
EUROVIS 2023/ W. Aigner, T. Höllt, and B. Wang Short Paper

Identifying Cluttering Edges in Near-Planar Graphs
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Figure 1: Graphs laid out by ForceAtlas2 with augmenting edges colored red. (a) augmented grid (redraw), (b) augmented grid weighted
by the heuristic (Hmin), (c) triangulations (redraw), (d) triangulations weighted by the heuristic (Hmin)

Abstract
Planar drawings of graphs tend to be favored over non-planar drawings. Testing planarity and creating a planar layout of a
planar graph can be done in linear time. However, creating readable drawings of nearly planar graphs remains a challenge. We
therefore seek to answer which edges of nearly planar graphs create clutter in their drawings generated by mainstream graph
drawing algorithms. We present a heuristic to identify problematic edges in nearly planar graphs and adjust their weights
in order to produce higher quality layouts with spring-based drawing algorithms. Our experiments show that our heuristic
produces significantly higher quality drawings for augmented grid graphs, augmented triangulations, and deep triangulations.

CCS Concepts
• Human-centered computing → Graph drawings;

1. Introduction

The ultimate goal when constructing a readable drawing of a graph
(i.e. node-link diagram) is to avoid clutter that prevents viewers
from grasping the graph’s structure. One of the quality metrics that
measures the clutter of a graph drawing is the number of edge
crossings. It is long known that humans perform better on shortest-
path-related tasks in drawings with fewer crossing [Pur97] and
tend to prefer such drawings [MBK96, vHR08]. It is then natural
to request that a drawing of a graph possesses no edge intersec-
tions at all whenever possible. Such drawings, and the graphs that
can be drawn in this way, are called planar. Detecting whether a
graph has a planar drawing [HT74] and constructing one in affir-
mative [Tam13b] can be done in linear time. However, in practice,
graphs are rarely planar. They can still be sparse or contain clear
planar substructures – in other words, be nearly planar. For such
graphs it is desirable to achieve nearly planar drawings.

There are various attempts to formalize the notion of near-
planarity and to construct nearly planar drawings. Unfortunately,
all of these attempts lead to hard computational problems [GJ83,
CM13, ABS11, KM13]. There are a few spring-based algorithms

that address readability issues relevant to near-planarity [ABS12,
SAAB11]. Yet, there is a lot of room for further work to design
practical layout algorithms for nearly planar graphs.

In this paper we propose a spring-based heuristic approach to
construct nearly planar drawings of graphs that contain dense pla-
nar substructures. This work is motivated by the lack of comparable
approaches and the aforementioned hardness of formal definitions
of near-planarity. We conduct an experimental evaluation compar-
ing our approach to state-of-the-art spring-based algorithms. The
paper is structured as follows. Section 2 presents initial observa-
tions on how to resolve clutter in near planar drawings, and pro-
vides an experiment that further motivates our approach. Section 3
describes our heuristic. Section 4 and 5 describe the experimental
setup and the results of our experiments.

Related work We denote by G = (V,E,w) a graph, with V and E
being the sets of nodes and edges, respectively; and w : E → R an
edge-weighting function. Here n = |V | and m = |E|. For nodes u
and v, we denote by e = {u,v} and e = (u,v), an undirected edge
and a directed edge.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

https://orcid.org/0000-0002-0346-5597
https://orcid.org/0000-0001-6249-3419
https://orcid.org/0000-0003-0750-0502


S. van Wageningen & T. Mchedlidze & A. Telea / Cluttering Edges Heuristic

Theoretical approaches to near-planarity Since a planar draw-
ing does not contain any crossing, the most straight-forward idea to
define near-planarity is to request a drawing with as few crossings
as possible [CM13]. This problem is NP-hard [GJ83] even for a
planar graph plus a single additional edge [CM13]. There are a few
algorithms that insert edges into planar graphs and their drawings
in a crossing-optimal way [RR22,GKM08,GMW05,CH16,CG12]
which have been compared experimentally [GM03].

While we know that humans perform tasks well on planar lay-
outs [Pur97], it has been also shown experimentally that the neg-
ative effects of the crossings on task performance decrease as the
edge crossing angles increase [HHE08]. This led to the definition of
RAC [DEL11] and α-AC drawings [GDLM11]. Deciding whether
such drawings exist is NP-hard as well [ABS11]. If the graph is
sparse, it is also natural to try to limit how many crossings an edge
has, as fewer crossings would impair less the perception of that
edge. This idea led to definition of k-planar and quasi-planar draw-
ings. However, again, recognizing whether a graph has these kind
of drawings is NP-complete [KM13].

Heuristics A plethora of spring-based algorithms produce high-
quality layouts without specifically targeting nearly planar
graphs [Tam13a]. Out of these approaches, we next consider
ForceAtlas2 (FA2) [JVHB14, Chi19] and Stress Majorization
(SM) [GKN04]. These are powerful layout techniques that we
use for our experiments since novel techniques are often com-
pared to them [WJW∗19, KCM18]. SM solely bases the spring
forces between all pairs of nodes on the length of their shortest
paths. FA2 considers attractive and repulsive forces to compute
node spring forces. Additionally, the work on SM [GKN04] sug-
gests to weight node pairs by taking into account the number of
common neighbors. Here, the weight of a node-pair u,v is set as
w(u,v) = |Nu ∪ Nv| − |Nu ∩ Nv|, where Nu denotes the neighbor-
hood of node u. This idea improves the performance of SM when
edge lengths need to vary significantly. As will become clear in the
following, this approach is relevant to ours and is therefore included
as the neighborhood weighting function in our experiments.

Finally, relevant to near-planarity, Argyriou et al. [ABS12]
present an approach that maximizes the total resolution, which is
the minimum of the angular and crossing resolution. In contrast,
ImPrEd [SAAB11] preserves the topology of the given layout and
therefore its planarity. Similarly, tsNET⋆ [KRM∗17] tends to pre-
serve a layout’s original structure by favoring occasional long edges
and thus unfolding the layout.

2. Preliminaries

Our overarching goal is to produce a drawing of a nearly pla-
nar graph G which clearly depicts its planar substructure. This
statement itself hints us to distinguish among the graph edges
that contribute to its planar substructure and those that destroy
it. If we were able to detect the latter edges, we could remove
them, construct a planar drawing of the remaining graph (using
e.g. [dFPP90, Sch90]), and draw the removed edges atop of it.
There are two challenges that prevent us from taking this ap-
proach. The first one is that detecting a dense planar substructure

(a) (b)

Figure 2: (a) Augmented grid (b), weighted augmented grid

is a hard optimization problem known as Maximum planar sub-
graph [Cim95]. The second is that such an approach would in-
evitably be based on algorithms to construct planar drawings of
planar graphs, e.g. [dFPP90, Sch90], which are relatively hard to
implement and, also, are not part of most graph drawing libraries
and applications. Therefore, we choose to attack our problem using
a relatively simple heuristic based on a spring-based approach.

Our initial idea is to identify such planarity-destroying edges.
Once identified, we can weight them with relatively lower weights
than regular edges. We can then use a state-of-the-art spring-based
approach, that takes edge-weights into account. Our hope is that the
planarity-destroying edges will influence the layout less than the
remaining edges and therefore the planar substructure will reveal
itself in the drawing.

To test whether this idea is feasible, we perform the following
initial experiment. We consider a grid D = (V,E) and construct
a graph G = (V,E

⋃
Ep), where Ep is a set of random edges on

the vertex set V with the property that E
⋂

Ep = ∅. We call this
graph an augmented grid. Starting with a random initial coordinate
assignment, we draw an augmented grid using FA2. These layouts
(see Figure 2a) appear cluttered and folded inwards, and of poor
quality. We then reduce the weights of the edges in Ep to 0.01 and
rerun FA2. The resulting layout (Figure 2b) has unfolded and has
become a near perfect depiction of a grid graph. This experiment
hints that knowing the planarity-destroying edges can be useful in
depicting planar substructures in nearly planar graphs by using a
spring-based approach and appropriate edge weighting scheme.

In our experiments with other augmented planar graph classes,
we observe that not only the planarity-destroying edges create
clutter in the drawing, but so do the edges that are close to the
outer face. These observations lead to the following two questions:
Which edges of a given nearly planar graph G create clutter in the
drawings of G generated by a spring-embedding algorithm? Using
a spring-based approach, how do we weight these edges to create
a drawing where a planar substructure is clearly visible? We call
such edges cluttering and address the stated questions in the fol-
lowing section. Throughout the paper, we use ♣ to refer the reader
to the full version for more details. The Python implementation of
the heuristic can be found on GitHub.

3. Finding and weighting cluttering edges

Vertex-disjoint paths Our approach to identify cluttering edges
is based on the following intuition. If the end-vertices of an edge
e = {u,v} are connected by multiple, relatively short paths in the
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Dataset nmin nmax mmin mmax #Graphs

Grids 48 196 86 383 50
Triangulations 26 100 69 297 50
Deep triangulations 25 98 86 367 50
Rome 18 100 25 141 100

Table 1: Statistics of datasets used in the experiments

graph, then the edge e can also be short. In the opposite case, where
there are only relatively long paths between u and v, then the edge e
could collapse the drawing and therefore could be a cluttering one.
However, finding all paths between even a single pair of vertices
will result in exponential computations. Hence, we use as a proxy
the lengths of the vertex-disjoint paths between u and v.

Vertex-disjoint paths can be found using the max-flow Edmonds-
Karp algorithm [EK72], as described in [KT06] ♣. In the follow-
ing, for an edge e = {u,v}, we denote by f (e) = [ℓ1, ℓ2, . . . ] the se-
quence of the lengths of the vertex-disjoint paths between u and v in
G\e, listed in non-decreasing order, and call f (e) the footprint of e.
Given that the complexity of Edmond-Karp’s algorithm is O(V E2),
computation of footprints for all edges of G takes O(V E3) time.

Outlier detection By analyzing the footprints of augmenting and
original edges in augmented grids, we observe differences in the
footprints that brings us the idea of using an outlier detection algo-
rithm to detect cluttering edges ♣. We experiment with the Isola-
tion Forest technique [LTZ12] which is designed to find anomalous
data points in a high-dimensional space ♣.

Footprint normalization and cluttering edge weighting How-
ever, before applying the Isolation Forest method to footprints of
the edges, we have to ensure that they all have the same length. For
this, we expand or contract the footprints, depending on the user-
specified number of dimensions k and function M, which can be
either the minimum, maximum, or mean function. Equation 1 por-
trays how the footprints are expanded or contracted, given a foot-
print f (e) of initial length l and a desired length k.

f ′(e) =


f (e)⊕ [M( f (e))]k−l l < k
f (e) l = k
f (e)[0 : k−1]⊕M( f (e)[k : l]) l > k

(1)

In our experiments we evaluate the results for all aforementioned
choices of function M, i.e. minimum, maximum, and mean. Based
on multiple experiments, we set the weight of edge e to M( f (e)).

4. Experimental setup

Let G = (V,E) be a nearly planar graph. To evaluate our approach,
we apply spring-based algorithms to the weighted graph GM =
(V,E,w), w(e) =M( f (e)) and the baseline unweighted graph G =
(V,E). We compare the obtained drawings both qualitatively, by
exploring them visually, and quantitatively, by using several quality
metrics. We next discuss the datasets of our experiment, the way the
layouts are computed, and the measured quality metrics.

Datasets We used four types of graphs, as follows (see Table 1).
Grids: We start with a grid with a random number of rows and
columns ranging between 6 and 14. Next, we add 0.1n edges be-
tween random non-adjacent nodes to destroy the grid structure,

(a) (b)

(c) (d)

Figure 3: (a) deep triangulations (orig), (b) deep triangulations
weighted by Hmin, (c) Rome (orig), (d) Rome weighted by Hmin

yielding the augmented grid. Note that most, but not every, such
added edge introduces edge crossings.

Triangulations: These graphs are generated by applying the De-
launay triangulation algorithm on random 2D point sets, to which
structure-destroying edges are added similarly to the Grids. We call
these graphs augmented triangulations. For a grid or a triangulation
G, we denote by G its augmented version.

Deep triangulations: Even planar graphs can be a challenge for
spring-based approaches when it comes to unraveling their planar
structure, especially when the planar-layout edges need to have var-
ious lengths ♣. To further test our approach, we construct so called
deep triangulations, as follows: (1) Randomly place 0.7n of the ver-
tices and construct their Delaunay triangulation T . (2) Place a ran-
dom number of points r < 0.3n in a random triangle t ∈ T . (3) Ap-
ply Delaunay triangulation to the r points in t to create new edges.
(4) Repeat steps 2 and 3 steps until all remaining 0.3n vertices have
been placed.

Rome: Grids and (deep) triangulations contain dense planar sub-
structures and therefore we expect our heuristic to be able to
find cluttering edges in such graphs. We also include a subset of
the Rome graphs [GDT] in our experiments, to check whether
our technique generalizes to this fairly popular graph bench-
mark [WYHS21]. Note that these Rome graphs are very sparse and
do not contain dense planar substructures.

Layouts We create layouts using the spring-based methods FA2
and SM. For each grid or triangulation G and each spring-method
S, we compute seven layouts:

• orig≡ S(G) – spring-embedding of a graphs G,
• on_top – drawing S(G) with edges of G \G appended on top

of the drawing, where G is the augmented version of graphs G,
• redraw≡ S(G) – spring-embedding of G,
• Hmin ≡S(Gmin), Hmax ≡S(Gmax), Hmean ≡S(Gmean) – spring-

embeddings of G where outlier edges are weighted according
to the functions min, max and mean, respectively (see Eqn. 1),
jointly referred to as heuristic layouts,
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• Hnb ≡ S(Gnb) – spring-embeddings of G where node-pairs are
weighted using the neighborhood weighting function.

For the deep triangulations and Rome graphs, which are chal-
lenging by themselves, we do not consider augmented versions,
thus on_top and redraw are not computed for them. We run
FA2 and SM five times for each graph, and choose the best layout,
w.r.t. to the number of crossings. Both SM and FA2 are run for a
maximum of 2000 iterations with default settings.

Quality Metrics We quantitatively evaluate the results by com-
puting three quality metrics: the crossing number, nc ∈ [0,∞] –
the total number of crossings in a layout; the angular resolution,
ang_res ∈ [0,1] – the minimum angle between any two incident
edges normalized by 2π/maxv∈V deg(v); and the crossing resolu-
tion, cros_res ∈ [0,1] – the minimum angle of any two crossing
edges normalized by π/2. Additionally, in order to measure how the
augmenting edges distort the layouts, we compute the Procrustes
Statistic [CC00], ps ∈ [0,1]. Here, a value of ps = 0 indicates that
two layouts are exactly similar in the positions of vertices, after
rotation, translation, and scaling ♣.

5. Results and Discussion

Qualitative analysis Representative examples of running FA2 on
augmented graphs (redraw) are shown in Figures 1a and 1c ♣.
Here, the outer faces appear cluttered and the layouts appear to
be folded inwards. Figures 1b and 1d show the layouts where
edges are weighted according to the heuristic. We observe
that the augmenting edges look longer. This makes the layouts be-
ing less folded inwards which in turn removes clutter and brings
the grid-like and triangulation structures forward. The results of
the heuristic on deep triangulations (Figure 3a, 3b) also show
some clutter decrease, especially in the outer face. Finally, for the
Rome graphs (Figures 3c, 3d), we do not see any improvement in
the quality of the layout. However, this result is expected, as the
Rome graphs do not contain dense plain substructures.

Quantitative analysis Table 2 and the Figure in the full version
♣ show the median values of the quality metrics of layouts of all
datasets. Since the data are paired but non-normally distributed, we
use the two-sided Wilcoxon signed rank test to indicate significant
(α = 0.05) improvement or deterioration in a quality metric. For
the grids and triangulations we measure whether there is a signifi-
cant difference between the heuristic and the redraw layouts.
Whereas, for deep triangulations and Rome graphs we compare the
heuristic with the orig layout.

Regarding the number of crossings, we observe significant im-
provements on the heuristic layouts of the augmented grids
and (deep) triangulation graphs. Additionally, the heuristic ap-
proach outshines the neighborhood technique for these graphs. As
expected from the qualitative analysis, for the Rome graphs the
heuristic layouts are either equally good (Hmax) or much worse
(Hmean, Hmin) concerning the number of crossings. The full version
of Table 2 also contains the results of (Hmean) and (Hmin) ♣.

Regarding angular resolution, we see significant improvements
over the redraw layouts in the augmented grids when FA2 is used.
Also, SM scores significantly worse for both the triangulations and

Grids nc ang_res cros_res ps

orig 0 0 .631 .982 - - - -
on_top 52 52 .011 .005 .10 .16 0 0
redraw 67 102 .014 .018 .14 .12 .11 .25
Hmax 51 52 .028 .020 .14 .14 .02 .02
Hnb 60 94 .019 .026 .17 .12 .11 .19
Triangulations
orig 53 79 .009 .023 .10 .14 - -
on_top 96 131 .008 .016 .08 .10 0 0
redraw 87 154 .009 .019 .12 .12 .03 .08
Hmax 65 88 .013 .012 .12 .12 .02 .06
Hnb 93 124 .013 .015 .10 .09 .04 .07
Deep triangulations
orig 74 102 .017 .020 .13 .15 - -
Hmax 58 82 .016 .022 .16 .13 .03 .09
Hnb 73 91 .017 .023 .10 .13 .03 .04
Rome
orig 26 30 .048 .065 .30 .26 - -
Hmax 24 34 .037 .029 .21 .15 .35 .53
Hnb 25 25 .052 .062 .27 .29 .13 .18

Table 2: Median values of metrics. For grids and triangulations,
redraw is compared with heuristic layouts. For deep triangu-
lations and Rome, orig is compared with heuristic layouts.
A stronger hue indicates a significant result, with FA2 & SM

Rome graphs. For the crossing resolution, we observe no significant
differences for the heuristic for the augmented grids, triangula-
tions, and deep triangulations. However, the heuristic layouts
are significantly worse for the Rome graphs, as expected from the
structure of the Rome graphs and the intention of our heuristic.

Additionally, we note that the Procrustes Statistic values for
the heuristic layouts tend to be close to 0 for all but the
Rome graphs. These results indicate that the weighting tactic of our
heuristic yields layouts that stay close to the original planar struc-
ture. Lastly, we observe that FA2 scores better than SM on most
metrics for all datasets.

6. Conclusion

We presented a heuristic to detect edges that create clutter in lay-
outs of near planar graphs. By suitably weighting such edges, we
use spring-embedders to draw these graphs with the goal to bet-
ter convey their planar substructures. The experiments indicate that
our heuristic produces better results for augmented grids and trian-
gulations. For deep triangulations we noticed visual improvements
and clutter decrease in the outer face, though further improve-
ments are possible. Moreover, our heuristic produces drawings with
fewer number of crossings than conventional methods for all but
the Rome graphs. This result is, however, expected since the Rome
graphs do not contain dense planar substructures. Future work can
yield more insight into deep triangulations, which we expect to be
very challenging to lay out in a way that reveal their planar struc-
ture. Moreover, additional comparisons can be made between our
heuristic and tsNET⋆. In addition to more experiments, future work
can attempt to improve the heuristic’s limiting time complexity, by
altering or substituting the vertex-disjoint path and outlier detec-
tion computations. Finally, we plan to test whether Graph Neural
Networks can be more successful in identifying cluttering edges.

© 2023 The Author(s)
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