
Eurographics Conference on Visualization (EuroVis) 2019
M. Gleicher, H. Leitte, and I. Viola
(Guest Editors)

Volume 38 (2019), Number 3

Route-Aware Edge Bundling for Visualizing Origin-Destination
Trails in Urban Traffic

W. Zeng1 , Q. Shen2†, Y. Jiang2, A. Telea3

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
2The Hong Kong University of Science and Technology, Hong Kong, China

3University of Groningen, the Netherlands

Abstract
Origin-destination (OD) trails describe movements across space. Typical visualizations thereof use either straight lines or plot the
actual trajectories. To reduce clutter inherent to visualizing large OD datasets, bundling methods can be used. Yet, bundling OD
trails in urban traffic data remains challenging. Two specific reasons hereof are the constraints implied by the underlying road
network and the difficulty of finding good bundling settings. To cope with these issues, we propose a new approach called Route
Aware Edge Bundling (RAEB). To handle road constraints, we first generate a hierarchical model of the road-and-trajectory
data. Next, we derive optimal bundling parameters, including kernel size and number of iterations, for a user-selected level of
detail of this model, thereby allowing users to explicitly trade off simplification vs accuracy. We demonstrate the added value of
RAEB compared to state-of-the-art trail bundling methods on both synthetic and real-world traffic data for tasks that include the
preservation of road network topology and the support of multiscale exploration.

CCS Concepts
•Human-centered computing → Graph drawings; Geographic visualization;

1. Introduction

Movement can be defined as change of an object’s position or ge-
ometric attributes over time [DWL08]. For a specific time period,
the movement of an object can be modeled with an origin (O), a
destination (D), and consecutive positions (trail) in-between. Due to
fast development of location sensing technologies, massive amounts
of OD trails, such as vessel movements and taxi trips, have been
collected. Studies of OD trail data have revealed many movement
patterns and contributed to many applications, e.g., transportation
planning [WHB∗12, SWvdW∗12, SHvdW∗16].

Visualizing OD trails is a hot and challenging topic. Conventional
methods that connect origins to destinations with lines, or else plot
the actual trails, can easily cause visual clutter. To tackle this prob-
lem, trails can be aggregated into flows. Several such techniques have
emerged, such as intelligent routing layouts [PXYH05, VBS11] and
spatial mapping [AA11,GZ14]. Such methods can reveal overall traf-
fic patterns to answer questions such as: What are popular roads in a
city? Where do people come from and head to? Yet, many such meth-
ods ignore information of individual OD trails, such as the interplay
of trail parameters like trail length, flow (number of vehicles) along a
trail, and how trails correspond to roads having given importances
in a city (e.g, highways or secondary roads). Another limitation is
that high-level aggregation does not allow one to follow individual
trails. While, formally speaking, aggregation will result in the latter

† Q. Shen is the corresponding author. E-mail: qshen@ust.hk

problem, in certain scenarios, e.g., finding abnormal movements, ad-
ditional analytics are required to complement such visualizations to
enable users to follow, at least partially, individual trails.

A particular class of methods produce simplified views of large
trail datasets by grouping trails into bundles. Simply put, bundling
aims to strike a balance between aggregation (to yield a simplified
view) and details (to enable one to follow, at least partially, individual
trails) [LHT17b]. Many bundling methods exist, such as force-based
[HvW09, SHH11], image-based [HET12, LHT17a], and geometry-
based [Hol06,CZQ∗08]. Most such methods however do not consider
spatial constraints on the emerging bundles. In a city, objects move
along roads, and events of interest like traffic jams and accidents also
happen along roads. Hence, incorporating such spatial constraints in
the bundling is of crucial importance. Simply put, if urban OD trails
follow roads, so should also the simplified bundles do.

We address the above issues by proposing a new Route-Aware
Edge Bundling (RAEB) method. Our contributions are as follows:

• RAEB extends a state-of-the-art generic bundling method
(KDEEB [HET12]), well known for its speed and simplicity, to
incorporate specific constraints of urban OD trails. To our knowl-
edge, this is the first adaptation of bundling that accounts for
spatial trail constraints, a task that is prominently listed on the
open research agenda for bundling research [LHT17b].

• RAEB also allows one to select how to trade off simplification (how
much to bundle) vs accuracy (how much to respect the underlying
road network). To our knowledge, no bundling method offers a
similar explicit trade-off, or even discusses it;

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

• RAEB addresses in a principled, and automatic, way the so far
not studied problem of selecting suitable parameters for KDEEB
such as kernel radius and number of iterations, thereby making
bundling simpler to use.

Experiments on synthetic and real-world urban traffic data show
that RAEB generates more realistic, and closer to ground-truth results,
than KDEEB, but preserves KDEEB’s simplicity and scalability.

This paper is structured as follows. Section 2 presents related
work on (constrained) OD trail bundling. Section 3 outlines the
main limitations of state-of-the-art (KDEEB-like) bundling methods
for our problem context. Section 4 details the OD trail analysis
we perform to support our constrained bundling. Sections 5 and 6
introduce RAEB. Section 7 shows results of RAEB on synthetic
and real-world urban trail datasets. Section 8 discusses our proposal.
Finally, Section 9 concludes the paper.

2. Related Work

We group related work in five categories: Urban traffic visual analyt-
ics (discussing general methods to visually analyze urban traffic data);
OD trails visualization (discussing more specific methods to visual-
ize OD trails); map matching (discussing how recorded vehicle trails
can be constrained to a ‘ground truth’ road network); trail bundling
(introducing techniques related to bundling, which is the approach we
choose for urban traffic visualization in our work); and constrained
bundling (which refines the earlier point in discussing how bundling
techniques can use extra data to constrain their outputs).

Urban Traffic Visual Analytics: Many visual analytics tools have
been developed to explore urban traffic data and to understand
urban dynamics and human activities, aiming to enhance traffic
management and assessment. Systematic reviews are presented in
[CGW15, AAC∗17]. Specific techniques to study OD urban traf-
fic trails include advanced indexing methods [FPV∗13, ZFMA∗16]
and new interaction models [KTW∗13, ZFMA∗16]) aiming to help
movement queries. After filtering OD trails, such techniques are typi-
cally complemented with statistical analysis supported by statistical
graphics. Typical methods in this class use a traffic density map atop
the road network. Figure 1(a) shows an example for a Manhattan
taxi-trips dataset. This method naturally renders traffic data where it
occurs (on the road network) [KSBE18], which is not the case with
bundling methods (discussed next below). Yet, density maps do not
offer a simple-to-use way to explore data in a multiscale way. That
is, there is no automated way to ‘gather’ the traffic data and render it
on fewer roads, for instance, if one needs a simplified visualization.

OD Trails Visualization: Urban movement data, such as taxi trips
and mobile phone traces, is commonly modeled as OD trails con-
taining information of origin, destination, and optionally in-between
locations. The many existing OD visualization techniques can be
categorized into matrix-based and trail-based. Matrix-based tech-
niques show ODs as an adjacency matrix, with cell colors show-
ing flow magnitudes between OD pairs. Sorting rows and columns
can reveal cluster patterns [WF09]. However, matrix techniques
cannot show actual spatial data (in-between locations). To address
this, OD maps [WDS10] divide a traditional OD matrix into two
layers showing origins and destinations, respectively. Trail-based
techniques intuitively show the trail spatial data using node-link
metaphors. Several such methods are also known under the name

(a) Map Matching (d) Vector Map(b) KDEEB (c) KDEEB

Figure 1: Methods for visualizing urban-traffic OD trails: (a) den-
sity maps; (b,c) KDEEB bundles colored by density and direction,
respectively; (d) vector maps. See Sec. 2.

flow-based methods [PXYH05]. However, we prefer the term trail-
based methods, since flow is more commonly associated with using
vector and tensor field methods to aggregate and visualize geospa-
tial movement [FKSS13, KJW∗18]. Trail-based methods face visual
scalability issues, as clutter and excessive edge crossings or over-
draw appear for even moderate-size trail sets. To mitigate this, trails
can be spatially aggregated by graph partitioning [GZ14], density-
based clustering [vLBR∗16, WvdWvW09], continuous flow map
layouts [PXYH05], and composite layouts [CKS∗16]. While both
matrix-based and trail-based methods perform well in reducing clut-
ter, information of individual OD trails is not preserved. This may
cause analysis problems when exploring urban traffic data – for exam-
ple, an abnormal suspect movement to a remote place can be grouped
together with normal trip trails.

Map Matching: Huge amounts of position data are available these
days, benefiting many applications such as traffic analysis and man-
agement. Yet, measurement errors caused by location-sensing devices
and sampling uncertainty introduced by the devices’ sampling rates
can yield imprecise vehicle positions. Map matching addresses such
errors by aligning vehicle positions with road network data, based
on the assumption that a vehicle is constrained to move along a
finite, given, road network [QON07]. For OD traffic data, graph
theoretic methods that use spatial metrics such as distances to, and
intersection angles of, the road network, can be applied to perform
map maching. For traffic data consisting of origins, destinations, and
in-between recorded positions, map matching approaches exist that
take the entire trail (sequence of positions) into account, or alterna-
tively use faster iterative methods that only consider parts of such
sequences [BPSW05]. However, all map-macthing methods will in-
troduce errors into the matched data. Krüger et al. [KSBE18] propose
an interactive interface for visually examining errors and their effects.

The first step of map matching is to find a list of candidate nodes
on the road network that are within a certain radius of each recorded
trail position. For a given radius, dense road networks can return
many candidate nodes and thus generate more accurate map matches
[Qud06]. Simplifying a given road network to next map trails to main
roads only will cause undesirable errors. Our method ‘blends’ map
matching advantages (first, constraining trails to routes, within user-
specified simplification bounds of the road network) with bundling

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

advantages (creating smoothed trails that are easy to visually follow
end-to-end [LHT17b]).

Trail Bundling: A different trade-off between clutter reduction vs
showing individual trails is proposed by trail or edge bundling meth-
ods. These methods group spatially close, and optionally data-related,
edges in a graph drawing or arbitrary 2D or 3D trails (curves).
Edge bundling and trail bundling are closely related [LHT17b],
so we next refer to them both as bundling. Following recent sur-
veys [ZXYQ13,LHT17b], bundling methods can be grouped in three
classes: geometry-based, force-based, and image-based, as follows.
Geometry-based methods cluster trails using a skeleton-like control
mesh that specifies how similar edges are routed. Such methods differ
mainly in how they construct control meshes, e.g., using hierarchical
graph drawing [Hol06], triangulation [ZYC∗08, LBA10b], complex
polygons [CZQ∗08], and functional decomposition [HPNT18]. Con-
trol meshes make geometry-based methods flexible. Yet, building
such control structures can be (very) slow for large trail sets. Force-
based methods remove the need to compute an explicit control struc-
ture by modeling interaction between spatially close trails as a force
field [HvW09]. While conceptually simpler than geometry-based
methods, force-based methods still are expensive – they cannot treat
more than a few thousand trails at interactive rates. Image-based
techniques take both the control structure idea of geometry-based
methods (e.g., skeletons [EHP∗11]) and the field model of force-
based methods to scalable levels by implementing them via image
processing on the GPU. Current state-of-the-art bundling methods
fall into this class. These use the gradient of the kernel density estima-
tion (KDE) of the trail set as bundling force field (KDEEB [HET12],
CUBu [vdZCT16], FFTEB [LHT17a]), and can bundle millions of
trails at interactive rates. Figures 1(b) and (c) show KDEEB bundling
of the Manhattand taxi trip dataset with bundles colored to show
density, respectively directions. While such results show a strong
simplification as compared to the original density map (Fig. 1(a)),
bundles largely ignore the road structure, which is not desirable.

Constrained Bundling: Specialized methods have been proposed
to bundle data with specific spatial constraints. These include
minimizing ambiguities in visually following O-to-D connections
[LLCM12, BRH∗17]; separating trails having different directions
[SHH11, PHT15]; and bundling specific types of data such as paths
constrained to a 3D curved surface [LBA10a] and connection paths
in the human brain [BSL∗14, YSD∗17, HPNT18]. Closely related to
our scope, KDEEB [HET12] presents an experiment where bundles
are repelled by so-called obstacles by a force field equal to the ob-
stacles’ distance transform gradient. While this idea makes bundles
avoid simple-shaped spatial obstacles, it cannot be readily used to
constrain bundles to follow spatial sites like roads. At the other end
of the spectrum, vector maps [TP15] use road networks as control
skeletons for B-spline-based trail bundling. This method can effec-
tively route bundles to avoid 3D landscape-like obstacles, but offers
only marginal simplification when bundling urban traffic trails on
dense road networks. Figure 1(d) shows a vector map for the Man-
hattan taxi trip dataset. The result is very close to the original density
map (Fig. 1(a)), and quite far from the high simplification produced
by KDEEB-type methods (Figs. 1(b,c)). Simply put, for dense road
networks, vector maps simplify too little, since they aim to obey the
roads too much; at the other extreme, KDEEB-like methods simplify
too much, as they ignore such road constraints. We show next how
we can strike the desired balance between these two extremes.

3. Problem Statement and Solution Overview

We want to use bundling to simplify urban trails. Since KDEEB
is one of the state-of-the-art existing bundling methods (Sec. 2),
we propose to extend and adapt it to our specific goal. We next
introduce KDEEB (Sec. 3.1), outline its main limitations for urban
trail bundling (Sec. 3.2), and finally outline our proposal (Sec. 3.3).

(d) pr = 20(c) pr = 40(b) pr = 80(a) pr = 120

One Bundle
Two Bundles

Multiple Bundles
More Bundles

Figure 2: KDEEB applied to Manhattan taxi trips with different
kernel sizes pr: (a) 120, (b) 80, (c) 40, and (d) 20. See Sec. 3.2.

3.1. KDEEB Algorithm

KDEEB bundles arbitrary trails (2D curves) in four steps [HET12]:
sampling, density gradient estimation, advection, and smoothing.
KDEEB starts with a set of trails ei. Each such trail ei is first uni-
formly sampled into a sequence of (roughly) equally-spaced points
xi

1, . . . ,x
i
n, given a user-supplied sampling step σ . Next, a density

map ρ : R2→ R+ is computed from the set of all sampling points of
all trails D = {xi

j} as

ρ(x ∈ R2) = ∑
y∈D

K
(
‖x−y‖

pr

)
(1)

where K is a 1D Epanechnikov (parabolic) kernel of radius pr. Next,
each sample point x ∈ D is advected to a new position x′ in the
normalized gradient of ρ by

x′ = x+ pr
∇ρ

||∇ρ||
. (2)

Finally, the sampled trails are smoothed by Laplacian filtering to
remove jitters created by the discrete advection (Eqn. 2). To generate
tight bundles, all above steps are repeated pn times, while decreasing
the kernel radius pr by a fixed decay ratio λ ∈ [0.5,0.9] at each
iteration to ensure convergence.

3.2. Problem Identification

We identify the following problems when applying KDEEB to bundle
road-constrained trails.

Road neglect (P1): Urban OD trails follow roads, so bundles should
also respect roads as much as possible (Sec. 2). KDEEB, but also
most if not all other bundling methods, are not designed with such
constraints in mind, so they produce bundles that are far away from,
or cutting across, the road structure, especially at coarse scales (see
e.g. Fig. 2 and Sec. 7.1 further). This makes the bundled visualization

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

Raw Road
Network

Simplified
Road Network

Preprocessing

Raw Urban
Traffic

OD Trails on
Road Network

Hierarchical
Route Structure

Abstract
OD Trails

Map
Matching

Route Awareness

Sampled
Edges

Smooth
Bundles

Frechet
Distance

Previous
Image

Bundled
Graph

Current
Image

Gradient
Map

Density
Mapkernel

size
splat

gradient
estimate

edge
advect

smooth

save

Mutual
Information

Final
Image

Stop?
Yes

No

Bundling Evaluation

Figure 3: Overview of RAEB pipeline. RAEB consists of three phases: Preprocessing creates an initial control structure; bundling does the
actual trail grouping; and evaluation determines when to stop bundling. See Sec. 3.3.

less useful since it is hard to mentally map the original OD trails to
the shown bundles.

Multiscale exploration (P2): KDE-type methods use the kernel ra-
dius pr to control the creation of multiscale bundles. Small pr values
preserve more trail details, but fail showing the trail-set’s overall
structure; large pr values strongly simplify, but deform the bundled
trails too much. We show this next for the Manhattan taxi dataset.
Following [vdZCT16, HET12], we set pr to 5% of the drawing size
(720×1440 pixels) to obtain pr = 80 pixels (Fig. 2(b)). Clearly, this
setting deforms the trail set too much. Smaller pr values yield more
locally-detailed bundles (Figs. 2(c,d)) but low simplification. The
question is, thus, how to choose a good pr value. An extra problem is
that road networks and road-traffic density vary spatially, and urban
maps can have arbitrarily complex shapes (see also the Shenzhen taxi
data in Sec. 7.3). Hence, how to set pr to obtain the desired balance
between simplification and road following?

Quality control (P3): Image- and force-based bundling methods
work iteratively. Different methods recommend different numbers
of iterations pn, e.g., 10 for KDEEB [HET12] and 15 for CUBu
[vdZCT16]. However, pn is related to how the initial KDE radius
pr is decreased over time and also to other parameters such as the
sampling step σ [vdZCT16]. We need a better understanding of these
processes to guarantee the quality of the desired bundles. Separately,
since bundling deforms our spatial trails, we would like to have an
objective measure to capture the amount of deformation.

3.3. RAEB Overview

To alleviate the problems P1, P2, and P3 outlined above, we propose
Route-Aware Edge Bundling (RAEB). The RAEB pipeline has three
main parts (Fig. 3), as follows.

Preprocessing (Sec. 4): We first build a simplified hierarchical road-
and-traffic network representation from the input data using a map
matching algorithm. This let us specify a bundling level-of-detail
based on a route awareness user parameter and also to suitably and
automatically set the kernel size pr.

Bundling (Sec. 5): We apply KDEEB to the hierarchical structure
computed in preprocessing. We do not set a ‘hard’ maximal iteration
count pn, but automatically stop bundling based on a new bundling
stability metric that measures the normalized mutual information
between two consecutive bundling moments.

Evaluation (Sec. 6): We evaluate both the aforementioned bundling
stability metric (to determine when to stop bundling), and also a
quality metric that measures the difference between the bundling
result and the underlying road network (to determine the overall
quality of the produced result).

4. Preprocessing

We next explain the kind of input data that our method works on
(Sec. 4.1) and how the data is preprocessed prior to actually perform-
ing the bundling (Sec. 4.2).

4.1. Basic Traffic Concepts

Road network: RAEB takes as its first input a graph G = (V,E)
that stores the topology and spatial layout of a road network. Graph
vertices V denote points along roads, and edges E denote road
segments connecting these points. Let deg(v) be the degree of
(number of edges connected to) a vertex v ∈V . We classify v as an
endpoint if deg(v) = 1; a road midpoint if deg(v) = 2, or a crossroad,
if deg(v) > 2, respectively. Let V ′ be the union of endpoints and
crossroads in V . Let a route r = (v1, . . . ,vn) be a sequence of n
consecutive vertices where v1 and vn are endpoints or crossroads
in V ′, while all other vi are midpoints from V . We next use the
simplified graph G′ = (V ′,E ′) in all our computations instead of G.
For simplicity, we next denote G′ as G.

Urban traffic: RAEB’s second input is a raw urban traffic dataset,
which can have one of the following two forms:

• UT-1: Origin xo and destination xd locations only, such as the
New York taxi trips [FPV∗13] and Singapore public transportation
rides [ZFMA∗16] datasets.

• UT-2: A sequence of GPS positions, see e.g. the Stuttgart scooter
[KTW∗13] and Hangzhou taxi trips [WCW∗14] datasets.

Both above data types can be seen as a set of 2D trails D = {ei}
(following notations in Sec. 3.1). UT-1 trails are lines e = (xo,xd);
UT-2 trails are n-point polylines e = (xo, . . . ,xd), respectively.

We next use G and D to compute a simplified, hierarchical, model
of urban traffic, in three steps – map matching (Sec. 4.2), hierarchical
road structure construction (Sec. 4.3), and trail abstraction (Sec. 4.4).

4.2. Map Matching

We first constrain raw movements to the underlying road network, i.e.,
map D to G. We need this for two reasons: First, recorded locations
in D have errors due to imprecise GPS localization, while vertex
locations V in the road network are precise. Secondly, D is typically
much more complex than G: For example, the New York traffic
data [NYC] has millions of taxi trips (trails) per day, resulting in tens
of millions of locations in D; yet, the corresponding simplified road
network has under 100K routes.

Many map matching methods exist, e.g., shortest paths, minimum
turns, and ST-matching [LZZ∗09] for GPS traces. Here, we employ
the following matching methods:

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

UT-1 trails: Given such a trail e = (xo,xd), we first find closest
vertices vo and vd in V for xo and xd , respectively. Next, we find
the shortest path in G between vo and vd . Shortest paths can store
pre-computed paths to further accelerate computation. Though the
algorithm may not find a unique ‘true’ trajectory, it gives a good
estimation for a large dataset [Som14], as the NYC taxi (see next
Sec. 7.2). Importantly, we do not aim (or claim) to be able to do
better than existing methods in estinmating actual vehicle paths. This
is a hard problem in itself, as explained in [Som14]. Rather, our goal
is that, for a given dataset, we aim to produce a simplification that
balances well between ground-truth (information present in the raw
data) and visual complexity (ease to read the final visualization).

UT-2 trails: Given a trail e= (xo, . . . ,xd), we use the ST-matching al-
gorithm, which considers not only spatial properties of road network,
but also temporal constraints [KSBE18]. This method is preferable
for sparse GPS traces, such as the Shenzhen taxi data (Sec. 7.3).

For each raw trail e ∈ D, both above methods return a sequence of
one or more routes (r1, . . . ,rn) with ri ∈ E. We next replace the raw
trail e by the trail (xo,r1, . . . ,rn,xd), i.e., essentially ‘snap’ the raw
trails to routes in the map. This way, all trails next use only (accurate)
map locations in V .

4.3. Hierarchical Route Structure Construction

To compute a simplified visualization of urban data, we need to
define how elements (trails, routes) should be aggregated. To this
end, we compute the importance of a route and its trails assigned by
map matching, and next simplify to keep only the most important
items. A route’s importance should capture both the route’s geometry
and its traffic. Indeed: If we used only route geometry, we may
inadvertently merge important traffic flows that run on spatially close
or otherwise similar routes. Conversely, if we used only traffic data,
we would inadvertently merge flows that correspond to different
routes, like in standard bundling. We define a route’s importance by
the following attributes:

Route length (len(r)): Longer routes are arguably more important,
thus should appear more saliently in a simplified traffic visualization.
A first argument to this end is that, if we want to simplify such a
visualization, then shorter routes (which take less visual space to
display) are a first candidate for elimination. This design is used
by many route visualizations that show, at a coarse level, only the
longest routes on a given map. A second argument relates to our
usage of bundling: Prior work has shown that bundling too many
short trails creates a high amount of clutter [HvW09, vdZCT16]. In
other words, if we aim to use bundling as a simplification technique,
then we should reduce the number of (too) short trails that get
bundled. Of course, certain short routes can be very important
and should not be simplified away. The road hierarchy and flow
magnitude parameters (discussed next) take care of this. Technically,
we compute a route’s length len(r) as the sum of its segment lengths
‖ri‖, normalized by the length of the longest route in V .

Road hierarchy (hier(r)): Urban roads are typically hierarchical,
e.g., freeways, arterials, collectors, and local roads [WCW∗14];
or trunk, primary, secondary, and tertiary [OSM]. Higher levels
indicate faster traffic speed and less access to residential properties,
and are more important to keep in a simplified visualization than less
important levels. We quantify a route’s importance on a four-level

ordinal scale (Tab. 1).

Category OSM indicator Score hier(r)
Expressway motorway, trunk 1
Trunk road primary, motorway_link 0.75

Secondary road secondary, tertiary 0.5
Branch road unclassified, residential 0.25

Table 1: Hierarchy scores for corresponding route types and repre-
sentative OSM indicators.

Flow magnitude (f low(r)). While len(r) and hier(r) measure the
importance of a route in the road network, measuring how important
a route is to actual traffic is also needed. For this, we consider a
route’s flow, i.e., how many trails in D pass through r, normalized to
the highest flow value over D.

We compute the importance of a route as I(r) = wlenlen(r) +
whierhier(r) + w f low f low(r). We experimentally found that the
weights wlen = 0.3, whier = 0.1, and w f low = 0.6 yield a good bal-
ance between the three types of a route’s importance when bundling
urban trails, with flow being highlighted most. The underlying as-
sumption here is that we want to keep high-flow routes salient in our
bundled (simplified) visualizations. If one desires to emphasize other
route aspects, e.g., length, weights can be easily modified to this end.
Next, we sort all routes r descendingly on I(r) and group them into N
nested hierarchical levels Rk, 1≤ k ≤ N. In practice, we used N = 5
levels, each containing the top 5%, 10%, 20%, 40%, and 100% most
important routes.

xO

xOxO

r1
r2

r3

r4 r5 r6

xd

xdxd
r5 r6

r12

r3

r4
r123

r4 r56

Level 1 Level 2 Level 3

b

cd

a

Figure 4: Hierarchical route structure and OD trail abstraction: (a)
Three route levels are constructed (blue, purple and green). A raw
OD trail is abstracted on (b) level 3, (c) level 2, and (d) level 1.

4.4. Trail Abstraction

Road neglect is one of the key problems of generic bundling ur-
ban trails (P1, Sec. 3.2). As discussed there, using a global fixed
bundling kernel radius pr does not always give a good balance be-
tween simplification and road-following of the trail set. To tackle
this, we introduce a route awareness parameter (pra). For a N-level
hierarchical road structure (Sec. 4.3), pra ranges from 0 to N. For
pra = 0, trails along are (maximally) abstracted to straight lines;
when pra = N, no simplification is done; when pra is set to a value
0 < k < N, routes in R1, . . . ,Rk will be used to abstract the trails.

To illustrate this, consider a route hierarchy with N = 3 levels
(thick blue, medium-thick red, and thin green, see Fig. 4(a)). Fig-
ures 4(b-d) show how a trail (xo,r1, . . . ,r6,xd) is abstracted on the

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

three hierarchy levels: In image (b), pra = 3, so all routes are pre-
served; in image (c), pra = 2, so routes r1 and r2 are merged together
as they are both part of R3. Finally, in image (d), pra = 1, so only
route r4 is kept.

5. Adapting KDEEB to Urban Trails

We now use the hierarchical data model introduced in Sec. 4.3 to
adapt KDEEB [HET12] to better reveal the topology of urban traffic.
For this, we propose two modifications of KDEEB: Kernel size
setting (Sec. 5.1) and density map generation (Sec. 5.2).

Algorithm 1 KernelSizeSetting
Input: Top N routes P = {P1, ...,PN}
Output: Initial kernel size pr
1: for i = 1 to N do
2: for j = i + 1 to N do
3: d[i][j] = d[j][i] = DiscreteFrechetDistance(Pi, Pj)
4: C = DBSCAN(P,ε,minNum);
5: Cmax = argmaxCi∈C|Ci|;
6: dgeo = 0;
7: for each Pi ∈Cmax do
8: for each Pj ∈Cmax && i 6= j do
9: dgeo = dgeo + d[i][j];

10: pr = dgeo/|Cmax|/(|Cmax|−1)/2;
11: return pr

5.1. Optimal Kernel Size Setting

KDE-type bundling methods only consider the size of the target im-
age to set the kernel size pr. As outlined in Sec. 3.2 (P2), this heuristic
for setting pr does not work well for bundling urban trails. Ideally,
we want to bundle closely-related trails (e.g., movements on bidi-
rectional roads) but separate loosely-related or unrelated trails (e.g.,
movements on two different highways). For this, we must consider
both image size and geometric properties of the road network.

To this end, we propose an automatic method for setting the initial
kernel size pr (see Alg. 1). We consider the set P of top-N routes
in our hierarchy (Sec. 4.3). We compute pairwise distances between
each route-pair (Pi,Pj) ∈ P×P and use these to group routes into a
set of clusters C. For the largest cluster Cmax, i.e. having most routes,
we compute the average distance dgeo between all routes in Cmax.
Finally, we set the initial kernel size pr to half dgeo (in pixel units).
We measure distance between routes by the discrete Fréchet distance,
which considers both point locations and ordering. This metric is one
of the most popular methods for movement analysis [GLW11], and
can be computed efficiently [EM94]. Setting N is done as follows:
Too small N values should be avoided as they yield a too sparse
initial road-set P, and next a too large kernel pr, thus too strong
bundling. Conversely, too large values N select in P routes that are
unrepresentative for the entire road network, yielding too small pr
values. From our experiments, we found that setting N to 1% of the
total number of routes in G gives good results. The clustering method
is built upon DBSCAN, which has been successfully used to cluster
trajectories [LHW07]. We set ε and minNum following the strategies
in [LHW07]. This yields ε = 5 pixels minNum = 8, which we next
used for all results in this paper.

5.2. Density Map Generation

As explained in Sec. 4.4, depending on the user level of detail k, routes
are abstracted into actual route segments and artificial straight-line
segments (see also Fig. 4). Hence, we must keep bundles close to the
road network Rk. A key observation is that bundles can freely follow
the artificial line segments in Rk, since these are anyways abstractions
of the road network geometry. In contrast, bundles should follow the
actual (real) route segments Raware ⊂ Rk as much as possible, since
these encode actual geometric information. To achieve this, during
density map generation (Eqn. 1), we increase the density for pixels
on route segments in Raware. For this, we replace ρ by

ρraeb(x ∈ R2) = ∑
y∈D

K
(
‖x−y‖

pr

)
+θ ∑

r∈Raware

Θ(‖x− r‖), (3)

where Θ ∈ R+
0 is an indicator function telling if x is close to, or on,

a trail r ∈ Raware. Θ can be set to the same parabolic kernel K as
for classical KDE (Sec. 3.1). However, a setting which is simpler
to implement, and slightly faster to compute, and gives results as
good as the parabolic one, is Θ(x) = 1 if x = 0, else Θ(x) = 0. This
is equivalent to ‘boosting’ the density along Raware. The boosting
factor θ should exceed the maximum ρmax of ρ as defined by Eqn. 1.
In practice, setting θ = 1.1ρmax gives the desired results. That is, this
guarantees that trail samples close to Raware are attracted to Raware
during advection (Eqn. 2).

6. Bundling Evaluation

As explained in Sec. 3.2 (P3), we need to measure the outcome
of a bundling iteration to determine when to stop bundling in a
more principled way than just using a maximal number of iterations.
Separately, we want to measure the overall deformations produced
by an entire bundling sequence to a given trail set, to determine if
these are acceptable or not in a given context. We address both these
tasks next in Secs. 6.1 and 6.2 respectively.

6.1. Bundling Termination Evaluation

For force-based and image-based bundling methods, there is so far
no explicit way to set the maximum number of iterations pn. Setting
pn too low creates too loose bundles. Conversely, setting pn too high
wastes computational resources.

n = 10 n = 11

λ = 0.9 λ = 0.9

B
un

dl
in

g
st

ab
ili

ty
 p

s

 Bundling Iteration (n)

Figure 5: Left: Bundling stability ps measured at each bundling iter-
ation for different decay ratios λ . Right: Visually indistinguishable
images are generated at iteration 10 and 11 for λ = 0.9. See Sec. 6.1.

We replace the explicit user setting of pn by an implicit bundling
termination criterion. For this, we measure the similarity between
the images X and Y produced by two consecutive bundling iterations.
When this similarity exceeds a given level, we consider that bundling
has objectively converged, and stop the process. To measure image

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

(c) pra = 2 (d) pra = 3 (b) pra = 1(a) pra = 0Level 1 Level 2 Level 3

Figure 6: Leftmost: 100K raw artificial OD trails on a grid road network represented by three hierarchy levels. (a) - (d): RAEB bundling
results with route awareness parameter pra set to 0, . . . ,3, respectively. See Sec. 7.1.

similarity, we use Mutual Information (MI), a basic concept from
information theory, introduced by Maes et al. [MCV∗97] to compare
medical images. While the original paper required image registration
to find corresponding point pairs, we do not need this in our case,
since images for all bundling iterations are aligned by construction.
Given two such images X and Y , seen as discrete random variables
taking intensity values in the range [0,255] (due to the blending of
bundled trails), MI is computed as

MI(X ,Y) = ∑
x∈X

∑
y∈Y

p(x,y)log
(

p(x,y)
p(x)p(y)

)
, (4)

where p(x) and p(y) are the marginal probability distribution func-
tions of X and Y respectively (computed via normalized intensity
histograms), and p(x,y) is the joint probability function of X and Y .
Since MI is affected by image size, to obtain a resolution-independent
metric, we use the normalized MI defined as

NMI(X ,Y) =
2MI(X ,Y)

H(X)+H(Y)
(5)

where H(X) =−∑x∈X p(x)log(p(x))) is the entropy of image X . We
denote NMI as bundling stability ps.

Figure 5(left) shows NMI values at each bundling iteration n ∈
[0,15] for the Manhattan taxi dataset, for three different kernel-size
decay values λ (see Sec. 3.1). We see how NMI increases with the
iteration count. Also, we see that smaller λ values lead to faster NMI
increases. Figure 5(right) shows the images for iterations 10 and 11
(λ = 0.9). These images are hardly distinguishable from each other,
so bundling has stabilized in this case and can be stopped. For this
image pair, we find a NMI value of 0.8, which we next use to predict
bundling convergence. That is, we bundle until the computed NMI
exceeds the threshold value ps = 0.8. We verified that this automatic
bundling termination yields stable, converged, results for all our
tested datasets and parameter values.

6.2. Bundle Deviation Evaluation

Finally, we would like to evaluate the overall deformation caused
by our bundling method, to be able to reason about the amount of
changes induced by the bundling simplification (P3, Sec. 3.2). For
this, we compute the average Fréchet distance between each bundled
trail and its original version in D, after the latter was mapped to
the road network (Sec. 4.2). We use trails after mapping to the road
network since (a) raw UT-1 trails do not anyways contain geometric
information, but only origin and destination positions, so computing
distances between such straight-line segments and bundles is mislead-
ing; and (b) UT-2 trails come from GPS-recorded positions, which
can be inaccurate. Thus, ‘snapping’ raw trails to the road network

prior to computing bundling errors provides a better ground-truth for
the bundling deviations. Evaluating this deviation (of bundles from
road-mapped trails) allows us to see how much the bundling process
has distorted the actual data. We discuss this next in Sec. 8.2.

Figure 7: Left: Raw 100K artificial OD trails on a hierarchical road
network. Right: RAEB bundling result with pra = 2. See Sec. 7.1.

7. Applications

We evaluate RAEB on four datasets. First, we analyze its behavior vs
its free parameters on synthetic trail-and-road-network data (Sec. 7.1).
Next, we consider three real-world urban traffic datasets from New
York (Sec. 7.2), Shenzhen (Sec. 7.3), and Manhattan (Sec. 7.4). For
all datasets, we outline improvements of our method vs KDEEB.

7.1. Synthetic Data

We use two trail datasets D, each with 100K straight-line (UT-1 like)
trails with endpoints randomly distributed in a unit square (similar
to the dataset used in [HET12], Figure 9(c)) and two reference road
networks G defined on an uniform 5×5 grid, with three hierarchy
levels. The two trail-sets and corresponding networks are shown
in the left images in Figures 6 and 7. We apply RAEB using an
image resolution of 12802 pixels and an initial kernel size pr = 60
pixels (suggested KDEEB value for this resolution [vdZCT16]), and
examine next the effects of the route awareness parameter pra.

For this, we generate bundles for all possible values pra ∈
{0,1,2,3} for the first dataset. Figure 6(a) shows the results for
pra = 0, i.e., no route awareness. This is equivalent to using KDEEB
– compare this image with Fig. 9(c) in [HET12]. The emerging bun-
dles are indeed not affected by the road network. Setting pra = 1
preserves level-1 (red) routes: We see how bundles close to the red
square in Fig. 6(b) follow this structure, while bundle further away
follow the unorganized structure at the same locations in Fig. 6(a).
Increasing pra to 2, respectively 3, increases the route awareness of
bundles (Figs. 6(c,d)).

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

(d) KDEEB (pr = 21)(a) Map Matching (b) KDEEB (pr = 60) (c) KDEEB (pr = 40)

(e) RAEB (pr = 21, pra = 0) (f) RAEB (pr = 21, pra = 1) (g) RAEB (pr = 21, pra = 3) (h) RAEB (pr = 21, pra = 5)

real

bridge

real

bridge

real

bridge

real

bridge

fake

bridges

fake

bridges

fake

bridges

fake

bridges

Figure 8: Density maps of NYC taxi trips: (a) shortest paths mapped onto the road network; (b-d) KDEEB bundles with three kernel sizes;
(e-h) our RAEB method with pr = 21 and three different hierarchy levels. See Sec. 7.2.

Figure 9: Fine scale density maps of NYC taxi trips in Queens zone
generated by (a) KDEEB, and (b) RAEB. See Sec. 7.2.

In the second experiment, we use a more complex road network
hierarchy (Fig. 7(left)). We set now pra = 2 to preserve both the red
and blue routes. The resulting bundles indeed follow these structures
(Fig. 7(right)). Putting it simply, RAEB allows one to trace visually
end-to-end routes more easily, as these follow a given road network,
as compared to the case one would use classical KDEEB.

7.2. Real Data 1: New York Taxi Trips

We next compare RAEB with KDEEB on a real-world dataset. The
OD trails used here are 100K taxi trips extracted from one-month trip

records, from which we retain only the pick-up (origin) and drop-off
(destination) locations. The road network is extracted from Open-
StreetMap (OSM) [OSM] over the Manhattan, Brooklyn, Queens,
and Bronx zones in New York, where the most origins and destina-
tions of the recorded trails are located. The raw network G has 133K
nodes and 166K edges. The simplified network G′ has 97K routes.
We map these to the road network using a shortest path algorithm
(Sec. 4.2). Figure 8(a) shows the resulting density map.

Figure 8(b) shows the bundling done by KDEEB at an image reso-
lution of 10802 pixels, with the KDEEB recommended initial kernel
size of 5% of the image size (pr = 60 pixels) and pn = 10 iterations.
Several main bundles are visible. Yet, many of these do not align in
any way with the road network (see e.g. the ‘fake bridges’ inset). We
hypothesize that this is due to the inappropriate setting of pr. To test
this, we next set pr with different values (40, 21), the latest being the
one derived from our automatic kernel-radius-setting procedure. Fig-
ures 8(c,d) show the corresponding KDEEB bundlings. We see now
finer-grained bundles, which are somehow better aligned with the
main arterial roads in New York (visible as dense regions in Fig. 8(a)).
Still, even with this kernel-radius variation, several bundles do not fol-
low any road, see e.g the inset in Fig. 8(d) that focuses on the region
between Manhattan and Brooklyn. Here, KDEEB creates bundles that
actually suggest inexistent bridges. The same happens for pr = 40
(Fig. 8c). Figure 8(e-h) shows the results generated by RAEB, with
pr = 21 pixels and a route awareness pra ∈ {0,1,3,5} respectively.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

Binhai Ave

Beihuan Ave

G107

G4

Airport

(d) KDEEB (pr = 60) (e) KDEEB (pr = 100) (f) RAEB (pr = 26, pra = 0)

(g) RAEB (pr = 26, pra = 1) (h) RAEB (pr = 26, pra = 3) (i) RAEB (pr = 26, pra = 5)

(b) KDEEB (pr = 10)
(c) KDEEB (pr = 26) (a) Map Matching

Figure 10: Density maps of Shenzhen taxi trips: (a) Raw GPS records are mapped onto road network. KDEEB bundles trips on close arterial
roads together (b), while RAEB keeps trips along these roads separate (c). Trails are colored according to the OD directions. See Sec. 7.3.

The fine-grained structure produced by KDEEB is retained, but the
undesirable bundle suggesting inexistent bridges are removed in all
situations, except for the extreme simplification pra = 0.

Visualization of urban traffic should support multi-scale explo-
ration. In our context, a good bundling method should provide
smooth transitions when zooming in or out to see regions at dif-
ferent scales. To assess this, we zoom into the Queens zone (blue
region in Fig. 8(d)), and re-apply KDEEB and RAEB respectively on
the subset of trails in this region. Figures 9(a) and (b) show the results.
Both methods generate more, finer-grained, bundles, akin to zooming
in on maps. However, matching the KDEEB fine-grained bundles
(Fig. 9(a)) with their coarse-scale counterparts (Fig. 8(c)) is hard,
since KDEEB uses different kernel sizes pr for the two images, be-
cause pr depends solely on the image resolution. In contrast, RAEB
generates fine-grained bundles (Fig. 9(b)) which are easier to map to
the coarse-grained ones (Fig. 8(d)), as both sets are constrained by

the same road network. Hence, RAEB creates smoother transitions
between different levels of details (scales) than KDEEB, allowing
one to better preserve the mental map during exploration.

7.3. Real Data 2: Shenzhen Taxi Trips

We further evaluate RAEB using a dataset of taxi trips in Shenzhen,
China. The raw road network, extracted from OSM, has 161K nodes
and 177K edges, further simplified into 51K routes. Trails are one-
week taxi trip records, 50K in total. Unlike the OD-only New York
taxi trails, this dataset contains a sequence of GPS positions per trails,
recorded every 20 seconds. Moreover, the Shenzhen dataset contains
a structure of ‘hierarchical’ roads (a few key arterial roads spanning
several secondary roads), whereas the New York road structure is
much more grid-like. Finally, the Shenzhen dataset contains a quite
different spatial distribution of trails.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

We map these trails to the road network using the ST-matching
algorithm (following Sec. 4.2). Figure 10(a) shows a density map of
the resulting trips at 2160×1280 resolution, with trails color coded
on direction. We already see that most taxi trips are in the more
developed southern region of Shenzhen, which borders on Hong
Kong. The highly unevenly-distributed trails make KDEEB’s initial
kernel estimation quite unreliable: Indeed, this yields pr = 100 pixels
(again, 5% of the drawing size), which creates too highly simplified
bundles (Fig. 10(e)). Moreover, trails seem to snap in shortest-path
distance to the bundle cores. Clearly, this does not obey the road
network structure visible in Fig. 10(a). In contrast, our automatic
kernel size estimation sets pr = 26. We first usder KDEEB with this
kernel size (Fig. 10(c)) and two other kernel sizes (Figs. 10(b,d)).
As visible, the kernel-size change does not make KDEEB deliver
significantly different bundling results. We next use our RAEB, with
its recommended kernel size (pr = 26) and four different hierarchy
levels (pra ∈ {0,1,3,5}). The coarsest simplification level, pra = 0,
yields the same results to KDEEB. The finer simplification levels
pra ∈ {1,3,5} are bring increasingly more details to the view: In
sparsely covered areas (north and north-east on the map), KDEEB
and RAEB yield quite similar results. This is indeed expected, since
in these areas there are (1) fewer roads and (2) fewer trails that follow
these (main) roads. In contrast, in dense areas (south of the map),
we see important differences between KDEEB and RAEB: The raw
density map (Fig. 10(a), insets) tells us that expressways G4 and
G107 lead traffic to Shenzhen airport (left inset), while Beihuan
and Binhai avenues holds main traffic in the right inset. KDEEB
wrongly merges traffic on G4 and G107 and on Beihuan and Binhai,
respectively (Fig. 10(c), insets). In contrast, RAEB clearly shows
these four main avenues, but simplifies traffic on smaller roads around
them (Fig. 10(g), insets). Note that similar results to the simplification
level pra = 1 (Fig. 10(g)) are obtained by the simplification levels
pra ∈ {3,5} (Figs. 10(h,i), respectively).

7.4. Real Data 3: Manhattan Taxi Trips

Finally, we revisit the Manhattan taxi trips dataset already illustrated
in Fig. 2. Figure 11 shows the results obtained by KDEEB, for four
different kernel radius values pr, and the results obtained by our
method RAEB, for the optimal kernel value pr = 40 and four hier-
archy levels pra ∈ {0,1,3,5}. Similarly to the previous real-world
datasets examined in Secs. 7.2 and 7.3, we can draw several con-
clusions from this dataset: First, we see the extreme sensitivity of
KDEEB’s results as function of its kernel radius pr: The images
(a-d) in Fig. 11 suggest, depending on pr, that there are four bridges
between the west and east map side (image (a)), three bridges (image
(b)), one bridge (image (c)), or no actual bridges (image (d)) – see
the dashed markings in the figures. Comparing these results with
the ground truth (Fig. 1(a)) shows that there should be three or four
main bridges. Hence, KDEEB fails to convey this insight properly,
depending on how we set pr. Figure 11(e-h) show the results of
RAEB, for the optimal kernel size pr = 40 derived by our method
and four different hierarchy (simplification) levels pra. The coars-
est level pra = 0 (image (e)) is practically identical to the KDEEB
bundling with the optimal kernel radius (image (b)). The other three
simplification levels (images (f-h)) are quite stable, i.e., show quite
similar results. More importantly, these results are more similar with
the ground truth (see again Fig. 1(a)) than the KDEEB results.

(a) KDEEB

(pr = 20)

(b) KDEEB

(pr = 40)

(c) KDEEB

(pr = 80)

(d) KDEEB

(pr = 120)

(e) RAEB

(pr = 40, pra = 0)

(f) RAEB

(pr = 40, pra = 1)

(g) RAEB

(pr = 40, pra = 3)

(h) RAEB

(pr = 40, pra = 5)

Figure 11: Manhattan taxi maps generated with KDEEB, for four
kernel radius pr (a-d)); and with RAEB, using the optimal kernel size
pr = 40, and four simplification levels pra (e-h). See Sec. 7.4.

8. Discussion

We next discuss RAEB’s parameter settings (Sec. 8.1) and compare
its performance and quality with KDEEB (Sec. 8.2). Finally, we
discuss the applicability and limitations of our method (Sec 8.3).

8.1. Parameter Setting

We consider RAEB’s parameter settings and compare these with
KDEEB, where applicable:
Route awareness (pra): This parameter captures the key difference
between RAEB and all other bundling methods we are aware of
(KDEEB being just one example). When simplifying a trail set, such
methods cannot control the simplification accuracy, since bundles
are not constrained to follow an underlying (road) network. The
route awareness parameter pra controls how bundles follow roads at
a user-selected hierarchy level, thus trading off bundle accuracy vs
simplification, as shown in Sec. 7.1. Setting pra is simple: A value
pra = 0 yields results identical to KDEEB; a value pra = N, where
N is the number of extracted road hierarchies, preserves most road
details, and simplifies least. In between values trade off simplification
for accuracy. A good preset we found is pra = 1, which corresponds
to the 5% top-ranked routes following our combined criteria of length,
flow, and hierarchy levels (Sec. 4.3).
Kernel size (pr): Similar to KDE-type methods, pr controls the de-
gree of spatial simplification. KDE-type methods use a purely image

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

Dataset Edge pn Time (sec.) Deviation (pixels)
samples KDEEB RAEB KDEEB RAEB

Synthetic 4.6M 13 40.3 50.7 18.37 12.58

New York 3.1M 11 34.3 42.9 15.40 9.88

Shenzhen 1.3M 8 13.8 22.8 13.71 10.53

Table 2: Speed and deformation comparison for KDEEB and RAEB.

based setting of pr, which, as we have seen, strongly oversimplifies
trail sets. Our improvement here is to (automatically) set pr based on
both the road network geometry and its resolution in image space.
This still sets pr automatically (which is easy to use), but preserves
detail much better than the pr setting proposed by KDEEB, especially
for highly non-uniform road and/or trail densities (see examples in
Secs. 7.2 and 7.3).
Bundling stability ps: KDEEB stops bundling after exceeding a
user-given number of iterations pn. Choosing this value is delicate:
Too low values do not converge; too high values waste computational
effort. We remove the need for this parameter by measuring the
similarity of two consecutive bundling images via their normalized
mutual information (NMI), and automatically stop bundling when
this similarity exceeds a given threshold ps. We verified that bundling
visually converges for a preset ps = 0.8 for all datasets and parameter
combinations we worked with.

8.2. Performance and quality

Table 2 compares the computational performance of KDEEB and
RAEB for the three datasets used in our studies. Both methods,
implemented in Java, run on a MacBook Pro 3.1 GHz Core i7 with a
Radeon Pro 560 graphics card. For comparison fairness, we used the
same kernel sizes pr and total bundling iterations pn (both computed
by our proposed approach) for both methods.

In absolute terms, we see that bundling time is mainly influenced
by the number of trail samples and kernel size, in line with earlier
studies [HET12, vdZCT16]. The running times for KDEEB are com-
parable with those in the original work [HET12]. Relatively speaking,
RAEB is about 20% slower than KDEEB. This is because RAEB
must also evaluate bundling stability to check for termination (Sec. 6).
This operation is linear in image size and number of bundling steps
and, for the considered datasets, takes about 1 second/iteration. If we
subtract this time from RAEB’s total, we see that RAEB is actually
faster than KDEEB. Indeed, this is because our estimated kernel size
(pr) is in general lower than KDEEB’s, so we compute the density
map faster than KDEEB. Finally, we note that RAEB can be easily
and significantly accelerated using GPU parallelization, precisely as
done earlier for KDEEB [vdZCT16].

Table 2 also compares the deviation between the (KDEEB and
RAEB) bundles and the input OD trails (see Sec. 6.2). We see that
RAEB is closer to the original trails than KDEEB – roughly 30%
for the synthetic and the New York taxi datasets. The deviation
difference is smaller for the Shenzhen dataset, mainly because most
trails in this dataset are concentrated in a smaller region of the map
(Fig. 10). Still, as the same figure shows, RAEB’s smaller deviations
are significant in interpreting the original trails more correctly in
these regions. Overall, we conclude that RAEB deforms the raw
input data markedly less than KDEEB, which is good for preserving
the meaning of the spatial trails.

8.3. Applicability and Limitations

RAEB can be readily extended to any scenario where one has (a)
a set of 2D spatial trails, defined as straight lines or as polylines;
and (b) a polyline-like graph-drawing that defines a skeletal structure
that the trails should obey as well as possible. Hence, RAEB directly
applies to other types of map-related traffic data, e.g. commuter
trips by public transportation, or people traces derived from phone
call records. We also note that trails do not have to be defined as
following the network: Indeed, if desired, one can use an arbitrary
graph drawing to constrain a trail set, as long as this constraining
makes sense for the problem at hand. Separately, RAEB’s added-
value is as good as the underlying data it uses: If route importance
is wrongly estimated (Sec. 4.3), then the simplified RAEB bundling
will be potentially misleading. If only OD data is available, then
one will not be able to accurately reason about actual geographic
trails. Yet, these are generals problem related to the trustworthiness
and/or completeness of data underlying any visualization method,
not specific to RAEB.

By construction, RAEB proposes a trade-off between simplifica-
tion and trail accuracy preservation, via the road awareness parameter
pra. At one extreme, RAEB can preserve all trail road-related ge-
ometry, but this leads to no or negligible simplification (much like
vector maps). At the other extreme, RAEB can completely ignore
the road network, yielding strong simplification but potentially too
large deformations (much like KDE-type methods). To our knowl-
edge, RAEB is the first method that explicitly offers this trade-off for
generic OD trail sets. Which actual trade-off between simplification
and trail preservation is optimal strongly depends on the application
type. For instance, in scenarios requiring precise positions, such as
querying movements passing through waypoints [KTW∗13] or road
segment [WCW∗14], visual hints would be required to remind the
user on how much bundling deforms the actual data. However, the
focus of our work here is not to propose such an optimal trade-off,
but the technique that allows one to actually specify a trade-off value
and obtain bundled results that obey this value.

A limitation of our current approach regards directional trails.
Our current RAEB implementation does not consider trail directions
during bundling, for implementation simplicity, and since we wanted
to compare our results with the original KDEEB which also does not
consider directions. However, direction is of recognized importance
for studying OD trails in urban traffic [ZFMA∗16]. RAEB can be
easily adapted to perform directional bundling in precisely the same
way as it was done for KDEEB by the CUBu method [vdZCT16], or,
alternatively, by considering the more powerful but more complex
directional bundling adaption of KDEEB proposed by the FFTEB
method [LHT17a].

A separate limitation is that the route awareness parameter (pra)
works in a global way. On the one hand, this makes our method very
simple, as the user only needs to set a single value to simplify an
entire dataset. On the other hand, this lacks local control. To have
the latter, we could imagine setting pra locally, by e.g. specifying
which geographic areas are to be simplified more and which are to
be kept at a high detail level. Incorporating this in the hierarchical
road network construction (Sec. 4.3) is quite simple; the challenge is
to find an easy to use but effective user interface to allow specifying
pra locally. As such, we leave this extension, and its evaluation by
user studies, for future work.

Finally, an important issue we do not yet tackle is showing the local

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

errors introduced by bundling. By definition, bundling deforms trails
to yield a simplified, albeit inaccurate, view of a trail-set. Showing
how much, and where, bundled trails differ from original ones (in our
case, the road network) is an open question [vdZCT16]. Computing
such errors is simple; showing them is however tricky, since we
already use visual variables such as color for direction, and opacity
for trail density, respectively. Yet, our quantitative evaluation shows
that we create far smaller deformations than state-of-the-art bundling
methods (Tab. 2).

9. Conclusion and future work

In this paper, we have presented Route-Aware Edge Bundling
(RAEB), a novel method for creating simplified visualizations of
urban trail sets. RAEB adapts Kernel Density Estimation (KDE)-type
bundling methods to alleviate several of their known problems which
make them hard to use for urban trail data, as follows. First and
foremost, we constrain trails to a given road network, by offering the
user a simple way to trade off the degree of simplification (bundling)
vs the degree of respecting the hierarchically modeled road network.
Secondly, we present a more involved heuristic of controlling the
kernel size, a central parameter in KDE bundling, and show how
our method yields better detail preservation and also more stable
bundling results vs the image resolution, which in turn helps multi-
scale visual exploration by preserving the user’s mental map. Thirdly,
we propose a new method for determining bundling convergence
based on the convergence of the visual result rather than user param-
eters which are not always easy to set. We compared our method
with KDEEB, a state-of-the-art method in the KDE class, on three
datasets, including two large real-world urban trail sets. Qualitatively,
we showed how RAEB yields bundles that respect the original trail
sets and underlying road networks visibly better than KDEEB, while
still achieving visual simplification. Quantitatively, we showed that
RAEB has comparable running times as KDEEB, while it achieves
lower overall deformations of the input trail sets.

RAEB opens several directions for future research, as follows.
First, its main technical contributions (constraining bundling to a
given network-like drawing, trading off trail position preservation vs
simplification, and automating termination) can be easily incorpo-
rated into most other bundling methods, e.g. SBEB [EHP∗11] and
FDEB [HvW09]. Doing so would be interesting, as such methods
in turn offer different bundling styles and bundling control param-
eters than KDEEB. Secondly, accelerating RAEB using GPU par-
allelization is a very low, and interesting, hanging fruit, following
similar developments for KDEEB [vdZCT16]. Thirdly, we plan to
adapt and apply RAEB to other application areas where spatially-
constrained bundling is required, e.g., brain network simplified vi-
sualization [BSL∗14, YSD∗17]. Last but not least, our proposal for
measuring the bundling faithfulness by the Fréchet distance between
the output bundles and the ground truth road network along which
input trails should go, can be refined by proposing richer distance
metrics that can model more than local Euclidean distances. Such
metrics can incorporate e.g. local bundle orientation and curvature,
thereby capturing more involved priors known about trail sets in
specific applications.

Acknowledgment. The authors wish to thank anonymous reviewers
for their constructive comments. The work was supported in part
by National Natural Science Foundation of China (61802388), the

CAS grant (GJHZ1862), Shenzhen Science and Technology Program
(JCYJ20180507182222355).

References
[AA11] ANDRIENKO N., ANDRIENKO G.: Spatial generalization and

aggregation of massive movement data. IEEE TVCG 17, 2 (2011), 205–
219. 1

[AAC∗17] ANDRIENKO G., ANDRIENKO N., CHEN W., MACIEJEWSKI
R., ZHAO Y.: Visual analytics of mobility and transportation: State of the
art and further research directions. IEEE T-ITS 18, 8 (2017), 2232–2249. 2

[BPSW05] BRAKATSOULAS S., PFOSER D., SALAS R., WENK C.: On
map-matching vehicle tracking data. In Proceedings of the International
Conference on Very Large Data Bases (VLDB) (2005), pp. 853–864. 2

[BRH∗17] BACH B., RICHE N. H., HURTER C., MARRIOTT K., DWYER
T.: Towards unambiguous edge bundling: Investigating confluent drawings
for network visualization. IEEE TVCG 23, 1 (2017), 541–550. 3

[BSL∗14] BÖTTGER J., SCHÄFER A., LOHMANN G., VILLRINGER A.,
MARGULIES D. S.: Three-dimensional mean-shift edge bundling for the
visualization of functional connectivity in the brain. IEEE TVCG 20, 3
(2014), 471–480. 3, 12

[CGW15] CHEN W., GUO F., WANG F.-Y.: A survey of traffic data
visualization. IEEE T-ITS 16, 6 (2015), 2970–2984. 2

[CKS∗16] CORNEL D., KONEV A., SADRANSKY B., HORVÁTH Z.,
BRAMBILLA A., VIOLA I., WASER J.: Composite flow maps. Com-
put. Graph. Forum 35, 3 (2016), 461–470. 2

[CZQ∗08] CUI W., ZHOU H., QU H., WONG P. C., LI X.: Geometry-
based edge clustering for graph visualization. IEEE TVCG 14, 6 (2008),
1277–1284. 1, 3

[DWL08] DODGE S., WEIBEL R., LAUTENSCHÜTZ A.-K.: Towards a
taxonomy of movement patterns. Info. Vis. 7, 3 (2008), 240–252. 1

[EHP∗11] ERSOY O., HURTER C., PAULOVICH F., CANTAREIRO G.,
TELEA A.: Skeleton-based edge bundling for graph visualization. IEEE
TVCG 17, 12 (2011), 2364–2373. 3, 12

[EM94] EITER T., MANNILA H.: Computing Discrete Frechet Distance.
Technical Report CDTR 94/64, Christian Doppler Laboratory for Expert
Systems. TU Vienna, Austria, 1994. 6

[FKSS13] FERREIRA N., KLOSOWSKI J. T., SCHEIDEGGER C. E., SILVA
C. T.: Vector field k-means: Clustering trajectories by fitting multiple
vector fields. Computer Graphics Forum 32, 3 (2013), 201–210. 2

[FPV∗13] FERREIRA N., POCO J., VO H. T., FREIRE J., SILVA C. T.:
Visual exploration of big spatio-temporal urban data: A study of New York
city taxi trips. IEEE TVCG 19, 12 (2013), 2149–2158. 2, 4

[GLW11] GUDMUNDSSON J., LAUBE P., WOLLE T.: Computational
movement analysis. In Handbook of Geographic Information. Springer,
2011, pp. 423–438. 6

[GZ14] GUO D., ZHU X.: Origin-destination flow data smoothing and
mapping. IEEE TVCG 20, 12 (2014), 2043–2052. 1, 2

[HET12] HURTER C., ERSOY O., TELEA A.: Graph bundling by kernel
density estimation. Comput. Graph. Forum 31, 3pt1 (2012), 865–874. 1,
3, 4, 6, 7, 11

[Hol06] HOLTEN D.: Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE TVCG 12, 5 (2006), 741–748. 1, 3

[HPNT18] HURTER C., PUECHMOREL S., NICOL F., TELEA A.: Func-
tional decomposition for bundled simplification of trail sets. IEEE TVCG
24, 1 (2018), 500–510. 3

[HvW09] HOLTEN D., VAN WIJK J. J.: Force-directed edge bundling for
graph visualization. Comput. Graph. Forum 28, 3 (2009), 983–990. 1, 3,
5, 12

[KJW∗18] KIM S., JEONG S., WOO I., JANG Y., MACIEJEWSKI R.,
EBERT D. S.: Data flow analysis and visualization for spatiotemporal
statistical data without trajectory information. IEEE TVCG 24, 3 (2018),
1287–1300. 2

[KSBE18] KRÜGER R., SIMEONOV G., BECK F., ERTL T.: Visual inter-
active map matching. IEEE TVCG 24, 6 (2018), 1881 – 1892. 2, 5

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Zeng & Q. Shen & Y. Jiang & A. C. Telea / Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

[KTW∗13] KRÜGER R., THOM D., WÖRNER M., BOSCH H., ERTL T.:
TrajectoryLenses – a set-based filtering and exploration technique for long-
term trajectory data. Comput. Graph. Forum 32, 3pt4 (2013), 451–460. 2,
4, 11

[LBA10a] LAMBERT A., BOURQUI R., AUBER D.: 3D edge bundling
for geographical data visualization. In Proc. Intl. Conf. Info. Vis. (2010),
pp. 329–335. 3

[LBA10b] LAMBERT A., BOURQUI R., AUBER D.: Winding roads: Rout-
ing edges into bundles. Comput. Graph. Forum 29, 3 (2010), 853–862.
3

[LHT17a] LHUILLIER A., HURTER C., TELEA A.: FFTEB: Edge bundling
of huge graphs by the fast fourier transform. In Proc. IEEE PacificVis
(2017), pp. 190–199. 1, 3, 11

[LHT17b] LHUILLIER A., HURTER C., TELEA A.: State of the art in
edge and trail bundling techniques. Comput. Graph. Forum 36, 3 (2017),
619–645. 1, 2, 3

[LHW07] LEE J.-G., HAN J., WHANG K.-Y.: Trajectory clustering: a
partition-and-group framework. In Proc. ACM SIGMOD (2007), pp. 593–
604. 6

[LLCM12] LUO S.-J., LIU C.-L., CHEN B.-Y., MA K.-L.: Ambiguity-
free edge-bundling for interactive graph visualization. IEEE TVCG 18, 5
(2012), 810–821. 3

[LZZ∗09] LOU Y., ZHANG C., ZHENG Y., XIE X., WANG W., HUANG
Y.: Map-matching for low-sampling-rate GPS trajectories. In Proc. ACM
SIGSPATIAL (2009), pp. 352–361. 4

[MCV∗97] MAES F., COLLIGNON A., VANDERMEULEN D., MARCHAL
G., SUETENS P.: Multimodality image registration by maximization of
mutual information. IEEE Trans. Med. Imaging 16, 2 (1997), 187–198. 6

[NYC] NYC TAXI AND LIMOUSINE COMMISSION: TLC Trip Record
Data. http://www.nyc.gov/html/tlc/html/about/trip_record_
data.shtml. 4

[OSM] OSMF: Open Street Map. https://www.openstreetmap.org.
5, 8

[PHT15] PEYSAKHOVICH V., HURTER C., TELEA A.: Attribute-driven
edge bundling for general graphs with applications in trail analysis. In
Proc. IEEE PacificVis (2015). 3

[PXYH05] PHAN D., XIAO L., YEH R., HANRAHAN P.: Flow map layout.
In Proc. IEEE InfoVis (2005), pp. 219–224. 1, 2

[QON07] QUDDUS M. A., OCHIENG W. Y., NOLAND R. B.: Current
map-matching algorithms for transport applications: State-of-the art and
future research directions. Transportation Research Part C: Emerging
Technologies 15, 5 (2007), 312–328. 2

[Qud06] QUDDUS M. A.: High Integrity Map Matching Algorithms for
Advanced Transport Telematics Applications. Phd thesis, Imperial College
London, 2006. 2

[SHH11] SELASSIE D., HELLER B., HEER J.: Divided edge bundling for
directional network data. IEEE TVCG 17, 12 (2011), 2354–2363. 1, 3

[SHvdW∗16] SCHEEPENS R., HURTER C., VAN DE WETERING H., , VAN
WIJK J. J.: Visualization, selection, and analysis of traffic flows. IEEE
TVCG 22, 1 (2016), 379–388. 1

[Som14] SOMMER C.: Shortest-path queries in static networks. ACM
Comput. Surv. 46, 4 (2014), 1–31. 5

[SWvdW∗12] SCHEEPENS R., WILLEMS N., VAN DE WETERING H., ,
VAN WIJK J. J.: Interactive density maps for moving objects. IEEE CG&A
32, 1 (2012), 56–66. 1

[TP15] THÖNY M., PAJAROLA R.: Vector map constrained path bundling
in 3D environments. In Proc. ACM SIGSPATIAL Intl. Workshop on
GeoStreaming (2015), pp. 33–42. 3

[VBS11] VERBEEK K., BUCHIN K., SPECKMANN B.: Flow map layout
via spiral trees. IEEE TVCG 17, 12 (2011), 2536–2544. 1

[vdZCT16] VAN DER ZWAN M., CODREANU V., TELEA A.: CUBu:
Universal real-time bundling for large graphs. IEEE TVCG 22, 12 (2016),
2550–2563. 3, 4, 5, 7, 11, 12

[vLBR∗16] VON LANDESBERGER T., BRODKORB F., ROSKOSCH P., AN-
DRIENKO N., ANDRIENKO G., KERREN A.: MobilityGraphs: Visual
analysis of mass mobility dynamics via spatio-temporal graphs and clus-
tering. IEEE TVCG 22, 1 (2016), 11–20. 2

[WCW∗14] WANG F., CHEN W., WU F., ZHAO Y., HONG H., GU T.,
WANG L., LIANG R., BAO H.: A visual reasoning approach for data-
driven transport assessment on urban road. In Proc. IEEE VAST (2014),
pp. 103–112. 4, 5, 11

[WDS10] WOOD J., DYKES J., SLINGSBY A.: Visualisation of origins,
destinations and flows with od maps. Cartogr. J. 47, 2 (2010), 117–129. 2

[WF09] WILKINSON L., FRIENDLY M.: The history of the cluster heat
map. The American Statistician 63, 2 (2009), 179–184. 2

[WHB∗12] WANG P., HUNTER T., BAYEN A. M., SCHECHTNER K.,
GONZÁLEZ M. C.: Understanding road usage patterns in urban areas.
Scientific Reports 2 (2012), 1001. 1

[WvdWvW09] WILLEMS N., VAN DE WETERING H., VAN WIJK J. J.:
Visualization of vessel movements. In Proc. EuroVis (2009), pp. 959–966.
2

[YSD∗17] YANG X., SHI L., DAIANU M., TONG H., LIU Q., THOMPSON
P.: Blockwise human brain network visual comparison using nodetrix
representation. IEEE TVCG 23, 1 (2017), 181 – 190. 3, 12

[ZFMA∗16] ZENG W., FU C. W., MÜLLER ARISONA S., ERATH A.,
QU H.: Visualizing waypoints-constrained origin-destination patterns for
massive transportation data. Comput. Graph. Forum 35, 8 (2016), 95–107.
2, 4, 11

[ZXYQ13] ZHOU H., XU P., YUAN X., QU H.: Edge bundling in in-
formation visualization. Tsinghua Sci. Technol. 18, 2 (2013), 145–156.
3

[ZYC∗08] ZHOU H., YUAN X., CUI W., QU H., CHEN B.: Energy-based
hierarchical edge clustering of graphs. In Proc. IEEE PacificVis (2008),
pp. 55–61. 3

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://www.openstreetmap.org

