
shop (2002). 9

[NB13] NOCAJ A., BRANDES U.: Stub bundling and confluent spirals for
geographic networks. In Proc. Graph Drawing (2013), Springer, pp. 388–
399. 4, 6

[NBD∗15] NOCKE T., BUSCHMANN S., DONGES J. F., MARWAN N.,
SCHULZ H.-J., TOMINSKI C.: Review: visual analytics of climate net-
works. Nonlin. Processes Geophys. 22 (2015), 545–570. 10

[NEH12] NGUYEN Q., EADES P., , HONG S.-H.: StreamEB: stream edge
bundling. In Proc. Graph Drawing (2012), pp. 324–332. 1, 4, 10, 11, 12,
19

[NEH13] NGUYEN Q., EADES P., HONG S.-H.: On the faithfulness of
graph visualizations. In Proc. IEEE PacificVis (2013). 2, 19

[NEH17] NGUYEN Q. H., EADES P., HONG S.-H.: Towards faithful
graph visualizations. arXiv:1701.00921v1 [cs.CG] (2017). 19

[New89] NEWBERY F.: Edge concentration: A method for clustering di-
rected graphs. ACM SIGSOFT Software Engineering Notes 14, 7 (1989),
76–85. 1, 3, 19

[NHE11] NGUYEN Q., HONG S.-H., EADES P.: TGI-EB: A new frame-
work for edge bundling integrating topology, geometry and importance.
In Proc. Graph Drawing (2011), Springer, pp. 123–135. 4, 5, 7, 10, 11,
12, 13, 19

[NPD16] NAGEL T., PIETSCH C., DÖRK M.: Staged analysis: From
evocative to comparative visualizations of urban mobility. In Proc. IEEE
Visualizaton (Arts Program) (2016), pp. 23–30. https://uclab.
fh-potsdam.de/cf. 2, 7

[PBO∗14] PALMAS G., BACHYNSKYI M., OULASVIRTA A., SEIDEL H.-
P., WEINKAUF T.: An edge-bundling layout for interactive parallel coor-
dinates. In Proc. IEEE PacificVis (2014), pp. 66–64. 1, 4, 9, 18

[PCJ95] PURCHASE H. C., COHEN R. F., JAMES M.: Validating graph
drawing aesthetics. In Proc. Graph Drawing (1995), pp. 221–232. 19

[PHT15] PEYSAKHOVICH V., HURTER C., TELEA A.: Attribute-driven
edge bundling for general graphs with applications in trail analysis. In
Proc. IEEE PacificVis (2015), pp. 39–46. 1, 2, 4, 9, 10, 11, 12, 15, 16, 17

[PNK10] PUPYREV S., NACHMANSON L., KAUFMANN M.: Improv-
ing layered graph layouts with edge bundling. In Proc. Graph Drawing
(2010), Springer, pp. 329–340. 4, 5, 11, 15, 19

[PT97] PIEGL L., TILLER W.: The NURBS Book. Springer, 1997. 2nd

edition. 9, 10, 11

[PVH∗03] POST F. H., VROLIJK B., HAUSER H., LARAMEE R. S.,
DOLEISCH H.: The state of the art in flow visualisation: Feature extraction
and tracking. CGF 22, 4 (2003), 775–792. 18

[PW16] PALMAS G., WEINKAUF T.: Space bundling for continuous par-
allel coordinates. In Proc. EuroVis (Short Papers) (2016). 1, 4, 9

[PXY∗05] PHAN D., XIAO L., YEH R., HANRAHAN P., WINOGRAD T.:
Flow map layout. In Proc. InfoVis (2005), pp. 219–224. 1, 2, 3, 4, 6, 10,
11, 19

[QZW06] QU H., ZHOU H., WU Y.: Controllable and progressive edge
clustering for large networks. In Proc. Graph Drawing (2006), Springer,
pp. 399–404. 4, 11

[RDLC12] RICHE N. H., DWYER T., LEE B., CARPENDALE S.: Explor-
ing the design space of interactive link curvature in network diagrams. In
Proc. ACM AVI (2012), pp. 506–513. 14

[RFFT17] RAUBER P. E., FADEL S., FALCAO A., TELEA A.: Visualizing
the hidden activity of artificial neural networks. IEEE TVCG 23, 1 (2017),
101–110. 1, 18

[RRAS08] ROYER L., REIMANN M., ANDREOPOULOS B., SCHROEDER
M.: Unraveling protein networks with power graph analysis. PLOS Com-
putational Biology 4, 7 (2008), 1–17. 6

[RVET14] RENIERS D., VOINEA L., ERSOY O., TELEA A.: The Solid*
toolset for software visual analytics of program structure and metrics com-
prehension: From research prototype to product. Science of Computer
Programming 79 (2014), 224–240. 4, 5, 6, 7, 10, 12, 14, 15

[RVT11] RENIERS D., VOINEA L., TELEA A.: Visual exploration of pro-
gram structure, dependencies and metrics with SolidSX. In Proc. IEEE
VISSOFT (2011). 5, 12

[Sch07] SCHAEFFER S.: Survey: Graph clustering. Computer Science Re-
view 1, 1 (2007), 27–64. 3, 5

[Set02] SETHIAN J.: Level Set Methods and Fast Marching Methods. Cam-
bridge Univ. Press, 2002. 11

[SFPY07] SUN J., FALOUTSOS C., PAPADIMITRIOU S., YU P.: Graph-
scope: parameter-free mining of large time-evolving graphs. In Proc. ACM
KDD (2007), pp. 687–696. 7

[SH13] SCHULZ H.-J., HURTER C.: Grooming the hairball-how to tidy
up network visualizations? In Proc. IEEE InfoVis (tutorials) (2013). 1, 2

[SHH11] SELASSIE D., HELLER B., HEER J.: Divided edge bundling for
directional network data. IEEE TVCG 19, 12 (2011), 754–763. 1, 4, 6, 10,
11, 12, 15, 16, 19

[Shn96] SHNEIDERMAN B.: The eyes have it: A task by data type tax-
onomy for information visualizations. In Proc. IEEE Symp. on Visual
Languages (1996), pp. 336–343. 14

[SHVDWVW16] SCHEEPENS R., HURTER C., VAN DE WETERING H.,
VAN WIJK J. J.: Visualization, selection, and analysis of traffic flows.
IEEE TVCG 22, 1 (2016), 379–388. 9, 10, 16

[SL87] SIMON H. A., LARKIN J. H.: Why a diagram is (sometimes) worth
ten thousand words. Cognitive Science 11 (1987), 65–100. 17, 19

[SP09] SIDDIQI K., PIZER S.: Medial Representations: Mathematics, Al-
gorithms and Applications. Springer, 2009. 1, 9

[STT81] SUGIYAMA K., TAGAWA S., TODA M.: Methods for visual un-
derstanding of hierarchical system structures. IEEE Trans Sys Man Cyber
11, 2 (1981), 109–125. 3, 5

[SVPM14] SORZANO C., VARGAS J., PASCUAL-MONTANO A.: A sur-
vey of dimensionality reduction techniques, 2014. arxiv.org/pdf/
1403.2877. 17

[SvW08] SHRINIVASAN Y. B., VAN WIJK J. J.: Supporting the analytical
reasoning process in information visualization. In Proc. ACM CHI (2008),
pp. 1237–1246. 20

[SvW09] SHRINIVASAN Y. B., VAN WIJK J. J.: Supporting exploration
awareness in information visualization. IEEE Computer Graphics and
Applications 29, 5 (2009), 34–43. 20

[SWvdW∗11] SCHEEPENS R., WILLEMS N., VAN DE WETERING H.,
ANDRIENKO G., ANDRIENKO N., VAN WIJK J. J.: Composite density
maps for multivariate trajectories. IEEE TVCG 17, 12 (2011), 2518–2527.
2, 9, 10, 12, 16

[SWvdWvW11] SCHEEPENS R., WILLEMS N., VAN DE WETERING H.,
VAN WIJK J. J.: Interactive visualization of multivariate trajectory data
with density maps. In Proc. IEEE PacificVis (2011), pp. 147–154. 12, 16

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

https://uclab.fh-potsdam.de/cf
https://uclab.fh-potsdam.de/cf
arxiv.org/pdf/1403.2877
arxiv.org/pdf/1403.2877

A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

[Sze10] SZELISKI R.: Computer Vision: Algorithms and Applications.
Springer, 2010. 3

[T∗17] TU S., ET AL.: The Protégé ontology editor, 2017. http://
protege.stanford.edu. 19

[TA08] TELEA A., AUBER D.: Code flows: Visualizing structural evolu-
tion of source code. CGF 3, 27 (2008), 831–838. 4, 5, 9, 15

[TAvHS06] TOMINSKI C., ABELLO J., VAN HAM F., SCHUMANN H.:
Fisheye tree views and lenses for graph visualization. In Proc. Information
Visualisation (2006), pp. 202–210. 4, 14

[TBET99] TOLLIS I., BATTISTA G. D., EADES P., TAMASSIA R.: Graph
drawing: Algorithms for the visualization of graphs. Prentice Hall, 1999.
2, 5

[TDT13] TRÜMPER J., DÖLLNER J., TELEA A.: Multiscale visual com-
parison of execution traces. In Proc. IEEE ICPC (2013). 4, 5, 10, 13,
15

[TE10] TELEA A., ERSOY O.: Image-based edge bundles: Simplified vi-
sualization of large graphs. CGF 29, 3 (2010), 543–551. 1, 2, 4, 5, 10, 12,
14, 17

[TEHR09] TELEA A., ERSOY O., HOOGENDORP H., RENIERS D.: Com-
parison of node-link and hierarchical edge bundling layouts: A user study.
In Dagstuhl Seminar Proceedings 09211 (2009). 15, 19

[Tel15] TELEA A.: Data Visualization: Principles and Practice. CRC
Press, 2015. 2nd edition. 9, 15, 18

[Tob81] TOBLER W.: Depicting federal fiscal transfers. The Professional
Geographer 33, 4 (1981), 419–422. 6

[TP15] THÖNY M., PAJAROLA R.: Vector map constrained path bundling
in 3D environments. In Proceedings of the 6th ACM SIGSPATIAL Inter-
national Workshop on GeoStreaming (2015), ACM, pp. 33–42. 9, 16, 17

[Tuf92] TUFTE E. R.: The Visual Display of Quantitative Information.
Graphics Press, 1992. 1, 3, 6, 19, 20

[TvW99] TELEA A., VAN WIJK J. J.: Simplified representation of vector
fields. In Proc. IEEE Visualization (1999), pp. 35–42. 18

[TvW02] TELEA A., VAN WIJK J. J.: An augmented fast marching
method for computing skeletons and centerlines. In Proc. VisSym (2002),
pp. 251–259. 11

[TWHW07] TSAI A., WESTIN C.-F., HERO A. O., WILLSKY A. S.:
Fiber tract clustering on manifolds with dual rooted-graphs. In Proc. IEEE
CVPR (2007). 9

[TWK∗10] TATLER B., WADE N., KWAN H., FINDLAY J., VELI-
CHOVSKY B.: Yarbus, eye movements, and vision. i-Perception 1 (2010),
7–27. 17, 19

[VBS11] VERBEEK K., BUCHIN K., SPECKMANN B.: Flow map layout
via spiral trees. IEEE TVCG 17, 12 (2011), 2536–2544. 4, 6, 10, 11

[vdMH08] VAN DER MAATEN L., HINTON G.: Visualizing data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605. 18

[vdZCT16] VAN DER ZWAN M., CODREANU V., TELEA A.: CUBu: Uni-
versal real-time bundling for large graphs. IEEE TVCG 22, 12 (2016),
2550–2563. 1, 2, 4, 9, 11, 12, 13, 16, 17, 19, 20

[vHP09] VAN HAM F., PERER A.: Search, show context, expand on de-
mand: Supporting large graph exploration with degree-of-interest. IEEE
TVCG 15, 6 (2009), 953–960. 4

[vHW08] VAN HAM F., WATTENBERG M.: Centrality based visualization
of small world graphs. Computers & Graphics 27, 3 (2008), 975–982. 10

[vLdL03] VAN LIERE R., DE LEEUW W.: GraphSplatting: Visualizing
graphs as continuous fields. IEEE TVCG 9, 2 (2003), 206–212. 12

[VT14] VOINEA L., TELEA A.: Visual clone analysis with SolidSDD. In
Proc. IEEE VISSOFT (2014). 15

[vW02] VAN WIJK J. J.: Image based flow visualization. Proc. ACM TOG
(SIGGRAPH) 21, 3 (2002), 745–754. 13

[VWvdW99] VAN WIJK J. J., VAN DE WETERING H.: Cushion treemaps:
Visualization of hierarchical information. In Proc. IEEE InfoVis (1999),
pp. 73–82. 12

[WC07] WONG N., CARPENDALE S.: Supporting interactive graph ex-
ploration using edge plucking. In Proc. SPIE (2007), pp. 235–246. 4,
14

[WCG03] WONG N., CARPENDALE S., GREENBERG S.: EdgeLens: an
interactive method for managing edge congestion in graphs. In Proc. IEEE
InfoVis (2003), pp. 51–58. 2, 4

[WDS10] WOOD J., DYKES J., SLINGSBY A.: Visualisation of origins,
destinations and flows with od maps. The Cartographic Journal 47, 2
(2010), 117–129. 6

[WF94] WASSERMAN S., FAUST K.: Social network analysis: Methods
and applications. Cambridge University Press, 1994. 10

[WHS90] WISE J. A., HOPKIN V. D., SMITH M. L.: Automation and sys-
tems issues in air traffic control. In Proc. NATO Advanced Study Institute
on Automation and Systems (1990), Springer. 16

[WL07] WETTEL R., LANZA M.: Program comprehension through soft-
ware habitability. In Proc. IEEE ICPC (2007). 7, 11, 15

[Wol07] WOLFF A.: Drawing subway maps: A survey. Computer Science
– Research and Development 22, 1 (2007), 23–44. 6

[WPCM02] WARE C., PURCHASE H., COLPOYS L., MCGILL M.: Cog-
nitive measurements of graph aesthetics. Information Visualization 1
(2002), 103–110. 19

[WYY15] WU J., YU L., YU H.: Texture-based edge bundling: A web-
based approach for interactively visualizing large graphs. In Proc. IEEE
Big Data (2015), pp. 1230–1237. 9

[YDGM17] YANG Y., DWYER T., GOODWIN S., MARRIOTT K.: Many-
to-many geographically-embedded flow visualisation: An evaluation.
IEEE TVCG 23, 1 (2017), 411–420. 6

[YMSJ06] YI J., MELTON R., STASKO J., JACKO J.: Dust & magnet:
Multivariate information visualization using a magnet metaphor. Informa-
tion Visualization 4, 4 (2006), 542–551. 13

[YWSC12] YU H., WANG C., SHENE C.-K., CHEN J. H.: Hierarchical
streamline bundles. IEEE TVCG 18, 8 (2012), 1353–1365. 1, 3, 4, 9, 18

[ZWHK16] ZIELASKO D., WEYERS B., HENTSCHEL B., KUHLEN
T. W.: Interactive 3D force-directed edge bundling. CGF 35, 3 (2016),
51–60. 7, 10, 11

[ZXYQ13] ZHOU H., XU P., YUAN X., QU H.: Edge bundling in in-
formation visualization. Tsinghua Science and Technology 18, 2 (2013),
145–156. 1, 2, 4

[ZYC∗08] ZHOU H., YUAN X., CUI W., QU H., CHEN B.: Energy-based
hierarchical edge clustering of graphs. In Proc. IEEE PacificVis (2008),
pp. 55–61. 15

[ZYQ∗08] ZHOU H., YUAN X., QU H., CUI W., CHEN B.: Visual clus-
tering in parallel coordinates. CGF 27, 3 (2008), 1047–1054. 4, 9, 18

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://protege.stanford.edu
http://protege.stanford.edu

