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Abstract
We present a set of interactive visual analysis techniques aiming at explaining data patterns in multidimensional projections.
Our novel techniques include a global value-based encoding that highlights point groups having outlier values in any dimension
as well as several local tools that provide details on the statistics of all dimensions for a user-selected projection area. Our
techniques generically apply to any projection algorithm and scale computationally well to hundreds of thousands of points
and hundreds of dimensions. We describe a user study that shows that our visual tools can be quickly learned and applied by
users to obtain non-trivial insights in real-world multidimensional datasets.

CCS Concepts
• Human-centered computing → Visualization techniques; Visual analytics;

1. Introduction

High-dimensional data is present in many science and engineer-
ing fields and, as such, is a key target for information visualiza-
tion techniques. A main challenge in this respect is scalability, that
is, how to visually depict datasets having hundreds of thousands
of observations and tens to hundreds of dimensions. Dimension-
ality reduction, also called projection, techniques are one of the
solutions of choice in this area [vP09, NA18]. Compared to other
multi-dimensional visualizations such as table lenses [RC94], par-
allel coordinate plots [ID90], and scatterplot matrices [EPF08],
projections scale well on both sample and dimension counts, and
have become the main technique for visualizing such data in e.g.
biology, astronomy, chemistry, and machine learning.

A raw projection is just a scatterplot which is not directly
useful. Several methods have been proposed to explain projec-
tions. Brushing and color-coding show all dimensions of a sin-
gle point, respectively one dimension over all points. Other global
explanations include biplot axes [Gre10, GLR11, CMN∗16] and
axis legends [BBT13]. A more recent family of global explana-
tions computes how neighbor points in the projection relate to
each other and color the projection accordingly. Such explanations
include dimension variance [dRM∗15], data local dimensional-
ity [vDZTT20], and strongest correlated dimensions [vDZTT20,
TZvD∗21]. Neighborhood-based explanations are easy to interpret
(as they use dimension names), work with any projection technique,
and provide information over all projected points. Yet, they (1) do
not scale to more than roughly 10 dimensions; and (2) do not ex-
plain what the patterns in the projection mean [TZvD∗21].

In this paper, we extend neighborhood-based projection expla-
nations to overcome the above two problems while keeping them

computationally scalable and generic. For this, we propose to glob-
ally explain projection patterns by the values of their constituent
points (Sec. 2) and several interactive techniques that allow scaling
explanations to tens of dimensions locally (Sec. 3). We combine
local and global explanations in an interactive data-analysis tool. A
study with 23 participants asked to solve analysis tasks on datasets
of increasing dimensionality (Sec. 4) shows that our combined ex-
planatory techniques lead to coherent and correct findings, thereby
supporting our claims of added value.

2. Extending global explanations

Variance explanation: We first recall the variance-based explana-
tion of Da Silva [dRM∗15] which forms the basis of our extension.

Let D = {pi}, 1 ≤ i ≤ N, pi = (p1
i , . . . pn

i ) ∈ Rn be a high-
dimensional dataset and DP = {qi = P(pi)} its 2D projection by
a DR technique P. Let ν

P
i = {q ∈DP|‖qi−q‖ ≤ ρ} be a neighbor-

hood of radius ρ around projected point qi ∈DP. Points in ν
P
i come

from the projection of a neighborhood νi = {p ∈ P|P(p) ∈ ν
P
i } in

the dataset D. To explain a projected point qi, one first computes
the local variance of every dimension 1≤ d ≤ n over νi as

LV d
i =

1
|νi| ∑

p∈νi

(
pd− 1

|νi| ∑
p∈νi

pd

)2

. (1)

Next, a ranking of all n dimensions {ξd
i }, 1 ≤ d ≤ n, is computed

over νi as

ξ
d
i =

LV d
i /GV d

∑
n
j=1 LV j

i /GV j
, (2)

where GV d , the global variance of dimension d computed by re-
placing νi by D in Eqn. 1, is used to normalize across dimensions
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with different variances. Intuitively put, low ξ
d
i values tell dimen-

sions d which vary very little over νi (as compared to their variance
over D), which is a way to explain why points in νi are similar. As
such, the lowest-rank dimension λi = argmin1≤ j≤n ξ

j
i is picked to

explain point qi. The C most-frequent such lowest-ranks λi over
the whole projection DP are next mapped to the C colors of a cat-
egorical colormap. Less-frequent ranks are mapped to a separate
‘other dimensions’ color. In our work, we use the C = 20 colormap
proposed by Kelly [Kel65], excluding black and white. Finally, a
confidence value is computed per point qi as the fraction of points
in ν

P
i which have the lowest-rank dimension equal to λi, and en-

coded in the projection via luminance.

a) Variance explanation b) Value explanation

Figure 1: Variance (a) and value (b) explanation of a projection.

Figure 1a illustrates the variance explanation on the Wine dataset
(further described in Sec. 4). Variance ranking helps explaining
why points in the projection are close together in certain areas –
for example, all red points have similar values of the chlorides
dimension. Dark areas, close to the borders of same-color (same-
explanation) regions, indicate points where the single-dimension
explanation is less confident. However, this explanation does not
tell what such points represent. To alleviate this, we next propose
an explanation based on dimension values.

Value explanation: Similar to the variance explanation, we also
compute ranks of all dimensions {ξd

i }, 1≤ d ≤ n, over each neigh-
borhood νi. The key idea behind value ranking is to find dimen-
sions which have outlier values over such neighborhoods. For this,
we first compute the local average

LAd
i =

1
|νi| ∑

p∈νi

pd (3)

of dimension d over νi. Using this, we compute the value ranking
of dimension d as

ξ
d
i =

1
r(d)

LAd
i −GAd

∑
n
j=1

1
r( j) |LA j

i −GA j|
, (4)

where r(d) = max1≤i≤N pd
i −min1≤i≤N pd

i and GAd are the range,
respectively, variance, of dimension d over D. Dimensions d with
positive ranks ξ

d
i are unusually high in the neighborhood νi; di-

mensions with negative ranks are unusually low – the higher or
lower the rank values are, the more unusual the dimension values
are in that neighborhood. Depending on the application, one can
choose whether they are interested in unusually high or unusually
low dimensions or both of these. For space limitations, we discuss
next in this paper only examining unusually high dimension values.

Hence, we pick the highest-rank dimension λi = argmax1≤ j≤n ξ
j
i

to explain point qi. These dimensions are next color-and-luminance
mapped as for the variance ranking.

Figure 1b shows the value explanation of the Wine dataset.
We see, for instance, that most of the red points in the variance-
explanation (a), i.e., wines having similar chloride values, are pink,
i.e., are wines with unusually high alcohol values. Section 4 further
shows how the variance-and-value explanations can be combined
to get more insights on a projection.

3. Adding local explanations

Even if we can compute explanations for many dimensions (Eqns 2
and 4), we can only show C of these simultaneously by our cate-
gorical colormap. Also, explaining projection patterns by a single
dimension (whether via variance or values) only tells a part of the
full story, since close points are placed so because of multiple di-
mensions. We address these limitations by several mechanisms that
explain fewer points at a time, but in more detail (see also Fig. 2).

lens

cd

a b

e

legend

Color by variance

Figure 2: Local explanation of lensed points (Sec. 3).

Lens brushing: All projection points S within a given radius to
the mouse pointer are selected to be the focus of the detailed (lo-
cal) explanations described next. The radius is adjustable via the
mouse wheel. For these selected points, we compute the variance
and value rankings as for the global explanations (Eqns. 2 and 4)
by substituting νi with the user selection S. Users can interactively
switch between the variance explanation (which tells why points in
S are close in the projection) and the value explanation (which tells
what these points are, data-wise).

Local analysis: We display detailed explanations of the lensed
points S in a widget next to the projection. Figure 2 shows this
widget for a simple 3D cube dataset projected using PCA. The wid-
get is organized as a table with one row per dataset dimension. For
each dimension, we show its name, assigned color (by variance or
value ranking, see above), and a set of statistics for that dimen-
sion (described further below). In variance mode, dimensions are
sorted top-to-bottom from lowest rank (lowest ratio of variance in
the selected points S vs the whole projection) to highest rank (high-
est ratio of variance). In contrast to the global variance explanation
(Sec. 2), we now not only show the least varying dimension (at the
top), but all dimensions, sorted on variance. In value mode, we sort
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dimensions top-to-bottom from highest rank (highest mean value
in S vs mean value over the whole projection) to lowest rank (low-
est mean value). In contrast to the global value explanation, this
shows not only the most outlier-like dimension (at the top), but all
dimensions, sorted on their outlier-ness.

Dimension statistics: The above dimension sorting helps one find
the most salient dimensions (in variance or value) but does not ex-
plain how much these contribute to the lensed points S. To address
this, we show both local and global statistics for each dimension d
in the widget. A range line (same categorical color as the dimen-
sion) indicates the full extent r(d) of the dimension over all projec-
tion points from the global minimum (Fig. 2, a) to the global max-
imum (Fig. 2, b). A large grey tick shows the dimension’s global
mean ∑1≤i≤N pd

i /N (Fig. 2, c). A red tick shows the dimension’s
local mean over the lensed points ∑qi∈S pd

i /|S| (Fig. 2, d) When
the local mean is greater than the global mean, we draw a green bar
between the two means to indicate a dimension which has higher
than usual values over the lensed points. Similarly, when the local
mean is smaller than the global mean, we draw a red bar between
the two means, indicating a dimension having lower than usual val-
ues over the lensed points. Finally, we show the standard deviation
of the dimension over S with white whiskers drawn left and right
of the local mean (Fig. 2, e). Close whiskers indicate that the lensed
points vary little over the analyzed dimension, thus the respective
dimension is important for why the points are close in the projec-
tion. This is the same information as the top-to-bottom sorting in
variance mode. However, in value mode, whiskers add the variance
information which is not present in that mode.

To ease operation, we show all above encodings in a legend be-
low the widget. Note also that, while similar to boxplots, our over-
all design is different – our whiskers represent standard deviations,
and our bars represent local-vs-global mean differences.

Color by value

S
1

S
2

alcohol
quality

density

Figure 3: Differential analysis of sets of points (Sec. 3).

Parallel coordinates plot: We show more detailed information by
a PCP of all lensed points S drawn half-transparently atop of the
horizontal range lines of all dimensions.

Differential analysis: While local explanations show detailed in-
formation over a selected projection detail, one inherently needs to
explore several such details in a sequence to understand a projec-
tion. This puts a certain burden on the user’s memory. We alleviate

this by offering a way to compare two different such user-selected
details, as follows. The user selects a set of points S1, then presses
a modifier key and selects a different set S2. The statistics that are
normally shown in the analysis widget are now replaced by statis-
tics showing the differences between S1 and S2. Figure 3 shows
this for the Wine dataset using the value-ranking mode. The widget
shows that the two top-most dimensions (alcohol, pink in the pro-
jection; and quality, dark purple in the projection) have long green
bars, while the bottom-most dimension (density, dark green in the
projection) has a red bar. This tells that wines in S2 have much
higher alcohol and quality, but lower density, than wines in S1.

Color by value Color by value

a) b)

Figure 4: Selective dimension disabling (Sec. 3).

Dimension exclusion: Local analysis allows handling higher-
dimensional data than global analysis as it displays details of all the
dimensions over a selected data subset. Still, datasets can contain
dimensions that do not convey much information for a given analy-
sis. These can take up valuable colors from our limited C = 20 cate-
gorical colormap and also clutter the explanation widget. Excluding
them upfront from the entire analysis is undesirable as users may
wish to examine different sets of dimensions – and keep the same
projection – depending how the analysis unfolds. To address this,
we allow users to click on dimensions in the widget to temporar-
ily exclude them from the generated explanations. Doing so reas-
signs colors to the remaining dimensions and instantly re-creates
the global and local explanations. Clicking on an excluded dimen-
sion adds it back to the generated explanations. Figure 4 illustrates
this. In image (a), about half of the projection points are explained
by unusual high values of the diagnosis dimension (yellow, top-
most in the rank-by-value widget). To get more insight on what
else makes these points different, we click on this dimension and
disable it. The dimension turns white in the widget and moves to the
bottom to indicate disabling. The regenerated explanation (Fig. 4b)
splits the big yellow blob into differently-colored groups that pro-
vide more insights of how these points differ.

Scalability: Our explanation system, implemented in C++ in the
ManiVault framework [Div23], scales computationally well. It
computes global explanations of datasets of hundreds of thousands
of points and hundreds of dimensions in tens of seconds, and next
interacts with these in real-time, on a commodity PC, and is openly
available [TTT23]. Figure 5 illustrates the visual scalability in sam-
ple (a) and dimension (b) counts. Image (a) shows a dataset consist-
ing of 22 registered images of the same brain-cortex tissue patch,
each image mapping a gene. Pixel brightnesses encode where in the
tissue the gene is expressed. We treat each image pixel as a sam-
ple having 22 dimensions (one from each image). This yields 115K
22-dimensional samples which we project with t-SNE [vH08] and
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next explain the projection. In Fig 5a, the global value explana-
tion shows us how the projection is split into clearly separated
point groups. We next lens over several points in the orange re-
gion, which corresponds to the Cux2 gene. The local explanation
in the widget tells us that Cux2 is, indeed, unusually high in this
region, and that only a few other dimensions have outlier values
here. Figure 5b shows another dataset [ZMP∗22] of gene expres-
sions in the brain cortex. This dataset has 2400 samples (cells from
the analyzed brain region) each with 314 dimensions (gene expres-
sions). Finding high-expression genes in specific structures is one
of the key analysis tasks such datasets are involved in. The projec-
tion shows the spatial layout of these cells. Even though the dataset
has hundreds of dimensions, the global value-ranking explanation
is able to assign colors to unravel a salient band-like structure in the
projection, which is actually in line with the known layer structure
of the cortex. Using the lens, we selected points in the purple band.
The local explanation widget tells us that these have an unusually
high expression of the Foxp2 gene (top-most bar in the widget), as
well as showing other genes having high expressions in this area.

a)

b)

Figure 5: Scalability of explanations in number of points (a) and
dimensions (b) (Sec. 3).

4. User Evaluation

To evaluate the effectiveness and ease of use of our interactive sys-
tem for projection explanations, we conducted a user study (details
in the supplementary material).

Participants: We invited about 60 people to take part in the study
(and/or further spread the invitation). Of these, 23 completed the
study. Participation was fully anonymous, i.e., we did not collect
nor trace the participants’ identities. Participants self-reported (at
the end of the study) experience with multidimensional data be-
tween none and several years (see also Fig. 6a).

Set-up: Participants installed our tool (Windows or Linux) and
followed a tutorial (15 minutes) covering loading data, switching

between variance and value explanations, and using the lens and
local-explanation widget. Next, they were asked to analyze three
multidimensional datasets and report answers via Google Forms.
These datasets, all from the UCI repository [DG22], had increasing
dimensionalities to test our system’s scalability in this respect. The
Wine dataset (N = 6500,n = 12) contains wine samples with 11
measured physicochemical attributes and one dependent attribute
(perceived quality). The Cancer dataset (N = 569,n = 31) contains
10 attributes describing the size, shape, and texture (mean, max,
and standard deviation) values of cell nuclei in a lung tissue. An ex-
tra attribute tells whether cells are benign or malignant. The Spam
dataset (N = 4601,n = 57) contains frequencies of selected words
for classifying whether mails are spam or not, and also the classifi-
cation result. The datasets were projected using LAMP [JCC∗11]
(Wine) and t-SNE (Cancer, Spam) to check suitability with differ-
ent projection techniques.

Questions: For each dataset, the participants had to answer four
control (C) and three live exploration (LE) questions. The C ques-
tions involved examining screenshots of the application (produced
by us) and selecting one of four multiple-choice answers. The an-
swers were designed so that there was a single unambiguously cor-
rect one. In each question, different points of the projection were
selected by the lens and snapshots of both global and local expla-
nations were provided. The goal of these questions was to see if the
participants understood how to read a pre-computed visualization
(without interaction) to come to a correct conclusion. The LE ques-
tions asked participants to analyze the datasets interactively using
the tool on their machines and select one or several multiple-choice
answers. In contrast to the C questions, and given also the free-
dom to explore any parts of the dataset using any tool mechanisms,
there were no 100% right or wrong answers. Rather, the goal here
was to test if users of our tool, when asked to do an analysis in an
uncontrolled environment, would come up with similar insights.

no experience

<2 years

2-5 years

>5 years

Wine
CancerCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCancncncncncncncncncncncncncncncncncncncncncererererererererererererererererererererer

Cancer Spam

a) Self-reported
experience

b) Control questions 

Figure 6: Users’ experience (a) and correctness of answering con-
trol questions (b).

Results: The 12 control questions were overwhelmingly correctly
answered (see Fig. 6b), suggesting that users were able to learn
to correctly use our tool. The 9 live-exploration questions had no
100% right or wrong answers, as explained. Hence, we ranked their
answers on an 4-point ordinal scale (very likely, likely, unlikely,
very unlikely) telling how likely we ourselves would provide an
answer after having studied those datasets in depth. We also mea-
sured the coherence of the users’ answers – high values tell that
different people arrive at similar insights. Figure 7 shows the agree-
ment scores for 5 of these 9 questions (for more, see supplementary
material). Long-and-bright bars in this figure indicate consensus
between users and also with our own assessment, as follows.

Single cluster: This simple analysis asks users to find very-low-
density wines in the projection and find which other attribute is also
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Single cluster (Q1, Wine) Multiple cluster (Q1+Q2, Spam) Multiple attribute (Q3, Cancer)

Differential analysis (Q3, Wine) Dimension disabling (Q1+Q2, Cancer)

For low-density wines, tick which other attribute is 
out-of-proportion and likely the cause of low density 

Looking at points with a malignant sample,
which statement is likely true?

Larger malignant cells are more 

concave than smaller malignant cells

Larger malignant cells are less

compact than smaller malignant cells

Malignant cells with a larger

perimeter tend to have a larger area

None of the above is likely true

4 (17.4%)

14 (60.9%)

21 (91.3%)

0 (0.0%)

Use the differential analysis tool to find which attributes
most differ between the red and white wines (max 4)

Find subclusters within the malignant points and select
which attributes with high relative values characterize them

Tick which words occur more often than usual in
mails classified as spam resp. non-spam (max 3)

sp
am

no
t s

pa
m

Our assessment of the answers

very likely
likely
unlikely
very unlikely

Figure 7: Inter-user agreement (and our assessment of correctness likelihood) for answers from the live exploration analysis.

out-of-proportion and thus likely causes the low density. This ques-
tion can be easily answered using the lens and the value-ranking.
Most users answered alcohol which is also our pick, with fixed
acidity being a valid second option.

Multiple cluster: Users were asked to find which words occurred
more often in non-spam and then in spam mails – thus, study at
least 2 different clusters. This involved finding point clusters with
spam, respectively non-spam, mails, via e.g. the variance global ex-
planation, and then lensing in value-ranking mode to see which of
the 6 words occurred there more often than elsewhere. Participants
yielded very similar answers – and also similar to our own findings.

Multiple attributes: This question – arguably the most complex on
our study – involved analyzing several attributes per point cluster.
This requires interactively finding projection areas having low/high
values of one attribute and then analyzing the other attributes in
these areas. Again, we see strong inter-user agreement and also
agreement with our own findings.

Differential analysis: Users were asked to tick up to four attributes
that are most different between red and white wines. To do this, they
had to find both red and white wines using the global explanation,
and next use the differential analysis to find which attributes differ
between these wines. We see again a strong agreement between
users and also with ourselves.

Dimension disabling: Users were asked to find structure among the
malignant points in the projection. For this, one could first disable
the diagnosis dimension so as to see how malignant points split
into sub-clusters described by other dimensions. When doing this,
the malignant cluster indeed splits into three regions described well
by outlier values of radius, compactness, and concave points.

The participants arrived at very similar answers, which we deem
to be correct by our own independent analysis of the same datasets,
which shows that our tool can help obtaining correct insights in
high-dimensional data in a predictable way. Finally, we asked par-
ticipants to provide feedback on the usefulness of our tool’s fea-
tures. The variance mode got a mean score of 4.83 (SD=1.63) and

the value mode a mean of 6.52 (SD=0.77) on a Likert scale (1=not
useful at all, 7=very useful). This supports our claim that the value
mode is a useful addition. The PCP plot was found to provide ad-
ditional explanatory value (60.9% users) and help understand the
distribution of values (47.8% users). Yet, 17.4% of the participants
found that it makes the local analysis widget more confusing and
8.7% found it brings no added value. Finally, the differential analy-
sis tool’s usefulness was ranked with a mean of 5.74 (SD=1.03) on
the same scale as the variance and value. The dimension exclusion
got an identical mean of 5.74 (SD=1.42).

5. Discussion and Conclusion

We have presented a set of interactive visual analysis techniques for
the exploration and explanation of multidimensional projections.
Our techniques extend existing global variance explanations with
a global value-based explanation; local explanations based on vari-
ance, value, and detailed statistics on all dataset dimensions; a dif-
ferential analysis tool allowing the comparison of two projection
regions; and a dimension filtering mechanism. Our techniques han-
dle any projection algorithm and scale computationally and visu-
ally to datasets of over 100K samples and over 300 dimensions. A
user study showed that our techniques can be quickly learned, are
found useful, and can be applied to answer non-trivial questions on
real-world multidimensional datasets.

Several directions can be explored next. Global explanations are
still limited as they inherently show a single dimension. Further
studying the original idea proposed – but not elaborated – by Da
Silva [dRM∗15] to use dimension-sets, computed e.g. by subspace
clustering, and possibly complemented by dimension-value-ranges,
can improve such explanations. Separately, we could incorporate
knowledge on the specific projection method used to make the ex-
planatory metrics more insightful than generic variance and outlier-
value computations. Finally, deploying our tool in a long-term anal-
ysis involving a real use-case and domain experts would bring ad-
ditional evidence of its practical value.
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