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Abstract
Projection algorithms such as t-SNE or UMAP are useful for the visualization of high dimensional data, but depend on hyperpa-
rameters which must be tuned carefully. Unfortunately, iteratively recomputing projections to find the optimal hyperparameter
value is computationally intensive and unintuitive due to the stochastic nature of these methods. In this paper we propose Hy-
perNP, a scalable method that allows for real-time interactive hyperparameter exploration of projection methods by training
neural network approximations. A HyperNP model can be trained on a fraction of the total data instances and hyperparameter
configurations and can compute projections for new data and hyperparameters at interactive speeds. HyperNP models are
compact in size and fast to compute, thus allowing them to be embedded in lightweight visualization systems. We evaluate the
performance of HyperNP across three datasets in terms of performance and speed. The results suggest that HyperNP models
are accurate, scalable, interactive, and appropriate for use in real-world settings.

CCS Concepts
• Human-centered computing → Visualization techniques;

1. Introduction

As data-generating devices and computational resources expand,
there is a growing need for interactive visual exploration for
high-dimensional data [LMW∗17]. An important class of vi-
sualization methods for such data is projection, which maps
data from a high-dimensional space to a similarity-preserving
low-dimensional representation [NA19, EMK∗21]. Many projec-
tion methods exist, including linear and global techniques
such as PCA [Pea01], and non-linear approaches such as t-
SNE [vdMH08], UMAP [MHSG18], and Isomap [BS02].

While widely used to visualize high-dimensional data, pro-
jections can be sensitive to hyperparameter choices which
the practitioner must tune carefully [SH05, WHRS21, WVJ16].
Unfortunately, many projection methods are computationally
expensive [NA19], making real-time hyperparameter changes in-
tractible. In order to support a user’s exploration of hyperparame-
ters in projections, a method is required that enables real-time in-
teraction with a projection’s hyperparameter values.

In this paper, we present HyperNP, a deep learning technique
that approximates projections across hyperparameters to enable
real-time exploration of a projection method’s hyperparameters.
Similar to previous work on neural network projection (NNP)

[EHT20, EAS∗21], HyperNP approximates the projection of a sin-
gle technique (like t-SNE) on a single dataset with the added ben-
efit of out-of-sample projection. Both NNP and HyperNP can be
thought of as surrogate models for projection techniques, which
attempt to alleviate some of the computational burden by approx-
imating the results. Unlike previous methods, HyperNP can com-
pute projections for hyperparameter values unseen during training,
without the heavy recomputation inherent to the process for gen-
eral projection methods. Previous methods [EHT20, EHFT20] have
to refit each hyperparameter value since they only produce a sin-
gle projection at a single hyperparameter value. HyperNP, on the
other hand, produces projections across the range of the hyperpa-
rameter value of interest after a single training. Once HyperNP has
been trained, the compute time required for the inference step is
minimal. We leverage this fast computation to allow real-time vi-
sualization of large data sets and interactive exploration of different
hyperparameter values associated with the projection operator.

As with most learning techniques, HyperNP has two stages:
training and inference. Training HyperNP to mimic the outcome of
a parameterized projection method has two steps: (1) The hyperpa-
rameters are sampled and used to project a subset of the data using
the user-selected projection technique. (2) The HyperNP model is
trained with a loss function that captures the differences between
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its prediction and the ground-truth. After training, HyperNP infers
the 2D projection of high-dimensional data for any user-selected
projection hyperparameter value. At this stage, the user can inter-
act with the hyperparameters using HyperNP, as the effect of these
parameters can be estimated by the HyperNP model.

HyperNP is applicable to any projection requiring user-tuned in-
put. This is noteworthy, as it means that the technique can be lever-
aged for interactive tuning of any projection method without refor-
mulation. We demonstrate HyperNP’s ability to learn hyperparam-
eters by applying it to three popular techniques: t-SNE, UMAP, and
Isomap. For each of these techniques, we explore one of their most
important hyperparameters, and show how HyperNP can help users
tune this hyperparameter in order to find an appropriate projec-
tion. This shows that HyperNP learns hyperparameter spaces that
cover both continuous domains (t-SNE perplexity) as well as dis-
crete integral domains (e.g. k-nearest neighbors value for UMAP
and Isomap).

To evaluate HyperNP, we conducted experiments across three
datasets to assess its: (1) accuracy in approximating projection
techniques across a variety of measures, (2) scalability, as measured
in training time, and (3) interactivity, as measured in inferencing
speed. The results demonstrate that HyperNP creates high-quality
projections using a fraction of the training data and hyperparame-
ter samples. Projections generated by HyperNP are visually simi-
lar from those produced by these projection methods, and perform
similarly to the ground-truth in terms of common projection-quality
metrics. Further, HyperNP is scalable with respect to the size of
data, both in terms of training time and inferencing time. Training
HyperNP with up to 50k data points requires less than 20 minutes.
Once trained, HyperNP is fully interactive with 20ms latency for
50k data points and 500ms latency for up to 500k data points. In
summary, we claim the following contributions:

• HyperNP, a deep learning-based method able to approximate
projections of high-dimensional data across hyperparameter con-
figurations at interactive speeds;
• examples of our method applied to three popular projection

techniques (t-SNE, UMAP, and Isomap);
• a quantitative evaluation of our method highlights its accuracy,

scalability, and interactivity.

2. Related Work

We start with some notation. Let D = {xi}, xi ∈ Rn, 1 ≤ i ≤ N
be a n-dimensional dataset. Its N points xi (also called samples or
observations) have each n dimensions (also called attributes).

2.1. Overview of Projection Techniques

Projection, or dimensionality reduction (DR) techniques, are mem-
bers of a class of high-dimensional visualization methods. A DR
method can be seen as a function P : Rn→ Rq, where q� n and,
in the context of visualization of high-dimensional data, q = 2. The
projection P(xi) of a sample xi ∈ D is thus a 2D point and the pro-
jection of D, denoted P(D), can be mapped to a 2D scatterplot. A
projection P aims to place points xi ∈D that are regarded to be sim-
ilar from the perspective of a measure defined on the data space D
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Figure 1: Architecture of HyperNP: Training data from a specific dataset is
projected using a specific projection method across a range of a hyperpa-
rameters of interest belonging to that projection method. HyperNP’s neural
network is trained and tuned using a combination of a sample of the dataset
to project and the projection methods’s hyperparameters as features, and
the projections of the dataset sample as target values. After training, Hy-
perNP inferences to produce projections that approximate the original pro-
jection, but at a fraction of the computational cost. Note that the size of the
lines relates to the relative number of observations, and color helps illus-
trate when multiple sources of data are combined.

close to each other in the scatterplot P(D). Hence, users can reason
about data relationships in D by examining this scatterplot.

Projections scale well both in the number of samples N and
dimensions n, enabling their wide use= for visualizing high-
dimensional data. Several works examine projections and their
added-value from several viewpoints:

Taxonomies: Projection techniques can be grouped into several
taxonomies, thereby providing ways for practitioners to compare
and choose a technique based on specific requirements. Van der
Maaten et al. [vdMPvdH09] and Cunningham et al. [CG15] show
how P can be computed by several types of non-linear, or respec-
tively linear, optimization methods that offer different tradeoffs be-
tween computational scalability and projection quality. Sorzano et
al. [SVM14] and Engel et al. [EHH12] propose two taxonomies of
projections based on their implementation aspects, in particular the
cost functions they optimize to compute P, and the choices of avail-
able optimizers and their computational complexities.

Quality and perception: A projection’s effectiveness is a combi-
nation of how well P(D) captures data patterns present in D and
how (easily) users actually perceive the patterns in P(D). Heulot et
al. [HFA17] and Nonato and Aupetit [NA19] classify the different
types of errors that projection techniques create and how these im-
pact different classes of visual analytics tasks. Separately, several
authors propose perception models [AEM11, TBB∗10, WFC∗18]
and visual quality metrics and visualizations thereof
[LV09, MLGH13, MCMT14, SA15, AS16, CHAS18] to help
users understand the quality of the projections they compute, as
determined by the chosen algorithms.

Quantitative analysis: Several works propose benchmarks which
measure the quality of projection techniques across a selection
of datasets [vdMPvdH09, EMK∗21]. These provide guidelines for
practitioners to choose a suitable technique depending on the type
of quality metrics they want to maximize for a given dataset type.

2.2. Hyperparameters in Projection Techniques

The function P depends not only on D, but also on a set of hyperpa-
rameters h = {hi}. These hyperparameters control several aspects
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of P as follows. Computing a global mapping P between Rn and R2

that has overall high quality is, in general, not possible. As such,
many projection techniques construct different mappings for dif-
ferent small-scale neighborhoods in Rn. For example, in a number
of projection techniques (including UMAP, Isomap and others), a
scalar parameter h controls the neighborhood size.

Locally Linear Embedding (LLE) [RS00] fits a hyperplane
through each point and its nearest neighbors, keeping local rela-
tionships linear, but allowing the global structure to be nonlinear.
Isomap [BS02] tackles the problem of projecting curved manifolds
by estimating geodesic distances over neighborhoods and using
these as a cost function to derive the projection. Least Squares
Projection [PNML08a] projects a subset of landmarks and then
uses a fast Laplacian-like operator to map the remaining samples.
Two Phase Projection [PSN10], LAMP [JCC∗11], and the Piece-
wise Laplacian Projection [PEP∗11] use a similar approach. t-
SNE [vdMH08] preserves neighbors during the projection by min-
imizing the Kullback-Leibler divergence between neighborhood
probabilities in Rn and R2. UMAP [MHSG18] models the Rn man-
ifold over small neighborhoods with a fuzzy topological structure
and searches for a 2D representation that has the closest possible
fuzzy topological structure. These neighborhood-based approach
all depend on hyperparameters h that model neighborhood sizes or
number (and selection) of landmark points.

All of the discussed work mention that finding good hyperparam-
eter values is challenging. Espadoto et al. [EMK∗21] recognize this
problem and address it by proposing optimal and preset parame-
ter values computed by grid search over the hyperparameter space.
However, this exhaustive search is expensive. More importantly,
certain projection methods do not have globally optimal presets.
Wattenberg et al. [WVJ16] illustrate this for t-SNE’s perplexity pa-
rameter whose variation can create projections which emphasize
different aspects of the n-dimensional data. However, experiment-
ing with many hyperparameter values is a costly process, especially
for projections which take long to compute.

Deep learning methods are effective for computationally scal-
able DR [HS06, SLZ12]. Kwon et al. [KM20] demonstrated great
success using a novel autoencoder to generate graph layouts. Their
method enables the exploration of the latent space of graph layouts.
More recently, NNP [EHT20, EHFT20, EAS∗21] use deep learn-
ing to mimic any projection technique P by training on P(D′)
for a small subset D′ ⊂ D. In addition to providing fast compu-
tation, such approaches also have the ability to project data not
used in the original mapping, or out-of-sample data. Furthermore,
due to the neural-network based approach, inference computations
are parameter free. However, this is not always desirable. As ob-
served by Wattenberg et al. [WVJ16], users may want to control
h to gain insight into their data or to illustrate local versus global
patterns (e.g. by changing the neighborhood size). Systems such
as VisCoDeR [CHAS18] and t-viSNE [CMK20] allow users to ex-
plore how changes in hyperparameters affect projections, but their
underlying projection methods do not offer the aforementioned
benefits of NNP. HyperNP addresses the challenges of hyperparam-
eter exploration and out-of-sample projection in a naturally scalable
framework.

3. Method

We present HyperNP, a technique that can approximate any projec-
tion of a high-dimensional dataset at interactive speeds. This allows
users to easily experiment with the hyperparameters of the approx-
imated projection method. Similar to NNP [EHT20, EHFT20], we
use a neural network to learn the approximation of a projection on
a dataset. As NNP showed, such networks are accurate in their ap-
proximations and can infer a projection in a fraction of the time
required by the original technique. The configuration of the dense
network used in this work is different from NNP and can be found
in Section 3.4.

Figure 1 illustrates the process of using HyperNP to approximate
a projection. Note that the dataset and the chosen hyperparameter
are necessary for the creation of the ground truth projection and for
training HyperNP.

In addition to computing the projection y ∈ R2 of a sample
x ∈ Rn, and different from NNP, our trained network takes an ad-
ditional argument h that represents the hyperparameters of the pro-
jection algorithm. For example, for UMAP, h is a single value that
represents the number of nearest neighbors; for t-SNE, h is a single
value that models perplexity.

Performing inference with HyperNP on a data point x can be
written as

y = P̂([x;h]) (1)

where P̂ represents HyperNP’s neural network, y is its projection
of x, and [x;h] is the concatenated vector of the sample and hyper-
parameter values that serves as the input to P̂.

3.1. Model Training in Theory

To train P̂ to approximate a projection algorithm P, we seek to min-
imize the difference between the projections output by P̂ and those
of P. Let P̂’s parameters be denoted as θ, the objective can be spec-
ified as:

argmin
θ

∑x∈D ∑h∈H ‖P̂θ([x;h])−P(x,h)‖2

|D| · |H| (2)

where D is the input dataset and H is the set of all possible values
of h.

We show empirically (Section 6) that training P̂ does not require
minimizing Eqn. 2 for all data points and across all values of h.
Depending on the algorithm P that P̂ aims to approximate, we can
use as little as 20% of all data points in D; for a hyperparameter
h, we can sample anywhere from every second to sixteenth value
during training. We thus rewrite Eqn. 2 as:

argmin
θ

∑x∈D′ ∑h∈H′ ‖P̂θ([x;h])−P(x,h)‖2

|D′| · |H′| (3)

where D′ ⊂ D is the training set and H′ ⊂ H is the set of sampled
values of the hyperparameters h, respectively.

For the rest of the paper we refer to how often we sample a hy-
perparameter as the ‘gap size’. For example, sampling every eighth
hyperparameter would be referred to as having a gap size of 8.
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3.2. Model Training in Practice

Training P follows the typical workflow for training a neural net-
work except for the generation of the training data, which must
include the chosen hyperparameter values in addition to the raw
features. To illustrate this, consider using HyperNP to explore
UMAP’s nearest-neighbor hyperparameter. In this example, we aim
to train P̂ using 20% of the data and a gap size of 6 to sample the hy-
perparameter values from 2 to 20. We begin generating the training
data by randomly sampling 20% of the dataset D. We then project
the data four times at the nearest neighbor values of {2,8,14,20}.
We standardize the features and scale the resulting projections be-
tween 0 and 1. Once we have all of our projections, we stack the
training data four times (once for each projection) and augment it
by concatenating the nearest neighbor value used in the projection.
Notably, the nearest neighbor value is not transformed. Finally, we
train the network following usual procedures, using the augmented
stacked matrix as the input and the UMAP projections as the target
values. After training the model will be capable of projecting the
entire dataset across the range of hyperparameters.

3.3. Stability Considerations

Particular attention must be given to the issue of projection sta-
bility. Let P be a function of the hyperparameters h without con-
sidering dataset D. Then, we argue that P(h) should be a rela-
tively smooth function – small changes of h should yield only small
changes in P(h). Indeed, if this were not the case, P would confuse
users by producing sudden jumps in the scatterplot when varying
h. This issue of stability vs hyperparameters h is analogous to the
stability of projections vs changes in the data D, which was studied
in detail for dynamic projections [VGS∗20].

As discussed in [VGS∗20], not all projection techniques are
stable. In the following section, we identify and address two
types of instabilities. The methods we use to address these in-
stabilities are simple fixes that make this technique available
to anyone and work well for our use case. Other solutions to
this sort of stability problem can be found in these excellent
surveys [TCL∗13, ZGZ∗19, HMZA21].

Seeding instabilities: Many stochastic techniques start from a
random 2D scatterplot which is iteratively updated to minimize
cost [vdMH08, JCC∗11]. This makes P not smooth, since even with
no parameter changes, P depends on the random seed (see e.g. the
discussion in [EHT20], Figure 11). We address this as follows: Let
hi be the samples of the hyperparameter h used during training, in
ascending order. We construct the training projection Pi = P(D,hi)
as usual, i.e., running P with random seeding. Next, we construct
Pi+1 similarly, but use Pi to initialize the low-dimensional embed-
ding of Pi+1. A similar strategy was used in [RFaT16] to construct
stable t-SNE projections for dynamic datasets.

Eigenanalysis instabilities: Many projection techniques, (e.g.
PCA [Pea01]), project data along eigenvectors which are agnos-
tic towards dimension direction, or sign. One consequence of us-
ing such techniques is that the resulting projections can easily ‘flip’
along one of the 2D x or y axes upon slight changes in the input data
or hyperparameters. Such drastic changes convey no meaning and

should be eliminated. We address this problem using a similar solu-
tion to pose-invariance used in multimedia retrieval [BBFd07] for
comparing arbitrarily rotated shapes. We compute the mean square
error (MSE) between a training projection Pi and the previous pro-
jection Pi−1 for all four possible mirrorings and pick the configura-
tion with the lowest MSE for Pi. This minimizes undesired changes
between Pi and Pi−1 during training, making P̂ more stable.

3.4. Implementation and Tuning

We implemented the dense neural network used in HyperNP
using Tensorflow [AAB∗15] and Keras [C∗15]. We used Keras-
Tuner’s [OBL∗19] Bayesian Optimization to find the appropriate
number of layers, neurons per layer, and regularization. The tuning
consisted of 512 trials, with the first 40 using random search as ini-
tial points. The search space included the number of layers (two to
six), number of neurons per layer (32 to 512 in steps of 32), dropout
probability [SHK∗14] (0, 0.25, or 0.5), and whether or not to use
batch normalization [IS15]. The final configuration used was a net-
work with layer sizes |V1| = 320, |V2| = 256, |V3| = 352, |V4| = 2.
We used ReLU [NH10] activation for all layers except the final one
(V4) where no activation function was used (linear). Between all
layers we used batch normalization followed by a dropout proba-
bility of 0.25. We chose mean absolute error as the loss function and
the ADAM [KB17] optimizer, following NNP [EHT20]. For more
on the architecture of the network, see the supplemental document.

4. Data

We use three publicly available high-dimensional datasets that
are reasonably large (thousands of samples) and have non-trivial
data structure. MNIST [LCB10]: 70K images of handwritten dig-
its from 0 to 9, rendered as 28x28-pixel grayscale images, flattened
to 784-element vectors; FashionMNIST [XRV17]: 70K images
of 10 clothing piece types, rendered and flattened as for MNIST;
GloVe [PSM14]: 70K GloVe (Global Vectors for Word Represen-
tation) vectors sampled from the 400k 300-dimensional vectors
trained on Wikipedia 2014 + Gigaword 5.

5. Applications

We illustrate the value of HyperNP by showing how it approxi-
mates changes in the common hyperparameters provided by three
popular projection methods: t-SNE, UMAP, and Isomap.

5.1. Exploring Perplexity in t-SNE

t-SNE is a variation of Stochastic Neighbor Embedding [HR03]
which takes a probabilistic approach to preserving point-wise sim-
ilarity when mapping high-dimensional data to a low-dimensional
(typically 2D) space. First, a Gaussian distribution is constructed
over the data samples so that similar sample pairs have a higher
value than dissimilar ones. Another distribution is then constructed
for the 2D space. t-SNE then places each sample in 2D by mini-
mizing the Kullback-Leibler divergence between the two Gaussian
Distributions. The bandwidth of the Gaussian kernels is chosen so
that the perplexity of the high dimensional distribution is equal to
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perplexity t-SNE
HyperNP

Gap=2 Gap=4 Gap=8

5

15

25

Table 1: t-SNE and HyperNP projections for three different perplexity values. First column: MNIST projected with t-SNE projections at perplexity values of
p = {5,15,25}. The following three columns: HyperNP results when trained with gap values of 2, 4, and 8. First, as perplexity increases (within this range) in
t-SNE, the global structures become more distinguishable. Further, notice that HyperNP can learn the t-SNE projections that result in visually similar plots to
emulate the properties of perplexity, even when the hyperparameter is sampled sparsely (i.e. as the gap size increases from 2 to 8). All projections were trained
using 40% of the original dataset.

k UMAP
HyperNP

Gap=2 Gap=4 Gap=8

5

15

25

Table 2: UMAP and HyperNP projections for three different values of the nearest neighbors parameter. First column: MNIST projected with UMAP projections
at nearest neighbor values of k = {5,15,25}. The following three columns: HyperNP results when trained with gap values of 2, 4, and 8. As the number of
nearest neighbors increase in UMAP, the global structure is prioritized, losing some fine detail structure. HyperNP is able to capture these changes, properly
capturing this-trade off even with a large sampling gap size. All projections were trained using 40% of the original dataset.
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(a) Ground Truth (b) Train Predictions (c) Test Predictions

Figure 2: HyperNP approximation of the t-SNE projections of the Fashion-
MNIST dataset. From left to right: (a) t-SNE projection of 20% data that is
then used to train HyperNP, (b) HyperNP projection of the same data used
in (a), (c) HyperNP projection of test data instances unseen during training.
This result suggests that HyperNP is adequately learning the t-SNE projec-
tion using just 20% of the data as these three images are visually similar.

(a) k=3 (b) k=3.5 (c) k=4

Figure 3: Using HyperNP to explore values of UMAP’s nearest-neighbor
hyperparameter, k, on FashionMNIST. From left to right: (a) k = 3.0, (b) k =
3.5, (c) k = 4.0. While non-natural values for the parameter k are not valid,
we show that HyperNP is able to smoothly interpolate between meaningful
values without sacrificing projection quality.

a user-defined perplexity hyperparameter. This adapts the size of
the Gaussian kernel to the underlying density of the input data –
smaller kernels are used in dense areas.

As Wattenberg et al. [WVJ16] point out, the value of the per-
plexity hyperparameter in t-SNE profoundly affects the final 2D
embedding produced. Simply put, as perplexity increases, the im-
portance of global features in the data also increases. However, the
computational cost of robustly exploring the effects of many per-
plexity values is prohibitive for large data. Figure 2 shows how Hy-
perNP is able to appropriately project out-of-sample data instances.
This minimizes training time for each realized projection configu-
ration, P̂([x;h]), allowing HyperNP to scale to large data with only
moderate training cost.

While speed of both training and inference are important to the
overall performance of HyperNP, care must be taken to ensure that
the projection P̂ is adequately learned. As shown in Figure 2, Hy-
perNP has learned the t-SNE projection of the MNIST dataset.
Qualitatively, the image created using only 20% of the data (ran-
domly sampled) is similar to the others. This provides strong evi-
dence that using only a small data fraction for training is enough to
faithfully represent a chosen projection configuration.

Besides out-of-sample inference for data, HyperNP can perform
out-of-sample inference for hyperparameter values. Table 1 shows
how HyperNP explores different perplexity values for the MNIST
dataset. Looking across rows, Table 1 shows that not only does Hy-
perNP maintain similar clustering (columns 2-4) to the ground truth
projection (column 1) for hyperparameters not seen in training, but
also that increasing the gap size has only a marginal impact on the

overall projection quality. This sampling strategy accelerates the
initial training of the model without sacrificing quality.

Both Wattenberg et al. [WVJ16] and Silva et al. [ST02] argue for
a thorough inspection of hyperparameters when interpreting pro-
jected data. Yet this critical task is often skipped due to its high
computational cost. Not only does HyperNP provide the means
to explore hyperparameters, but it does this for large datasets and
without substantial quality loss. The increased interactivity allows
users to better understand how the perplexity hyperparameter influ-
ences the final rendering of their data.

5.2. Exploring k Nearest Neighbors in UMAP

UMAP is a projection technique based on ideas from topologi-
cal data analysis and manifold learning. It is implemented using
weighted graph techniques [MHSG18] derived from the notion of
fuzzy simplicial sets. First, UMAP constructs a k-nearest-neighbor
(kNN) graph, whose edge weights model the probability that the
edge exists. The graph describes the locally connected manifold
that the data is assumed to exist on, and to guide a force-directed
graph layout in low dimensions. After initialization using spectral
methods, a low dimensional graph is constructed from the projected
points. The points are repositioned such that the low-dimensional
graph approximates the original weighted graph in high dimension.
The objective function minimized by the force directed layout is the
total cross entropy of all edge probabilities, ensuring that the two
graphs have similar topologies.

As with other nearest-neighbor based projections, a key
hyperparameter of UMAP is k, the number of considered
neighbors [WHRS21]. Varying k changes the local scale that the
high dimensional manifold considers planar. Features that exist at
smaller scale than the neighborhood size are thus lost, with larger
features being better preserved in the projection. Silva et al. [ST02]
provide a full discussion of the importance of k with respect to
feature size for the class of projection techniques using manifold
learning approaches.

Typically, methods that use kNN graphs require all data to be
integrated into the graph prior to projection. One challenge of man-
ifold learning based projection techniques is the projection of out-
of-sample data which does not exist in the kNN graph used to de-
termine relationships across data points. HyperNP is able to project
out-of-sample data without first embedding new points in the exist-
ing kNN graph. Table 2 shows how HyperNP maintains projection
quality of out-of-sample data and also the importance of hyper-
parameter selection for different gap sizes: smaller neighborhoods
lose projection quality faster as the gap size increases.

Care must be taken to ensure that the gap size used to train Hy-
perNP does not overwhelm the smaller values for neighborhood
size. The tradeoff between gap size and parameter lower bound is
not unique to UMAP, but must be kept in mind for any manifold
learning technique. As k changes in the low end of its range, the
resulting change in the neighborhood topology is large: changing k
from 3 to 4 yields a larger change than changing k from 20 to 21.
Projection error increases as small values of k move away from the
training k values, which is expected, as the projection change most
rapidly for low k.
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Unlike t-SNE’s perplexity hyperparameter, k ∈ N. Still, Hy-
perNP is able to both learn and infer all k ∈ R values, as shown
in Figure 3. That is, HyperNP can smoothly interpolate between
the strict k ∈ N values.

5.3. Exploring Neighborhood Size in Isomap

(a) Ground Truth (b) Train Predictions (c) Test Predictions

Figure 4: HyperNP approximation of the Isomap projections of the Fash-
ionMNIST dataset. From left to right: (a) Isomap projection of 20% data
that is then used to train HyperNP, (b) HyperNP projection of the same data
used in (a), (c) HyperNP projection of data points unseen during training.
This result suggests that HyperNP is adequately learning the Isomap pro-
jection using just 20% of the data as these three images are visually similar.

Isomap is a technique that projects data points by first learning
the manifold structure in high dimensions via kNN graphs [BS02].
As with UMAP, the most often changed hyperparameter of Isomap
is the number of nearest neighbors to consider while building
the kNN graph, k. However, unlike UMAP’s notion of proba-
bilistic edge weights (See Section 5.2), Isomap uses distances
as edge weights. These weights enable methods like Djikstra’s
Algorithm [Dij59] to approximate a geodesic distance along the in-
duced manifold for each pair of points. After pair-wise geodesic
distances are approximated, classical MDS methods are employed
to construct the final low-dimensional embedding.

As both UMAP and Isomap make use of manifold learning and
represent the manifold structure through kNN graphs, both meth-
ods rely on the value of the hyperparameter k to set the importance
of global and local feature importance. Silva et al. provide a full
discussion of the importance of this hyperparameter with respect
to feature size for the class of projection techniques using mani-
fold learning approaches [ST02]. As the underlying functionality
of our method does not depend on any computational or theoreti-
cal framework unique to a given projection method, new methods
are easily adapted to HyperNP’s model. As shown in Figure 4, Hy-
perNP can approximate Isomap with high accuracy. These results
are comparable to the same experiment performed using UMAP
(See Figure 2). Additional attention must be paid to the value of
k with respect to gap size in order to ensure projection quality re-
mains high across all projection configurations for both UMAP and
Isomap.

6. Evaluation

We evaluate HyperNP’s performance through quantitative projec-
tion quality metrics and training and inferencing speed.

6.1. Performance: Quantitative Metrics

We measure the quality of HyperNP by the following metrics com-
monly used in the projection literature [EMK∗21]. For more infor-
mation on metrics and experiments, see the supplemental material.

Trustworthiness [VK06] measures the fraction of points in D that
are also close in P(D). It tells us how much we can trust the local
patterns in a projection (e.g. clusters) to represent actual data pat-
terns. In the definition (Table 3), U (K)

i is the set of points that are
among the K nearest neighbors of point i in 2D but not among the K
nearest neighbors of point i in Rn; and r(i, j) is the rank of point j
in the ordered-set of nearest neighbors of i in 2D. We choose K = 7
in our experiments, in line with [vdMPvdH09, MMT15, EMK∗21].

Continuity [VK06] measures the fraction of close points in P(D)

that are also close in D. In the definition (See Table 3), V (K)
i is the

set of points that are among the K nearest neighbors of point i in
Rn but not among the K nearest neighbors in 2D; and r̂(i, j) is the
rank of point j in the ordered set of nearest neighbors of i in Rn.
Similar to trustworthiness we choose K = 7 following convention.

Hit Rate [PNML08b] measures the proportion of the neighbors of
a point in a projection that have the same label as the point. In the
definition (See Table 3), W (K)

i is the set of points that are among
the K nearest neighbors of point i in 2D that share the same label as
point i. For ease of computation we calculate hit rate on a uniform
sampling of 10% of the data, unlike the previous two metrics.

Metric Definition Range
Trustworthiness 1− 2

NK(2n−3K−1) ∑
N
i=1 ∑

j∈U(K)
i

(r(i, j)−K) [0,1]

Continuity 1− 2
NK(2n−3K−1) ∑

N
i=1 ∑

j∈V (K)
i

(r̂(i, j)−K) [0,1]

Hit Rate 1
N ∑

N
i=1 |W

K
i |/K [0,1]

Table 3: Projection quality metrics used in our evaluation with optimal val-
ues in bold in the Range column.

We next explore different hyperparameter settings to determine
their effect on HyperNP’s quality, namely the gap size and the data
fraction used for training (see Section 3). We first examine the met-
rics in aggregate, by taking their averages across hyperparamter
values. For each dataset and projection combination, we fix the
gap size and training fraction and compute the mean trustworthi-
ness and continuity values across either perplexity or k, from two
to fifty. We present these results in Figure 5. Notice that across most
dataset and projection combinations within the figure, our method
produces trustworthiness, continuity, and hit rate scores within a
few percentage points of the ground truth projection method. De-
creasing the size of the training data by decreasing data fraction
from 1.0 to 0.2 (orange bars versus blue bars in Figure 5), a 5-
fold decrease, shows only a minimal loss in scores with the benefit
of decreased training time. These results inspire confidence; they
show that HyperNP is able to infer projection locations of out-of-
sample data, generalizing from a small subset of the entire dataset.

In Figure 6, we plot trustworthiness and continuity for UMAP
and HyperNP trained with UMAP, varying the value of the hyper-
parameter k. We further vary the data fraction and gap size used
to train HyperNP. In this experiment, HyperNP performs similarly
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Figure 5: In this figure, we present the trustworthiness, continuity, and hit rate scores associated with the ground truth projections as well as HyperNP trained
using a gap size of 16, and data fractions of 0.2 and 1.0. We have averaged the scores over all of the hyperparameter values from 2 to 50. Comparing the
ground truth score to HyperNP’s score for each dataset and projection combination illustrates that HyperNP is able to perform close to the ground truth even
under extreme sampling conditions (i.e., when only 20% of the data is used for training).

to the ground truth UMAP for continuity, and at worst within ap-
proximately 85% of hit rate and 80% of trustworthiness. The rel-
atively similar continuity scores, and different trust scores suggest
that approximated projections have the same level of false neigh-
bors as the real projections, but have more missing neighbors. False
neighbors are points close in low dimensional space that were not
close in the high dimensional space, while missing neighbors are
opposite [NA19].

6.2. Performance: Training and Inferencing Speeds

Training Speed: Figure 7 shows training times for HyperNP for
different gap sizes and data fraction values. The figure illustrates
the trade-offs in training speed for different data fractions and gap
sizes. As detailed in Section 3, the neural network will be trained on
the number of sampled instances times the number of hyperparame-
ters. For our experiments we chose what we expect an average case
would be, examining hyperparameter values from 2 to 50. It should
be noted that Figure 7 shows overall training time for HyperNP as
a function of dataset size. The number of training instances is de-
termined not just by this value, but the number of hyperparameter
values and fraction of this number used.

As shown in Figure 7, in extreme cases when the gap size is too
low, training HyperNP could take up to 80 minutes for a dataset
with 50,000 points. However, as seen in Section 6.1 using a data
fraction value of 0.4 (i.e., sampling rate of 40%) and gap size of
8 produces HyperNP projections of reasonable quality. With these
configurations, most datasets with less than 50,000 points can be
trained within 20 minutes. The time to train HyperNP in Figure 7
includes the time to project the ground truth data using Multicore-
TSNE [Uly16] with four cores.

The HyperNP model is trained with a batch size of 32 in Fig-
ure 7. We note that the batch size will often have a consider-
able effect on not only the wall time it will take a network to
converge, but also the final performance of the model. A more

thorough discussion of this topic can be found in a number of
papers [KMN∗17, ML18, HLT19]. The training speed tests were
executed in a 2-way, 16-core Intel Xeon Silver 4216@2.1 GHz with
256 GB of RAM, and an NVidia GeForce 1080 Ti GPU, with 11
GB of VRAM.

Inferencing Speed: We evaluate the inferencing speed of Hy-
perNP. Table below shows the HyperNP’s run-time performance
in inferencing using a batch size of 20k instances. As indi-
cated in the table, HyperNP remains interactive with 500k data
points, performing inferencing within less than 500ms [LH14].

Number of Instances Seconds

56,000 0.192241
168,000 0.264158
336,000 0.370889
504,000 0.479788
616,000 0.551125
728,000 0.624992
840,000 0.695622
952,000 0.766805
1,064,000 0.839778

Overall, the speed of Hy-
perNP scales linearly with
the number of data points
projected. The inferencing
speed tests were executed on
a 8-core Intel i7-6700k@4
GHz with 64 GB of RAM,
and an NVidia GeForce
1080 GPU, with 8GB of
VRAM.

7. Using HyperNP to Approximate iPCA

Beyond approximating projection methods, HyperNP can have ad-
ditional applications in visual analytics given its use of a neural net-
work. In this section, we describe how HyperNP can be used to ap-
proximate iPCA [JZF∗09], an interactive visual analytics technique
for supporting exploration of high-dimensional data with PCA.

iPCA is a technique that allows users to interactively adjust the
weighted contributions of data dimensions and observe the effects
in a PCA projection. Similar to HyperNP, iPCA allows a user to
interactively manipulate projections using sliders in real time.

Figure 8 shows HyperNP’s approximation of iPCA. The train-
ing process of HyperNP is the same as described in Section 3. In
Eqn. 1, h now is a n-dimensional vector that represents the scaling
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Figure 6: Trustworthiness, continuity, and hit rate for HyperNP trained with t-SNE, on the MNIST dataset, for different hyperparameter values. Light gray
vertical lines show parameter values used for training with a gap size of 8; dark gray ones show parameter values used for training with a gap size of 16. This
dataset and projection combination yielded the greatest difference in trust scores between ground truth and HyperNP out of all of the combinations tested.
Despite this, quality does not decrease substantially even during the dips far from sampled points. It is worth noting that some visual samples from the purple
line representing a gap of 8 and a data fraction of .4 can be in the last column of Table 2.

factors in iPCA where n is the number of data dimensions, each
controlled by a slider in iPCA. We see that HyperNP is successful
in emulating iPCA: interactions with the sliders in HyperNP pro-
duces the same projections as iPCA while retaining the interactive
speed. This is important in terms of genericity of HyperNP. iPCA
is designed specifically around PCA, using Online SVD [Bra03] to
reduce the computation cost of singular value decomposition from
O(N2) to O(n2) where N and n are the data size and dimensional-
ity, respectively. As a result, it is difficult to replace iPCA with an-
other projection technique while maintaining interactivity. In con-
trast, doing so with HyperNP is simple – replacing PCA in the Hy-
perNP approximation of iPCA requires just changing the function
P in Eqn. 3 from PCA to another projection technique. This sup-
ports the use of HyperNP to generalize high-dimensional data ex-
ploration techniques (like iPCA) beyond their associated projection
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Figure 7: HyperNP training speed with the MNIST dataset and t-SNE train-
ing projection using different amounts of training data (data fractions of 0.2
and 0.4) and gap sizes (2, 8, and 16). Smaller gap sizes result in larger |h|
and thus longer training times. For smaller datasets (less than 20k), Hy-
perNP can be fully trained within 10 to 20 minutes.

Figure 8: A HyperNP implementation of iPCA. Each slider (d) corresponds
to a dimension of the input dataset (Iris) [And35]. Adjusting a slider scales
a feature from 100% to 0%. This is reflected in the parallel coordinates plot
(c) and scatterplot matrix (b). HyperNP re-projects (a) the dataset in real
time as the user interacts with the sliders (Section 6.2).

methods. As future work, we will investigate other interaction tech-
niques in visual analytics that can be made more generalizable with
the use of HyperNP.

8. Discussion, Limitations, and Future Work

In this section, we discuss both conceptual and practical considera-
tions of using HyperNP. We conclude by presenting the limitations
of HyperNP and some possible future research directions.

8.1. Sampling and Exploring Hyperparameters

This work shows HyperNP is able to approximate important hyper-
parameters associated with a projection technique. Exploring pro-
jection hyperparameters is exemplified in Tables 1 and 2. These
images highlight how HyperNP captures much of the structure of
the original projections using only a fraction of the data for training
of the system. Similar to interpolation, increasing the gap size dur-
ing HyperNP training introduces additional deviation from ground
truth. These errors are most evident with low values of perplexity
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and k for tSNE and UMAP, respectively. At these small hyperpa-
rameter values, the number of samples naturally defining the local
structure in the embedding space is likely insufficient to provide
enough signal for HyperNP to approximate robustly. However, as
the hyperparameter values increase, the local topology captured by
the methods is less influenced by small changes to the hyperparme-
ter, allowing HyperNP to better approximate the projection, even
when using larger gap sizes.

8.2. Conceptual and Practical Considerations of HyperNP

Using deep learning to approximate projections raises some impor-
tant considerations. Since a neural network does not consider the
semantics of a hyperparameter, it can generate projections using
invalid configurations, see e.g. the use of non-integral k values for
UMAP (Section 5.2). In this case, HyperNP infers the projection
by interpolating the hyperparameter setting between integral values
used during training. While formally, this goes beyond the assump-
tions of UMAP (i.e., k is an integer), this interpolation has yielded
reasonable results for all k values, with no negative consequences
noticed (see Figure 3).

The hyperparameter sampling strategy is also an important fac-
tor for HyperNP. While t-SNE’s perplexity and UMAP’s k-nearest
neighbors are both hyperparameters, they respond differently to
sampling. Figure 6 shows how quality changes when hyperparam-
eters move farther from training values. For t-SNE, neither conti-
nuity nor trustworthiness change much. Still, while these metrics
show a dip in the middle of large gaps (farthest from k training val-
ues), we still get high quality especially past the smaller hyperpa-
rameter values. This tells us that the gap size used to train HyperNP
has greater impact for UMAP than for t-SNE; yet, even a gap size
of 16 only marginally changes the projection quality. Summarizing,
choosing the sample step (gap size) of hyperparameters needs to be
studied individually for different projection techniques.

8.3. Limitations and Future Work

In this section we present potential limitations of HyperNP and dis-
cuss avenues to further develop this work.

Multiple Hyperparameters: Section 6 discusses the training time
for HyperNP for a single hyperparameter. This time can grow ex-
ponentially as the number of hyperparameters |h| increases. If the
complexity of training a traditional network is O(K), the complex-
ity of training HyperNP with one hyperparameter is O(K× |H′|)
with |H′| as described in Eqn. 3. For |h| hyperparameters, this be-
comes O(K×|H′||h|). Further work is needed to develop methods
to reduce the training cost of HyperNP for projection algorithms
with many hyperparameters. Additionally, an interface for intu-
itively exploring all hyperparameters associated with a projection
method would need to be developed.

Hyperparameter Selection: Due to the current limitation of Hy-
perNP in learning multiple hyperparameters, the user must care-
fully choose the most important hyperparameter to explore. In this
paper we select the hyperparameters that affect the tradeoff be-
tween global and local preservation as the user’s primary explo-
ration dimension, following conventions established by Watten-

berg et al. [WVJ16]. Prior work by VisCoDeR [CHAS18] and t-
viSNE [CMK20] allow users to explore the effect of other hyper-
paramters that can affect the quality of the projections. We leave
the evaluation of HyperNP on these other hyperparameters for fu-
ture work.

Training Data: Like any deep learning technique, HyperNP is in-
fluenced by the quality of training data. As detailed in Section
6.1, performance on the GloVe dataset is lower than the other two
datasets, but performance relative to the ground truth projections is
still high. HyperNP faithfully reconstructs the training data; how-
ever, the quality of a projection is directly related to the quality of
the initial projections used during training. Even if the training data
as a whole is of good quality, it is possible to introduce bias through
sampling. Unintentional bias is introduced by any sampling strat-
egy (to create training sets) that results in a different distribution
than the dataset at large. We note that the problem of sampling
training data is not unique to our method. We leave as future work
strategies to mitigate its effects on approximating projections.

Training data quality is important when considering performance
in the context of outliers and large data. Datasets containing outliers
pose the same challenges for HyperNP as they do for the both the
underlying dimensionality reduction technique being used and the
deep learning architecture learning the projection. Exploring novel
methods to mitigate the impact of data outliers is beyond the scope
of this work, but advances in this topic are easily integrated with
the system. Since HyperNP is, at its core, a deep learning imple-
mentation, increasing the dataset size is generally considered to be
an important step to improve performance. However, as discussed
above, maintaining a similar distribution in the training data with
respect to the overall dataset is important and must be considered
when deciding when to update the HyperNP model representing
the projection operator.

Smoothness Perception: The technique described in Section 3.3
maintains projection stability and visual coherence between frames
as users interactively change a hyperparameter value. When com-
bined with the high interactivity of HyperNP, this may induce a
false sense of continuity concerning the properties of the under-
lying learned projection method. For example, consider approxi-
mating UMAP with HyperNP (Section 5.2). When the hyperpa-
rameter k changes from k to k + 1, there is no guarantee that the
two learned manifolds share correspondences, so the perception of
smoothness created by HyperNP may be misleading. Conversely,
for iPCA (Section 7), weight changes should result in a smooth an-
imation as PCA rotates the underlying coordinate system to maxi-
mize the projected data variance. In summary, the built-in percep-
tion of smoothness of HyperNP should not always be interpreted as
reflecting mathematical smoothness properties of the learned pro-
jections. Additionally, the neural network architecture learning the
projection operator enables the use of potentially unintended pa-
rameter values. For example, a non-integer value of k in the UMAP
operator is possible to approximate using HyperNP. Of course, the
interpretation of a non-integer number of neighbors is challenging.

9. Conclusion

We proposed HyperNP, a deep learning approach to approximat-
ing projections that enables real-time interactive hyperparameter
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exploration. We showed that HyperNP can learn to infer projec-
tions of several techniques, for a wide range of parameter values,
and different real-world datasets, using only a small fraction of the
data and hyperparameter values. HyperNP performs real-time for
reasonably large datasets, can be generalized to any projection tech-
nique (and hyperparameters), and produces stable animations of the
resulting projections upon parameter variations. We demonstrated
HyperNP through the exploration of the key hyperparameters of
t-SNE, UMAP, and Isomap.

Future work can target accelerating HyperNP for projections
with many parameters; a deeper analysis of how finely sampled
the input data and parameter space is needed for high-quality infer-
ence; and most importantly, deploy HyperNP in production visual
analytics systems where projections need to be explored interac-
tively upon hyperparameter change.
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