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Abstract
Dimensionality reduction methods are an essential tool for multidimensional data analysis, and many interesting processes
can be studied as time-dependent multivariate datasets. There are, however, few studies and proposals that leverage on the
concise power of expression of projections in the context of dynamic/temporal data. In this paper, we aim at providing an
approach to assess projection techniques for dynamic data and understand the relationship between visual quality and stability.
Our approach relies on an experimental setup that consists of existing techniques designed for time-dependent data and new
variations of static methods. To support the evaluation of these techniques, we provide a collection of datasets that has a wide
variety of traits that encode dynamic patterns, as well as a set of spatial and temporal stability metrics that assess the quality
of the layouts. We present an evaluation of 9 methods, 10 datasets, and 12 quality metrics, and elect the best-suited methods
for projecting time-dependent multivariate data, exploring the design choices and characteristics of each method. Additional
results can be found in the online benchmark repository. We designed our evaluation pipeline and benchmark specifically to be
a live resource, open to all researchers who can further add their favorite datasets and techniques at any point in the future.

CCS Concepts
• Computing methodologies → Dimensionality reduction and manifold learning;

1. Introduction

Dimensionality reduction (DR) methods, also called projections,
are used in many applications in information visualization, ma-
chine learning, and statistics. Compared to other high-dimensional
data visualization techniques, projections are especially effective
for datasets with many observations (also called samples or points)
and attributes (also called measurements, dimensions, or variables)
[LMW∗17]. Many projection techniques exist, with wide varieties
of computational efficiency, ease of use, ability to preserve and/or
enhance different data patterns. Surveys have also focused on as-
sessing quantitative and qualitative aspects of projection techniques
[NA19, VDMPVdH09, EMK∗19], thereby helping practitioners in
choosing a suitable one for a given context.

Most projection techniques have been designed and evaluated
only for static data. Projecting dynamic (time-dependent) data is,
however, equally important. Such data is found in most science and
engineering areas, such as biology [TBZVC17], medicine [GF19],
and finance [Kra19]. The body of research in time series visual-
ization is rich [AMM∗08], thereby underlining the importance of
visualizing such data. Yet, there are only few examples of pro-
jecting time-dependent data [HWX∗10, MDL07, WG11, BWS∗12,
NPTS17,JFSK16]. Even fewer works focus on designing projection

techniques specifically for dynamic data [RFT16, FCS∗19]. In par-
ticular, it is not clear how to measure and trade-off two key aspects
of such projections: visual quality and stability. While visual quality
was studied well for static projections, stability, seen as the ability
to create a set of projections that allows users to maintain a cohesive
mental map through time, is recognized as essential for dynamic
data visualization [APP11, BLIC19], but has not been formally de-
fined nor quantified for dynamic projections.

We work towards filling this gap in assessing projection tech-
niques for dynamic data with the following main contributions:

• We propose novel variations of existing static projection tech-
niques for the context of visualizing time-dependent data;
• We propose a set of metrics to quantify the stability of dynamic

projections;
• We benchmark the visual quality and stability of dynamic pro-

jections on a dataset collection to get insights on which methods
favor which of the measured quality aspects.

Our work can help researchers in targeting the identified chal-
lenges of current dynamic projection techniques, therefore poten-
tially leading to improved ones. Separately, practitioners can use
our findings into the process of determining which dynamic pro-
jection technique is best suited to their given user context. Finally,
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our creation of an open benchmark for assessing dynamic projec-
tions (containing datasets, techniques, metrics, visualizations, and
associated workflows) should benefit both user types by providing a
basis via which such techniques can be transparently compared.

The structure of this paper is as follows. Section 2 outlines re-
lated work and evaluation techniques for projections for static and
dynamic data. Section 3 details the proposed experiment we con-
ducted to quantitatively assess the behavior of projection techniques
for dynamic data, including techniques, datasets, and evaluated met-
rics. Section 4 presents the obtained results. Section 5 discusses the
causes of the observed dynamic projection behavior. Finally, Sec-
tion 6 concludes the paper. For replication purposes, all our datasets,
code, workflow, and results are openly available [VGdS∗19].

2. Related work

2.1. Preliminaries

We first introduce some notation. Let x ∈ Rn be an n-dimensional
sample. A revision Rt = {xt

i}, or timestep, of our data consists of a
set of N samples xt

i , 1 ≤ i ≤ N measured at the same time moment
t. A dynamic dataset D is a list of T revisions D =

{
Rt} ,1≤ t ≤ T .

For simplicity of exposition and implementation, but without loss
of generality, we consider next that the sample count N is constant
over time. In this case, D can be represented as a set of T N-by-n
matrices, one for each timestep.

A projection technique is a function P : Rn → Rq, where q�
n. For visualization purposes, q ∈ {2,3}. Since 2D projections are
by far the most commonly used, we next only consider the case
q = 2. We denote the projection of observation x by P(x). For each
timestep t, let P(Rt) be the 2D scatterplot of all points in Rt . Finally,
let P(D) be the set of T scatterplots for all timesteps of dataset D.
These can be rendered as animations, small multiples, trail sets, or
other visualization encodings.

Visualization of high dimensional data [LMW∗17] is a well
studied topic populated with many techniques such as parallel co-
ordinate plots [ID90], table lenses [RC94], scatterplot matrices
[BCS96a], and dimensionality reduction (DR) methods [NA19,
VDMPVdH09,EMK∗19]. From all these we next focus only on DR
techniques, both for static and dynamic data, and evaluation meth-
ods for both of these technique classes.

2.2. Techniques for static dimensionality reduction

The body of research that encompasses static DR is large and spans
the fields of Information Visualization and Machine Learning. There
are dozens of static techniques designed to optimize different objec-
tives and to work well under different constraints. These can be clas-
sified and categorized using several taxonomies [VDMPVdH09]
that guide users in choosing methods that meet their requirements.
We do not further elaborate on such techniques, as several sur-
veys extensively discuss static projections. Fodor et al. [Fod02]
present, to our knowledge, the first survey of DR techniques cov-
ering non-linear, vector quantization, and deep learning methods.
Yin [Yin07] surveys non-linear DR methods. Bunte et al. [BBH12]
proposes a framework to quantitatively compare nine DR meth-
ods. Cunningham et al. [CG15] presents a theoretical compari-
son of 15 linear DR techniques. A similar survey, extended to 30

DR techniques, both linear and non-linear, is provided by Sorzano
et al. [SVPM14]. Additional surveys look at DR methods in the
larger context of high-dimensional data visualization, thus com-
paring and contrasting them with other visualization techniques
[BCS96b, HG02, EHH12, KH13]. The most recent survey in this
area [NA19] discusses technical aspects of DR methods, and also
how such methods satisfy various user-level tasks.

2.3. Evaluations of static dimensionality reduction

Taxonomies as the ones listed above, compare DR methods mainly
from technical (algorithmic) and task-suitability aspects. An in-
creasingly visible alternative approach is to compare techniques
by measuring various quality metrics on several techniques and
datasets. A wealth of such quality metrics exist – for recent
overviews, see [Pöl04, LV09, LGH13, NA19, EMK∗19]. Different
metrics gauge different desirable aspects of a projection, and usu-
ally, several metrics are jointly used to assess DR quality [GH15].
Just as for DR techniques, metrics can be organized using different
taxonomies. Following [EMK∗19], these are as follows. Aggregate
metrics, such as trustworthiness, continuity, neighborhood hit, dis-
tance and class consistency [SNLH09,TBB∗10], cluster visual sep-
aration metrics [AEM11, SMT13, SA15], and metrics that capture
human perception based on machine learning [AS16] characterize
an entire 2D scatterplot by a single scalar value. This is convenient
when comparing (many) different scatterplots to choose a suitable
one, such as in scagnostics applications. However, a scatterplot may
exhibit different quality values in different areas, so a single aggre-
gated value may not be suitable [JCC∗11,NA19]. Point pair metrics
address this by measuring how point pairs (P(x),P(y)) in a projec-
tion relate to their corresponding sample pairs (x,y). These include
Shepard diagrams [JCC∗11] and co-ranking matrices [LV09]. Fi-
nally, local metrics gauge separately every (small) neighborhood
in a projection, thus providing the highest level of detail, and are
typically visualized atop of the projection itself. These include the
projection precision score [SvLB10], stretching and compression
[Aup07, LA11], and false neighbors, missing neighbors, and aver-
age local errors [MCMT14, MMT15].

Since all the above metrics aim to capture spatial aspects of the
projection, we refer to them next as spatial quality metrics. Recent
surveys have proposed extensive evaluations of spatial quality met-
rics on benchmarks containing a variety of datasets and DR meth-
ods [EMK∗19, VDMPVdH09]. However, time-dependent datasets
were not considered.

2.4. Techniques for dynamic dimensionality reduction

The literature is much less rich regarding DR methods that explic-
itly consider dynamic data. The dynamic t-SNE (dt-SNE) method
of Rauber et al. [RFT16] extends the well-known t-SNE method
[vdMH08] by adding a stability factor λ to the objective function.
Such a factor jointly minimizes the Kullback-Leibler divergence
proposed by t-SNE to preserve high-dimensional point neighbor-
hoods and also restricts the amount of motion ‖P(xt+1)− P(xt)‖
that points can have between consecutive timesteps. More recently,
Fujiwara et al. [FCS∗19] proposed a PCA-based method to deal
with streaming data. Note that this is a harder (and different) prob-
lem from the one we aim to study since one cannot anticipate
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changes occurring upstream in the data when optimizing for place-
ment of points in 2D. As such, analyzing this (and similar) meth-
ods is out of our scope. Separately, several authors use DR methods
to create static maps that describe multivariate time series. Hu et
al. [HWX∗10] use Self-Organizing Maps [KSH01] to create 2D
trails that capture the dynamics of human motion data. Rauber et
al. [RFT17] use similar trails, created by dt-SNE, to visualize the
learning process of a neural network. Mao et al. [MDL07] use
PCA to project text feature evolution in text sequences. Ward and
Guo [WG11], Bernard et al. [BWS∗12] and, more recently, Ali
et al. [AJXW19] use similar approaches to find cyclic behavior,
outliers, and trends in temporal data from medical, financial, and
earth sciences domains. In contrast to the previous methods, m-
TSNE [NPTS17] describes multivariate time series at a higher level
of aggregation as single points instead of trails or polylines. Tempo-
ral MDS [JFSK16] projects D as a series of 1D projections, creating
a map where the x-axis is time, and the y-axis shows the similarity
of observations.

2.5. Evaluation of dynamic dimensionality reduction

Evaluating dynamic DR methods can be split into two aspects. First,
just like for static DR methods, one is interested to see how well
techniques capture the spatial aspects of the underlying data. For
this, one typically uses the same types of spatial quality metrics as
for static projections (Sec. 2.3). A separate important aspect for dy-
namic DR methods is stability. Loosely put, stability describes how
a dynamic DR technique encodes changes in the data into changes
in the 2D metaphor used to visualize the data. Such metaphors
can be grouped into spatial ones, where different timesteps map
to different plots, such as in small multiples; and animation-based
ones, where different timesteps are encoded into frames of a 2D
animation. Stability metrics were proposed and evaluated to assess
the quality of other visualizations of dynamic data such as time-
dependent treemaps [SSV18, VCT19, VTC18].

Stability is related to the capacity of a DR technique to deal with
so-called out-of-core data. Simply put, this means the ability for a
projection, created from a given dataset D, to add extra points X /∈D
to the resulting 2D depiction P(D), without distorting this depic-
tion too much so that its understanding becomes hard. While recent
works consider out-of-core and stability as key properties for DR
projections [NA19, BFHL17, EHT19, GfVLD13, BSL∗08], we are
not aware of specific quality metrics that quantify these.

3. Experimental setup

To evaluate how dynamic DR techniques perform, we follow a
methodology similar to the one proposed in [EMK∗19] for eval-
uating static DR techniques, as follows. We first select a set of dy-
namic DR techniques to evaluate. Next, we select a collection of
datasets that cover various aspects, or traits, that characterize high-
dimensional dynamic data. Thirdly, we evaluate both spatial quality
and stability metrics on all combinations of techniques and datasets;
in this step, we also propose novel metrics to gauge stability. We
describe all these steps next. The analysis of the discovered correla-
tions between techniques, dataset traits, and quality metrics obtained
from our experiments is discussed afterwards in Sec. 4.

3.1. Techniques

We selected the dynamic DR techniques to evaluate based on the fol-
lowing considerations. First, we only consider techniques P, which,
given a dataset consisting of several timeframes Rt , produce cor-
responding 2D scatterplots P(Rt). We argue that this is the most
generic definition of a dynamic projection – from such scatterplots,
other types of visualizations can be constructed next as desired
(animation, small multiples, trails). This is analogous to expect-
ing a generic static projection technique to deliver a 2D scatterplot.
Hence, techniques that deliver different output types, such as m-
TSNE [NPTS17] and temporal MDS [JFSK16], are excluded from
our evaluation. Secondly, we only consider techniques that (1) are
generic with respect to the input data (size, dimensionality, prove-
nance) they can handle; (2) well-known and often used in practice,
so their evaluation arguably serves a sizeable user group; and (3)
easy to set up, control, and have publicly available implementations,
for reproducibility. We next describe the selected techniques.

t-SNE and variants: Probably the simplest way to project dynamic
data is to compute a single, global, projection P(D) for the entire
dataset D and next visualize the timeframes by using the desired
method, be it animation, trails, or small multiples. We next call this
the global (G) approach. While this arguably favors stability (since
P sees all data D at once), it likely yields limited spatial quality,
since P has the challenging task of placing well all points from all
revisions in D. An equally simple approach is to compute indepen-
dent projections P(Rt) for each revision Rt . We call this next the
per-timeframe (TF) approach. This arguably favors spatial quality,
since P must only optimize positions for each revision Rt separately,
rather than the entire D. However, this approach can yield poor sta-
bility, since timeframes are projected without knowledge of each
other. Both the global and timeframe approaches were suggested,
but not quantitatively evaluated, in the dt-SNE paper [RFT16].
Given this, and also the fact that t-SNE is a very well-known static
technique, we next consider G-t-SNE, TF-t-SNE, and dt-SNE in our
evaluation.

UMAP: This recent DR technique [MHSG18] has a mathematical
foundation on Riemannian geometry and algebraic topology. Ac-
cording to recent studies [EMK∗19,BMH∗19], UMAP offers high-
quality projections with lower computational cost and better global
structure preservation than t-SNE, being thus an interesting com-
petitor in the DR arena. We consider in our evaluation both the
global (G-UMAP) and per-timeframe (TF-UMAP) variants of this
technique.

PCA: Following [FCS∗19, MDL07, WG11], we also consider Prin-
cipal Component Analysis [Jol86], implementing the global and
timeframe strategies. In detail, PCA performs a linear mapping of
the data D to, in our case, 2D by maximizing the data variance in
the 2D representation. The global strategy implies computing PCA
once for the entire D. In contrast, timeframe PCA means comput-
ing PCA separately for each revision Rt . Given the widespread use
of PCA in many fields of science, and also its out-of-core ability
(which, as outlined in Sec. 2.5, is related to stability), we consider
both G-PCA and TF-PCA next in our evaluation.

Autoencoders: Often used in dimensionality reduction and rep-
resentation learning, autoencoders [HS06, Bal87] are hourglass-
shaped neural networks. They are composed of an encoder that takes
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Table 1: Hyperparameters of the autoencoder-based DR methods

dataset technique # hidden layers # nodes/layer # epochs
cartolastd AE 2 10, 10 50
cartolastd VAE 2 10, 10 100
cifar10cnn AE 2 10, 10 20
cifar10cnn VAE 2 100, 10 20
esc50 AE 2 10, 10 40
esc50 VAE 2 100, 10 20
fashion AE 3 500, 500, 2000 40
fashion VAE 3 2048, 1024, 512 20
gaussians AE 2 10, 10 20
gaussians VAE 2 100, 10 20
nnset AE 2 10, 10 20
nnset VAE 2 100, 10 20
qtables AE 2 10, 10 20
qtables VAE 2 100, 10 20
quickdraw AE 3 500, 500, 2000 40
quickdraw VAE 3 2048, 1024, 512 20
sorts AE 2 10, 10 20
sorts VAE 2 100, 10 20
walk AE 2 10, 10 20
walk VAE 2 100, 10 20

the original data D and compresses it into a compact (latent) rep-
resentation P(D) of lower dimensionality (two in our case), and a
decoder, which takes P(D) and aims to reconstruct a good approxi-
mation of the original data D. While autoencoders have been often
used to create static projections of high-dimensional data, they have
not, to our knowledge, been quantitatively evaluated for their ability
to handle dynamic data. We evaluated four types of autoencoders,
as follows. Dense autoencoders (AE) are comprised of only fully-
connected (dense) layers and are the standard variant. Convolutional
autoencoders (CAE) [MMCS11] have both fully-connected and
convolutional layers. The convolutional layers apply a non-linear
transformation to the data that takes into account the spatial cor-
relation between attributes, for instance, the proximity of pixels in
an image. Variational autoencoders may have both fully-connected
layers (VAE) [KW13] and convolutional layers (CVAE). The main
difference between dense and variational autoencoders is the addi-
tion of stochastic behavior in the intermediate layer of the latter. The
encoder produces two vectors – an intermediate representation (IR)
and an uncertainty degree σ for each IR value. The decoder tries
to reconstruct the input through a sample from the latent space dis-
tribution with mean IR and variance σ, thus forcing the network to
learn similar representation for similar inputs. Convolutional based
architectures are not generic regarding input and a meaningful spa-
tial relationship between attributes is expected (such as found on
image data). We, therefore, restrain the analysis on this document
to AE and VAE. The results of CAE and CVAE runs for the image
based datasets (fashion and quickdraw) can be found on the online
material [VGdS∗19].

Implementation: We implemented the chosen dynamic DR tech-
niques (G-t-SNE, TF-t-SNE, dt-SNE, G-UMAP, TF-UMAP, G-
PCA, TF-PCA, AE, CAE, VAE, CVAE) as follows. For t-SNE and
PCA, we used scikit-learn [PVG∗11] with default parameters. For
dt-SNE and UMAP, we used the implementation provided online by
the authors [RFT16, MHSG18]. Finally, we implemented the four
autoencoder models using Keras [C∗15], with different numbers
of layers, nodes per layer, optimizers, and training routines. Tab. 1
shows the values, for each autoencoder and dataset, that delivered
the best results, and which we used next. The code, notebooks, and
instructions to recreate our results are available online [VGdS∗19].

3.2. Datasets

There is, to our knowledge, no standardized benchmark for evalu-
ating DR techniques. Espadoto et al. [EMK∗19] took a first step
towards providing such a benchmark containing 19 datasets. How-
ever, all these are time-independent, thus not suitable for us. We
followed here a similar approach, i.e. collecting a set of 10 high-
dimensional and dynamic datasets that exhibit significant variations
in terms of provenance, number of samples N, number of timesteps
T , dimensionality n, intrinsic dimensionality ρn (percentage of n di-
mensions that explain 95% of the data variance), and sparsity ratio
σn (percentage of zeros in the data). All datasets are labeled into 3 to
10 classes. We only use labels for visualization and quality assess-
ment and not the projection itself. Table 2 shows the characteristics,
or traits, for these datasets. Further details on them are listed below.

• cartolastd: Player statistics for the second turn of the 2017
Brazilian football championship. Data was extracted from an
open-source project [GG19] that scrapes the Cartola FC football
platform. Each timestep corresponds to a tournament round. Vari-
ables relate to per-match performance of a given player (number
of goals, assistances, fouls, defenses, etc.). Players are labeled
by their playing position (goalkeeper, right or left-back, defender,
midfielder, forward).
• cifar10cnn: Last hidden layer activations after each training

epoch for a convolutional network trained to classify the CI-
FAR10 [Kri09] dataset.
• esc50: Sound samples of 8 classes (brushing teeth, chainsaw,

crying baby, engine, laughing, rain, siren, wind) compressed to
128 frequencies and smoothed over time. Extracted from Piczak’s
ESC50 dataset [Pic15].
• fashion: 100 images from each of the 10 classes (T-shirt/top,

trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle
boot) of the FashionMNIST [XRV17] dataset with decreasing
amounts of noise over time.
• gaussians: Synthetic dataset used to evaluate dt-SNE [RFT16].

Isotropic gaussian blobs in nD with diminishing spread over time.
• nnset: Internal states (weights and biases) of several neural net-

works during training with the MNIST dataset [LC10]. The net-
works have the same architecture but use different optimizers,
batch sizes, and training-set sizes.
• quickdraw: Drawing sequences for 600 objects of 6 different

classes drawn by random people. Extracted from the “Quick,
Draw!” Google AI experiment [JRK∗16].
• sorts: This dataset was designed to compare the behavior of eight

sorting algorithms. The algorithms sort different arrays of 100
random values in [0,1]. As they do so, we take snapshots of the
intermediate states, until sorting is over. Each observed point is an
(algorithm, array) run, and its feature vector is the partially sorted
array at a given time.
• walk: Synthetic dataset with similar structure to gaussians. It

contains 3 high-dimensional clusters oscillate (approach, inter-
mingle and cross, and then drift apart) in R100 over time. We de-
signed this dataset to see how well the studied DR techniques can
capture the approaching, mingling, and drifting-away dynamics
mentioned above.

Covering all variations of high-dimensional datasets with a
benchmark is already daunting for static data [EMK∗19], thus even
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Table 2: Datasets and their traits used in the evaluation.
dataset samples N timesteps T dimensions n classes intrinsic dim. ρ

n
sparsity ratio σ

n

cartolastd 696 19 17 5 0.6470 0.0000

cifar10cnn 1000 30 10 10 0.6599 0.0000

esc50 320 108 128 8 0.0345 0.0000

fashion 1000 10 784 10 0.4762 0.2971

gaussians 2000 10 100 10 0.3680 0.0000

nnset 80 30 8070 8 0.0057 0.0001

qtables 180 40 1200 9 0.0077 0.0007

quickdraw 600 89 784 6 0.4309 0.9013

sorts 80 100 100 8 0.3505 0.0100

walk 300 50 100 3 0.4783 0.0001

more for dynamic data, as there are many types of dynamic patterns
possible. Hence, we cannot claim that our benchmark is exhaustive
in terms of the space it samples. However, we believe that the in-
cluded datasets exhibit a rich variety of different traits (Tab. 2). Also,
no two datasets are redundant, i.e., have all traits similar. Given that,
to date, no other benchmark exists for this task, we believe ours is a
good start in supporting the intended evaluation.

3.3. Metrics

We measure the quality of all projection techniques (Sec. 3.1) on all
datasets (Sec. 3.2) using both spatial quality and stability metrics,
similarly to other evaluations of multivariate dynamic data visual-
izations such as treemaps [SSV18, VCT19, VTC18]. In our evalua-
tion, we use the same metrics as the survey [EMK∗19] (and a few
extra ones) over all revisions Rt , as follows.

3.3.1. Spatial metrics

Neighborhood preservation (SNP): With values in [0,1], with 1
being the best, this is the percentage of the k-nearest neighbors of
x ∈ D that project in the k-nearest neighborhood of P(x).

Neighborhood hit (SNH ): With values in [0,1], with 1 being the
best, this is the fraction of the k-nearest neighbors of a projected
point P(x) that have the same class label as P(x). Since we know
that our datasets exhibit reasonably well-separated classes in Rn, a
proper DR technique (from the perspective of class separation tasks)
should yield a high neighborhood hit.

Trustworthiness (STrust ): With values in [0,1], with 1 being the
best, this measures how well the k nearest neighbors NNk(P(x))
of a projected point P(x) match the k nearest neighbors NNk(x)
of a data point x. Simply put, trustworthiness measures how few
missing neighbors [MCMT14] a projected point has. Formally,
if Uk(x) is the set of points that project in NNk(P(x)) but are
not in NNk(x), and r(x,y) is the rank of y in the ordered set of
nearest neighbors NNk(P(x)), trustworthiness is then defined as
1− 2

Nk(2N−3k−1) ∑
N
x=1 ∑y∈Uk(x)(r(x,y)− k).

Continuity (SCont ): With values in [0,1], with 1 being the
best, this measures how many missing neighbors [MCMT14] a
projected point has. Following the above notations, let V k(x)
be the points that are in NNk(x) but do not project in
NNk(P(x)). Let also r̂(x,y) be the rank of y in the or-
dered set of neighbors NNk(x). Continuity is then defined as
1− 2

Nk(2N−3k−1) ∑
N
x=1 ∑y∈V k(x)(r̂(x,y)− k).

In contrast to [EMK∗19], we compute neighborhood preserva-
tion, trustworthiness, and continuity for multiple (20) neighborhood
sizes equally spread between k = 1% and k = 20% of the point count
N. Similarly, for the neighborhood hit, we use 20 values for k, rang-
ing from 0.25% to 5%. This allows us next to study the spatial qual-
ity of projections at different scales [MMT15].

Normalized stress (SStress): With values in R+, lower meaning
better distance preservation, stress measures the pairwise differ-
ence of distances of points in nD and qD. We define SStress as

∑i j

(
dt

i j−dt
i j

)2
/∑i j(d

t
i j)

2, where dt
i j and dt

i j are the Euclidean dis-

tances between data points xt
i and xt

j, and between their projections
P(xt

i) and P(xt
j), respectively, for 1 ≤ t ≤ T , for every point pair

(i, j). To ease analysis, we scale distances using standardization.

Shepard diagram metrics: The Shepard diagram is a scatterplot of
di j by di j, for every pair (i, j) in D (see Fig. 3b). It visually tells
how different ranges of distances between points are affected by a
projection. Plots close to a diagonal indicates good distance preser-
vation. Deviations from this highlight patterns such as poor preser-
vation of long/short distances, creation of false neighborhoods, or
stretching and compression of the manifold on which the data is
defined [JCC∗11]. We summarize and quantify Shepard diagrams
by measuring the relationship between the two distances. Follow-
ing [EMK∗19], we use Pearson correlation to measure the linearity
of the relationship, and we add Spearman and Kendall correlation
to measure the monotonicity of the relationship. The three resulting
correlation metrics SPearson,SSpearman,SKendall range from -1 to 1,
where 1 means perfect positive correlation.

3.3.2. Temporal stability metrics

As previously stated, there are no metrics in the literature specially
designed to measure the temporal stability of DR methods. We next
propose two such metrics, as follows. The two variables whose re-
lationship we want to measure are the change of the attributes of
a sample x from time t to t + 1, measured as the nD Euclidean
distance δ

t = ‖xt − xt+1‖, and movement of the projection point
P(x) from time t to t + 1, measured as the 2D Euclidean distance
δt = ‖P(xt)−P(xt+1)‖. Ideally, for a temporally stable P, we want
δt to be proportional to δ

t . However, this may be a too hard con-
straint for P to satisfy, just as perfect nD to 2D distance preservation
is hard to achieve for static projections. A more relaxed requirement
for a temporally stable P is to have δt a monotonic increasing func-
tion of δ

t . Indeed, if this constraint were not obeyed by P, then if an
observation xt changes only slightly over time, its projection P(xt)
could move a lot. That is, if δ

t� δt , the projection P is unstable, and
would convey the user the wrong impression that data is changing a
lot. Conversely, if xt strongly changes over time, but P(xt) remains
roughly static, i.e. if δ

t
i � δt

i , then the user gets the wrong impres-
sion that the data is not changing. Hence, for a temporally stable P,
the two changes δt and δ

t should be positively correlated.

To measure the relationship of δ
t and δt , we adapt the static spa-

tial quality metrics introduced in Sec. 3.3.1 as follows:

Normalized temporal stress (TStress): We define temporal stress as
∑i t (δ

t
i−δ

t
i)

2/(δt
i)

2, where the subscript i indicates sample point xi.
As for the spatial normalized stress, we normalize distances using
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Figure 1: Aggregated metric results over all datasets.

standardization. Low stress values indicate that the 2D changes δt

reflect closely their nD counterparts δ
t , which is desirable.

Temporal Shepard diagram metrics: Akin to the spatial metrics
defined on Shepard diagrams, we measure the Pearson, Spearman,
and Kendall correlations TPearson,TSpearman,TKendall between δ and
δ for every observation and consecutive timesteps. High correlation
values indicate that the 2D changes δt are strongly correlated with
their nD counterparts δ

t , which is desirable.

4. Evaluation and Results

We evaluate the 12 quality metrics introduced in Sec. 3.3 on all
(dataset, method) pairs formed by the selected 9 DR methods and
10 datasets, and analyze next the results. We do this by proposing
several metric visualizations, from highly aggregated (to help form-
ing first insights) to detailed (to examine more subtle points). For a
direct impression, see also the videos showing the actual dynamic
projections in action, available online at [VGdS∗19].

4.1. Aggregated results

Figure 1 shows average metric values computed over all datasets and
techniques. Light colors represent high metric values (preferred).
The colormap in Fig. 1 was normalized independently by the min
and max of each column (metric), and it was inverted for the stress-
based metrics, as low values mean preferred results for these. At the
bottom of each cell, a 1D scatterplot with density mapped to lumi-
nance shows the distribution of the values of the (metric, method)
pair corresponding to that cell over all datasets. The red line shows
the distribution mean. The table in Fig. 1 is divided into three blocks:
The two left blocks show spatial metrics for distance and neigh-
borhood preservation, respectively. The right block shows stability
metrics.

Figure 1 helps us to find methods that strike a balance between
spatial quality and stability. In this sense, (variational) autoencoders
and G-PCA score, overall, the best. The other methods are good

in one aspect but not the other: Timeframe t-SNE has high neigh-
borhood metric values but poor distance preservation and the poor-
est stability from all assessed methods. Timeframe PCA has high
distance preservation but relatively low stability. dt-SNE appears to
be as good spatially as G-t-SNE, but slightly less stable. This is an
interesting finding since dt-SNE was explicitly designed (but not
quantitatively assessed) to aid stability.

4.2. Dataset-wise results

Figure 1 is simple to read but heavily aggregated, so it does not show
how the quality of specific methods depends on specific datasets. To
see this, Fig. 2 shows all metric results for all datasets without ag-
gregation. As in Fig. 1, light colors mean good results. Columns
are now not normalized. Column groups (a-f) represent spatial met-
rics, and columns (g-h) represent stability metrics. We use different
quantitative colormaps to indicate different types of measured data.
By examining Fig. 2, we obtain the following insights:

Unstable methods: TF-t-SNE is always unstable regardless of the
dataset. This refines the instability finding over TF-t-SNE (Sec. 4.1)
by showing that this occurs irrespective of the dataset. Also, it con-
firms the same observation in [RFT16], which, however, was not
quantitatively confirmed there. The reason for this instability is the
stochastic nature of t-SNE, which strongly manifests itself if we
run the method from scratch on every new revision (timeframe). We
could attribute the instability of TF-UMAP to the same reason.

Poor spatial quality: G-t-SNE and G-UMAP score poorly on dis-
tance and neighborhood preservation on most datasets. This is the
aforementioned difficulty (Sec. 3.1) of constructing a single pro-
jection covering many samples in many timeframes. This is much
harder than constructing a projection that preserves only neighbor-
hoods formed by points in a single timeframe. We see here again the
trade-off between spatial quality and stability.

Neighborhood preservation: Here we see dataset-specific behav-
ior: For gaussians, SNP, STrust , and SCont peak at a neighborhood
size of roughly 10% of the dataset size. This makes sense since this
is the size of the clusters present in this dataset – when k exceeds this
value, the metrics will start considering points in other clusters, thus
decrease. More interestingly, we see some outliers (dark bands in
the heat-colormapped plots). These are techniques that score poorly
for any k value. Among these, we find G-t-SNE, dt-SNE, and G-
UMAP. At the other extreme, TF-t-SNE and TF-UMAP score the
best results at neighborhood preservation, followed by AE, VAE,
G-PCA, and TF-PCA.

Dynamic t-SNE: In contrast to the good results qualitatively ob-
served on the single gaussians dataset showed in [RFT16], dt-SNE
performs less well in both spatial quality and stability for several
other of the considered datasets, being quality-wise somewhere be-
tween TF-t-SNE and G-t-SNE for all considered metrics.

Dataset difficulty: Some datasets are considerably harder to project
with good quality than others, no matter which technique we use.
For example, walk has poor stability for all techniques. In contrast,
gaussians has good stability for all techniques (except the t-SNE
and UMAP variants) and good neighborhood preservation for all
techniques. To study how dataset characteristics influence quality,
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Figure 2: Twelve spatial quality and temporal stability metrics evaluated for 9 DR methods run on ten datasets.

we compute the correlation of the distance-preservation, neighbor-
hood, and temporal stability metrics (measured over all techniques)
with the six traits that we used to characterize our datasets (Tab. 2).
Table 3 shows the results. A few things stand out: As the number
of samples N increases, the difficulty to preserve distances also in-
creases, but neighborhoods are preserved better. Conversely, as spar-
sity σn increases, it becomes harder to preserve neighborhoods. Sep-
arately, we do not find any strong (positive or negative) correlation
of temporal stability with any of the traits. Overall, this suggests
that the traits are useful in predicting spatial quality of projections.
However, we need additional traits that capture the data dynamics to
reason about the projections’ temporal stability.

Table 3: Correlation between metric types and dataset traits.

-0.429566 0.145921 -0.076177 -0.285476 -0.007806 -0.211705

0.385248 -0.380503 -0.298868 0.243835 0.172121 -0.404517

0.150231 0.012017 -0.009754 0.275271 -0.085292 0.160295

samples N timesteps T dimensions n classes intrinsic dim. ρ
n

sparsity ratio σ
n

distance preservation

neighborhood preservation

temporal stability

4.3. Fine-grained analysis

While Fig. 2 shows all computed metrics for each (dataset, method)
combination, metric values are still aggregated to a single scalar per
combination. This does not show how metrics vary over the extent
of a projection and/or over time. There are more patterns in dynamic
projections than we can capture by a set of metrics, no matter how
good these are. To get such insights, we next present a fine-grained
analysis that aggregates the metrics even less (see Figure 3) for a
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Figure 3: Detailed analysis of distances and movements produced by all DR techniques on the cartolastd dataset.

a) b)

TF-t-SNE TF-t-SNE

d) c) e) 

TF-PCA reflection rotation
TF-PCATF-PCA

Figure 4: Examples of instability in TF-t-SNE (a,b) and TF-PCA (c,d,e).

single dataset (cartolastd, chosen as it is alphabetically the first in
our benchmark). Similar visualizations for all other datasets in the
benchmark are available online [VGdS∗19]. We next analyze these
methods for this dataset from several perspectives, as follows.

Stability visual assessment: Figure 3a shows the actual dynamic
projections with point trails (P(x1

i ), . . . ,P(x
T
i )), one per player i.

Colors map the players’ labels. This visualization already says a
lot about the behavior and similarities of the studied DR methods
(see also the submitted videos). The instability of TF-t-SNE and TF-
UMAP becomes apparent, as their trails cover a very large area in
the projection space. However, these methods achieve a quite good
separation of same-label clusters. In contrast, dt-SNE shows trails
that depict much local movement. Both PCA variants show rela-
tively little movement, with points oscillating along two main axes,
which are the main eigenvectors computed by the methods. At the
other extreme, AE, VAE, and G-t-SNE show the least motion. How-
ever, this does not imply by itself a high quality: G-t-SNE, for in-
stance, achieves indeed a better visual spreading of samples in the
available projection space, but it has very poor neighborhood preser-

vation (see G-t-SNE results in Fig. 2) and, as already discussed
above, it also has very poor stability.

Distance preservation: Figure 3b shows the Shepard diagram of
distances, which is a scatterplot of di j by di j, for every pair (i, j)
in D, that helps us understand the distance preservation aspect of
each technique. We see that the AE and PCA variants have over-
all better distance preservation (plots closer to the diagonal) than
the t-SNE/UMAP variants. Also, we see that AE and PCA typically
compress nD distances to 2D (points mainly under the main diago-
nal), whereas the t-SNE/UMAP variants both compress and stretch
these (points are located both under and above this diagonal).

Inspired by the Spearman and Kendall correlations, we consider
next the agreement of ranks instead of aggregating it to a single
value. Figure 3c shows this, for distance preservation, by a his-
togram of the absolute rank differences of nD and 2D distances
between point pairs. In a projection with SSpearman = SKendall = 1,
such differences would be minimized, i.e., the kth largest 2D dis-
tance di j should correspond to the kth largest nD distance di j for ev-
ery point pair (i, j). In this case, all rank differences are zero, which
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would yield a histogram showing a single high bar at zero (left of the
histogram). Significant rank differences spread the histogram to the
right, showing poor monotonicity between the two variable ranks.
From these plots, we see, again, that AE and VAE score the best,
followed by G-PCA, TF-PCA, and then the t-SNE and UMAP vari-
ants.

Stability metrics: Figure 3d shows Shepard diagrams for the point
movements, i.e., scatterplots of δ by δ for every sample compared
to itself in the next timestep, for all timesteps. Note that, in these
scatterplots, every point is a sample, whereas in the classical Shep-
ard diagrams (Fig. 3b), every point is a pair of samples. Ideally, we
want δ to be positively correlated to δ, which means a plot close
to the main diagonal. The AE and PCA variants show the closest
plots to the main diagonal, thus, best stability. At the other extreme,
TF-t-SNE shows widely varying 2D change for similar nD change,
thus, high instability. Finally, Figure 3e shows the absolute rank dif-
ference histograms for change. Their interpretation follows the one
for the distance-preservation histograms (Fig. 3c): Left peaked his-
tograms indicate high stability, whereas flatter ones indicate a dis-
crepancy in 2D vs nD changes. These histograms strengthen the in-
sights obtained so far, making it even clearer that the AE and G-PCA
methods are far stabler than the t-SNE, UMAP and TF-PCA.

5. Understanding dynamic projection behavior

The coarse-grained and fine-grained analyses presented so far high-
lighted that there are significant differences in the behavior of dy-
namic DR methods that depend on both the method and the dataset.
In this process, we also saw that visual quality and stability seem to
be, in general, mutually competing for concerns – methods that are
good in one are not the best in the other. We further explore these ob-
servations as follows. First, we analyze the causes of the observed
(lack of) stability and link these to the way the studied DR tech-
niques operate (Sec. 5.1). Next, we summarize all our findings and
propose a workflow to assist the practitioner in selecting a suitable
DR technique for projecting dynamic data (Sec. 5.2).

5.1. Analysis of (un)stable behavior

Beside empirically measuring and observing that different DR tech-
niques have widely different stabilities, it is useful to analyze the
causes of these differences, which we do next.

t-SNE and UMAP: Our results tell that TF-t-SNE and TF-UMAP,
that is, projections computed independently for each timestep, are
the most unstable of the assessed techniques. This is so since these
are stochastic methods that optimize non-convex objective functions
using randomly seeded gradient descent. Hence, different runs with
the same data can create projections where different clusters might
be formed and/or placed at different 2D positions. Figure 4a,b shows
the last scenario. From timesteps 1 to 2 of the TF-t-SNE run of the
fashion dataset, even though the local structure remains the same,
the absolute position of the points and clusters changes drastically.
In conclusion, using t-SNE/UMAP independently per timeframe is
definitely not a good option for dynamic data.

dt-SNE: We encountered several cases where dt-SNE seems to have
trouble optimizing its objective function – for details, see the videos
for qtables and sorts. In both these cases, dt-SNE did not capture

any of the spatial structures present in the data, nor produced any
sensible movement. These visual findings can be confirmed by the
dark lines (low-quality values) in Fig. 2. We also noticed that dt-
SNE is very sensitive to the choice of hyperparameters. Conclud-
ing, whereas the initial findings in [RFT16], obtained on a single
dataset (gaussians) position this technique as a good option for pro-
jecting dynamic data, our additional findings raise questions about
the practical value of this technique.

PCA: We also see instability in TF-PCA, but for different reasons
than the ones discussed above. Specifically, if there is a change in
rank of the top two eigenvectors from timestep t to the next one, i.e.,
one of the associated eigenvalues becomes larger than the other, the
projection exhibits an artifact that resembles a reflection – see the
quickdraw dataset in the two timesteps in Fig. 4b,c. Alternatively,
if the data changes sufficiently for the eigenvectors to change con-
siderably, the projection shows a rotation-like artifact – see the two
timesteps in Fig. 4d,e. In contrast to t-SNE and UMAP, these ar-
tifacts are not due to stochastic seeding, but due to the way PCA
works. Given the above, it is now clear why G-PCA is very stable
– it chooses the two largest-variation axes for the entire dataset (all
timesteps). The price to pay for this stability is that G-PCA may not
yield the axes that best describe the data variation at each timestep,
thus not the best spatial quality.

Autoencoders: Similarly to G-PCA, these techniques are stable
since they train with the entire dataset (all timesteps) to learn a la-
tent representation that encodes the global data distribution. Once
trained, the encoder is a deterministic function that maps nD data to
2D. The main disadvantage of autoencoders over G-PCA is usabil-
ity: PCA is simple to implement and use. Autoencoders, in contrast,
have the ‘usual’ deep learning challenges, most notably finding the
optimal network architecture and hyperparameter values.

5.2. Finding similarly behaving techniques

Figure 1 showed a high-level aggregated view of the quality metrics
of the studied DR techniques, outlining that the autoencoders and
PCA variants score better, in general, on both spatial quality and
stability, than graph neighborhood techniques (t-SNE, dt-SNE, and
UMAP). However, that image (and related analysis) was too aggre-
gated. At the other extreme, Fig. 2 and related discussion showed a
fine-grained analysis of all metrics measured for all techniques run
on all datasets. From both these analyses, it is quite hard to under-
stand how (and when) different techniques behave similarly. This is
arguably important for practitioners interested in choosing a tech-
nique in a given context (dataset type and metrics to maximize).

Figure 5 supports this similarity analysis, as follows. Each point
is here a technique run on a dataset, attributed by the computed 12
quality metrics. We project these points to 2D using UMAP, thus,
creating a ‘projection of projections’ map. The four images in Fig. 5
use different visual codings to reveal several insights, as follows.
Image (a) shows the techniques and datasets, coded by glyph, re-
spectively categorical colors. Points in this plot are clustered more
due to datasets than techniques – that is, quality is more driven by
the dataset nature than by which projection technique is used. For
instance, we see the sorts dataset well-separated as the purple clus-
ter bottom-left in Fig. 5a. Images (b-d) show the same projection,
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Figure 5: Projection of projections map showing the similarity of all evaluated techniques on all datasets (Sec. 5.2).

colored by stability, distance preservation, and neighborhood preser-
vation, respectively. The left part of the projection (orange dashed
line, Fig. 5b) shows cases where stability and distance (and/or neigh-
borhood) preservation are mutually complementary, i.e., when we
obtain high stability, we get low distance/neighborhood preserva-
tion and conversely. The top-right part of the projection (red dashed
line, Fig. 5b) shows cases where both stability and spatial quality are
quite high. All these cases use the AE, VAE, and G-PCA techniques.
The central area of the projection is covered mainly by t-SNE, dt-
SNE and UMAP, telling that these projections have average behav-
ior (as compared to autoencoders and PCA variants). Looking at the
color-coded plots (images b-d), we see that these projections do not
score highest on any of the considered metrics.

The plots in Fig. 5 can guide choosing a DR technique to project
dynamic data: Given a dataset D to project, (1) find the most similar
dataset D′ in the benchmark, i.e., that contains data of similar nature
(e.g., natural images, sounds) and is obtained via a similar acquisi-
tion process; (2) decide what is important for the dynamic projec-
tion of D – stability, distance preservation, neighborhood preserva-
tion, or a mix of them; (3) find the projection techniques P in the
respective quality plots that have the desired qualities on D′, and
possibly also consider other projection techniques that behave sim-
ilarly (close points in the plots). These techniques P are then good
candidates to project D with.

6. Conclusion

This paper is an initial step towards understanding the behav-
ior of dimensionality reduction techniques in the context of dy-
namic/temporal data. We hope that the information and results pre-
sented here help practitioners who want to understand their com-
plex data and that this work can be used by authors interested in
developing DR techniques as a tool for evaluation and comparison.
We proposed a publicly available benchmark with 9 methods, 10
datasets, and 12 quality metrics. To evaluate the viability of dif-
ferent techniques for the task, we computed spatial and temporal
stability metrics for all possible combinations, thus providing an ex-
tensive collection of results. Based on the results, we presented a
discussion that elaborates on the causes for understanding the dy-
namic behavior. All our experiments are documented and detailed
online [VGdS∗19] to allow further analysis and reproducibility.

There are many ways this work can be extended in the future.
The benchmark can be extended with new methods, a better way
to choose hyperparameters, new datasets, and new metrics. With a
larger number of datasets, we can perform a robust test of the impact
of dataset traits on the metrics. We can also integrate streaming data
techniques, datasets, and tests.

c© 2020 The Author(s)
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